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Abstract: Cyclophosphamide is an anticancer drug with a wide spectrum of clinical uses, but its
typical side effects are multiple complications, including nephron toxicity. The possible molecular
mechanism of the nephroprotective action of sesamin (SM) against cyclophosphamide (CP) induced
renal toxicity was investigated in rats by understanding oxidative stress and inflammatory cytokines.
In this study, rats were arbitrarily grouped into the following four groups: a normal control group
(CNT); a CP-induced toxicity group; a treatment group with two doses of sesamin SM10 and SM20;
a group with sesamin (SM20) alone. A single dose of CP (150 mg/kg body, i.p.) was administered
on day 4 of the experiments, while treatment with SM was given orally for seven days from day 1.
The group treated with SM showed a significant protective effect against CP-induced renal damage
in rats. Treatment with SM significantly increased the antioxidant enzymes (GSH, CAT, and SOD)
and reduced malondialdehyde (MDA) levels. Thus, SM significantly overcame the elevated kidney
function markers (creatinine, blood urea nitrogen, and uric acid) by attenuating oxidative stress. The
SM also significantly reduced the elevated cytokines (IL-1β and TNFα) and caspase-3 in the treated
group. Histopathological studies confirmed the protective effect of sesamin (SM) on CP-induced
nephrotoxicity. In conclusion, the current findings support the nephroprotective effect of sesamin
against CP-induced renal injury.

Keywords: cyclophosphamide; sesamin; nephroprotective; oxidative stress; inflammatory cytokines;
apoptosis

1. Introduction

Chemotherapy is an effective treatment for various kinds of cancer diseases, but it
causes multiple side effects. The side effects of chemotherapy are different for each patient
depending on the type of cancer, location, drug, dose, and the patient’s immune system.
Most of the drugs including anticancer and their metabolites cleared from the renal pathway
and causes major damage to the kidney [1]. Cyclophosphamide is one of the anticancer
drugs with a wide spectrum of clinical uses, such as sarcoma, lymphoma, neuroblastoma,
multiple myeloma, leukemia, breast cancer, ovarian and lung cancer, etc. Its typical side
effects are multiple complications, including nephrotoxicity [2].

The metabolic activation of CP by the hepatic enzyme is 4-hydroxy cyclophosphamide,
which converts into two toxic metabolites such as scarlein and phosphoramide [3]. This
metabolite makes a covalent bond with DNA and proteins, resulting in cell death. A small
fraction of CP is removed by the kidney, while the tubular reabsorption of this drug is
very high [4]. Various researchers have reported that oxidative stress plays an important
role in CP-induced renal injury [5–7]. Researchers have reported that CP-induced reactive
oxygen species (ROS) play a key role in the pathogenesis of CP-independent renal damage.
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In this way, ROS-induced oxidative stress in the proximal tubules of the kidney mainly
affects the cells, leading to nephrotoxicity [8]. Thus, natural scavengers of free radicals
and antioxidants can be used to treat kidney damage caused by CP. It is now possible to
reduce or eliminate the toxic effects of cyclophosphamide by combining it with various
detoxifying and protective agents [9].

Therefore, palliative care as free radical scavengers and antioxidants is always neces-
sary for cancer treatment, including CP. Natural resources have been used as a therapeutic
medicine for thousands of years. Nevertheless, the majority of the population of a devel-
oping country relies on herbal medicine for primary health care [10]. The seeds of sesame
plants and their oil have been used in human diets for thousands of years as a healthy food
source [11]. Sesamin is an active ingredient of sesame seeds (Sesamum indicum) and sesame
oil known for various physiological actions. Sesamin is a major lignin that is absorbed
proficiently and circulated throughout the body. It is highly distributed in the liver and
kidney as sesamin metabolites and plays various physiological effects such as antioxi-
dant [12], anti-inflammatory [13], a protective role against mitochondrial toxicity [14], a
lowering effect on serum cholesterol, lipid level, and blood pressure [15,16], a protective
effect against alcohol-induced liver injury [17] and anti-allergic effect [18], etc. A recent
study published by B H Ali (2020) [19] indicated sesamin ameliorated cisplatin-induced
nephrotoxicity, but cyclophosphamide-induced nephrotoxicity has not been explored yet.
Therefore, this idea encourages us to explore the defending action of Sesamin against
cyclophosphamide-induced nephrotoxicity.

2. Results
2.1. Kidney Function Test

Table 1 showed blood urea nitrogen (BUN), uric acid, and creatinine content that
increased significantly (p < 0.001) in the CP administered group as compared to the normal
control group. However, SM10 and SM20 treatment showed remarkable improvement
and restoration in these active markers of the kidney. Significant improvement of these
markers was seen in pretreatment with SM20 than SM10 as compared to CP administra-
tion, but no significant changes were seen in alone as positive control SM20 treatment vs.
normal control.

Table 1. Effect of SM on serum markers against CP-induced nephrotoxicity.

Test Group Blood Urea Nitrogen
(mg/dL) Uric Acid (mg/dL) Creatinine (mg/dL)

CNT 18.66 ± 2.58 4.57 ± 1.18 0.81 ± 0.08

CP 50.16 ± 3.97 a

(168.81%)
16.71 ± 2.64 b

(265.64%)
2.06 ± 0.44 c

(154.32%)

SM10 + CP 29.16 ± 4.71 d

(−40.86%)
9.36 ± 1.66 e

(−43.98%)
1.57 ± 0.78 f

(−23.78%)

SM20 + CP 21.16 ± 2.79 g

(56.93%)
5.63 ± 1.32 h

(−66.30%)
0.91 ± 0.1 i

(−55.82%)

SM20 19.00 ± 3.03 j

(1.82%)
4.84 ± 1.47 k

(5.90%)
0.85 ± 0.04 l

(4.93%)

Data presented as mean ± standard deviation where n = 6, a p < 0.0001 vs. CNT, b p < 0.0001 vs. CP, c p < 0.0001
vs. CNT; d p < 0.0001 vs. CP, e p > 0.05 vs. CP, f p < 0.0001 vs. CP; g p < 0.0001 vs. CP, h p < 0.001 vs. CP, i p < 0.0001
vs. CP; j,k,l p > 0.05 vs. CNT.

2.2. Oxidative Stress Markers

Table 2 represents the MDA level that was remarkably amplified in the CP admin-
istration group than in the normal control group. The CP caused a significant decrease
(p < 0.05) in reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD)
content compared to the normal control group (CNT). Pre-treatment with SM10 and SM20
significantly improved these levels (GSH, CAT, and SOD) and reduced the level of MDA. It
was also noticed that SM20 was more effective and highly significant than SM10. The ad-
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ministration of SM10 failed to increase the level of SOD as compared to CP administration.
Pre-treatment with SM20 alone as a positive control did not find any significant changes in
these markers.

Table 2. Effects of SM on oxidative stress against CP-induced renal toxicity.

Test Group MDA
(nmole/mg Tissue)

GSH
(DTNB Conjugate

Formed/mg Protein)

CAT
(nmole of H2O2

Consumed/min/mg
Protein

SOD
(nmole Ephinephrine

Protected from
Oxidation/min/mg

Protein

CNT 9.07 ± 1.37 21.95 ± 3.39 15.01 ± 2.41 33.89 ± 1.07

CP 27.3 ± 3.65 ** 6.23 ± 1.25 ## 5.45 ± 1.30 a 13.35 ± 3.45 $$

SM10 + CP 15.66 ± 2.98 *** 12.89 ± 2.17 ### 10.74 ± 1.76 b 25.42 ± 4.35 $$$

SM20 + CP 10.50 ± 1.49 *** 19.89 ± 2.43 ### 12.98 ± 1.74 b 33.22 ± 1.58 $$$

SM20 10.12 ± 1.20 * 21.027 ± 2.25 # 14.15 ± 2.65 c 34.04 ± 3.55 $

Data represent the protective effects of SM on oxidative stress markers (MDA, GSH, CAT and SOD) level against
CP-induced nephrotoxicity. Data represented in mean ± SD (n = 6). * p > 0.05 vs. CNT, ** p < 0.0001 vs. CNT and
*** p < 0.0001 vs. CP. # p > 0.05 vs. CNT, ## p < 0.0001 vs. CNT, ### p < 0.0001 vs. CP, c p > 0.05 vs. CNT, b p < 0.0001
vs. CP, a p < 0.0001 vs. CNT. $ p > 0.05 vs. CNT, $$ p < 0.0001 vs. CNT, $$$ p < 0.0001 vs. CP. Abbreviation;
MDA: malondialdehyde, CNT: control, CP: cyclophosphamide, GSH: glutathione, CAT: catalase, SOD: superoxide
dismutase, SM: sesamin.

2.3. Inflammation and Apoptosis

Figures 1 and 2 showed a significant (p < 0.0001) increment in pro-inflammatory
cytokines (IL-1β, and TNFα) after CP administration in comparison to CNT. In contrast,
seven days of continuous pre-treatment with SM10 and SM20 drastically lowered these
inflammatory cytokines in comparison to the CP alone administered group. However,
these cytokines were not significant between SM20 alone and normal control groups.
Figure 3 represents the effects of Sesamin on apoptosis markers. Interestingly, caspase 3
was increased significantly (p < 0.0001) in the CP administered group, while pre-treatment
of SM10 and SM20 remarkably decreased the level of caspase 3 in the SM10 + CP and
SM20 + CP groups. It was noticed that no significant difference was found between SM20
alone and CNT.
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Figure 3. Protective effects of SM on renal apoptotic marker (Caspase 3) level against CP-induced
nephrotoxicity. Value denoted in mean ± SD (n = 6). **** p < 0.0001 vs. CNT, **** p < 0.0001 vs. CP
and ns p > 0.05 vs. CNT. Abbreviation; CNT: control, CP: cyclophosphamide, SM: sesamin.

2.4. Histopathology

Figure 4B shows the harmful effects of cyclophosphamide (CP) on kidney histology
in the CP treatment group in comparison to the normal control group (CNT). The impact
of CP toxicities was very prompt with glomerulus nephritis, missing capillary loops,
open Bowman’s space, edema, hemorrhage, and vacuolization, in the CP administered
group than in CNT. However, pre-treatment with SM10 showed minor improvement in
glomerulus morphology (Figure 4C), but remarkable regaining was observed in the SM20
group (Figure 4D) compared to CP alone. In the sesamin higher dose (SM20) treated group
(Figure 4E), no lesions were observed. The normal control group (CNT) showed no sign of
inflammation or necrosis (Figure 4A).
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3. Discussion

Chemotherapeutic drugs improve cancer patient survival, but nephrotoxicity remains
a critical complication and challenge. Cyclophosphamide is a chemotherapeutic drug that
causes renal injuries at a different level that reflects in serum markers. In a previous report,
cyclophosphamide therapy was reported to develop renal toxicity in cancer patients [20,21].
Current cancer therapeutic strategies are needed to avoid direct or indirect renal toxicity
by using natural or complementary antioxidants. Sesamin was used in this study to
explore the possible mechanism linked to antioxidant markers, inflammation markers, and
apoptosis markers behind renal protection. Our findings showed that sesamin attenuates
the CP-based nephrotoxicity in rats.

The progression of renal toxicity after CP administration is characterized by increases
in serum BUN, uric acid, and creatinine [22–24]. The current outcomes showed a significant
elevation in the BUN, uric acid, and creatinine in the CP administration group. The elevated
serum markers may be due to renal damage, as evidenced by decreased creatinine clearance
and low glomerular filtration rate. The measurement of these markers proves helpful in
diagnosing renal toxicities [25].

In the past few decades, experimental animal research has shown that CP nephrotoxi-
city is linked with the free radical induced oxidative stress that mediates extensive renal
impairments [26]. Cyclophosphamide causes renal toxicity by alkylation of the renal cell by
the Cys sulfhydryl group of acrolein, one of CPs active toxic metabolites. As per scientific
evidence, tubular reabsorption of CP is very high; therefore, a minimal amount is excreted
from the kidneys [27]. CP experiences metabolic activation through liver enzymes and
forms 4-hydroxycyclophosphamide that further converts into two metabolites, acrolein and
phosphoramide mustard, which is cytotoxic [28]. Acrolein is an electrophilic and highly
reactive aldehyde that interacts with the antioxidant defense system [29]. The acrolein
can bind with reduced glutathione (GSH) and reduce its renal cell level. Thus, acrolein
hampered the antioxidant system by producing more free radical generation, which is
responsible for oxidative stress and damaging the cells of the kidney. The renal alkylation
process reduces the glomerular filtration rate and causes tubular dysfunction [30].
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The current observation indicates that a single dose of CP caused lipid peroxidation
and MDA content were increased compared to CNT, while antioxidant enzymes were
significantly reduced. These observations are supported by the previous investigator where
CP produced lipid peroxidation and caused renal damage in rats [31,32]. Sesamin treatment
remarkably restores these antioxidant defense systems in the present study. Sesamin has an-
tioxidant [33], anti-inflammatory [34], and anti-apoptotic [35] properties, which are already
proven. It has been suggested that sesamin’s metabolites (monocatechol and dicatechol)
are responsible for various physiological effects. These metabolites exhibited antioxidant
activity in the liver cells [36]. Sesamin was sequentially metabolized by cytochrome p450
and UDP glucuronosyltransferase or sulfotransferase. Sesamin metabolism was mainly
mediated by CYP2C9 in the human liver [37]. A previous study indicates that sesamin sup-
presses increased NADPH oxidase-dependent oxidative stress in diabetic mice. NADPH
inhibition may therefore result in various anti-inflammatory effects. As a result of oxidative
stress, pro-inflammatory cytokines are produced as well as different signaling pathways
are stimulated, resulting in inflammation, fibrosis, and apoptosis [38,39].

Inflammation shows a vital role in CP-involved renal pathogenesis by involving sev-
eral molecular and cellular factors. As a result of CP-induced oxidative stress, the transcrip-
tion factor NF-κB is activated in the nucleus, promoting a series of inflammatory changes
and IL-1 and TNF-expression [40]. Thus, increased concentration of pro-inflammatory
cytokines leads to activation of NF-κB, which results in increased transcription of the
pro-apoptotic genes and eventually causes apoptotic cell death [41].

In the present study, these cytokines (IL-1β and TNFα) levels were increased in the
kidneys of rats after exposure to CP, and their effects were significantly inhibited by the
treatment with Sesamin. In addition, pro-inflammatory cytokines are also responsible for
activating the p38-MAPK pathway that acts as a serious role in cellular apoptosis [42,43].
Apoptosis is programmed cell death associated with the activation of caspases, which is
called the initiator or executioner of apoptosis [44].

Caspase 3 plays an important role in apoptosis in renal tubules [45,46]. This study found
that caspase 3 levels increased after CP exposure and decreased after sesamin treatment.

In addition to the biochemical findings discussed previously, histopathological find-
ings confirm that sesamin can attenuate renal injury induced by CP. In the presence of CP,
infiltration of inflammatory cells and significant changes in renal architecture were noted,
but sesamin ameliorated the effect and improved renal structure and function. Overall,
the protective and antioxidant properties of sesamin contribute to the normal histological
architecture of renal tissue.

4. Materials and Methods
4.1. Chemicals

Sesamin, cyclophosphamide, 5,5dithiobis-(2-nitrobenzoic acid), reduced GSH, TBA,
were obtained from Sigma chemicals (3300 S 2nd St #3306 St. Louis, MO 63118, USA).
Biochemical assay kits for BUN, Uric Acid, and Creatinine were obtained from Randox,
Crumlin, UK. Elisa estimation kits for IL-1β, TNFα, and Caspase-3 were purchased from
Abcam, Cambridge, UK.

4.2. Animals

Male Wistar rats weighing 150–160 g purchased from the MRC, Jazan University, Saudi
Arabia. The rats were adapted under normal laboratory conditions of 12 h dark and light
cycle, temperature (20 ± 2 ◦C), and humidity (50 ± 15%). The animal experiments were
carried out after ethical approval no REC41/1-032 from the Research Ethical Committee,
Jazan University.

4.3. Experimental Design

The rats were grouped into five test groups having six rats in each. Normal control
(CNT) received the same number of vehicles as saline only. Test groups were further
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classified into four groups as rats received a single dose of Cyclophosphamide with saline
i.p. on day four, represented as CP alone. The third and fourth groups of rats received two
oral doses of sesamin (SM10 and 20 mg/kg) [47] from day one to day seven along with
a single dose of CP (150 mg/kg) on day four, represented as SM10 + CP and SM20 + CP,
for seven days respectively. Another group of rats received only sesamin (SM20 mg/kg)
p.o. daily for seven days. Rats of all groups except normal and sesamin control were used
as single dose administration intraperitoneally of CP (150 mg/kg body weight) [48] on
day four.

After seven days of treatment (i.e., on day 8), rats fasted for a minimum of 12 h. All rats
of each group were anesthetized with chloral hydrate, and blood was collected immediately
from them through the retro-orbital plexus. After that, the animal was sacrificed, and
kidneys were removed from each rat and divided into two parts. The first parts were kept
at −80 ◦C for tissue preparation and biochemical analysis. In contrast, another part of
the kidney was immersed in a 10% formalin solution for histological investigation by a
light microscope. Samples of blood were centrifuged at 300 rpm for 15 min; serum was
extracted and stored at −20 ◦C for kidney function tests. The tissue was homogenized
in 10% child PB solution (0.1 M and pH 7.4). The homogenized tissue was centrifuged at
3000 rpm for 15 min at 4 ◦C, and the upper layer was used to estimate oxidative stress and
cytokine assay.

4.4. Assessment of Renal Function Test in Serum

Determination of renal function tests (blood urea nitrogen, uric acid, and creatinine)
was carried out as per the standard procedure of Randox UK using a photometer.

4.5. Assessment of Oxidative Stress Markers

Assessment of malondialdehyde (MDA) in renal tissue was carried out by Ohkawa
et al. (1979). In a nutshell, the mixture contained 1.5 mL of 20% glacial acetic acid, 1.5 mL
of aqueous solution of TBA, 0.2 mL of 8% SDS, and 0.8 mL of sample. This mixture was
further heated at 95 ◦C for 60 min. After being cooled with tap water, the solution was
agitated vigorously before 5 mL of a 15:1 butanol and pyridine combination and 1 mL of
distilled water were added. The mixture was then centrifuged at 2000× g for 10 min, and
the supernatant’s absorbance at 532 nm was then determined. The standard curve is used
to calculate the amount of thiobarbituric reactive chemicals produced, and the result is
represented in nmole per mg protein [49].

The Sedlak and Lindsay approach was used to measure reduced glutathione (GSH)
(1968). The sample was precipitated with trichloroacetic acid after being homogenized in
5 mL of infant KCl (1%). (TCA). The reaction mixture contains 2 mL of Tris buffer (pH 8.9),
0.5 mL of DTNB, and 0.5 mL of supernatant. At 412 nm, the solution was read [50].

Claiborne’s 1975 approach was used to measure the catalase activity. The reaction
mixture, which had a final volume of 3 mL, was made up of 2 mL of phosphate buffer,
0.95 mL of H2O2 (20 mM), and 0.05 mL of sample PMS (10%). At intervals of 30 s, changes in
absorbance were recorded at 240 nm. Using the molar extinction coefficient 43.6 M−1 CM−1,
catalase activity was determined as nmole H2O2 consumed per minute per milligram
protein [51].

Stevens et al. (2000) [52] approach was used to measure the superoxide dismutase
(SOD) through measuring the auto-oxidation of epinephrine for 3 min at 480 nm wave-
length. The enzymatic reaction of SOD was expressed in nmol epinephrine protected from
oxidation/min/mg protein through using extinction co-efficient of 4.02 × 103 M−1 CM−1.

4.6. Assessment of Inflammation and Apoptosis

Assessment of pro-inflammatory cytokines (IL-1β, and TNFα) and apoptosis (Caspase 3)
were carried out as per the standard protocol of Abcam UK by using Elisa reader.
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4.7. Histopathological Inspection

Formalin buffer solution (10%) was used to fix kidney tissues overnight, after which they
were waxed and sectioned to 5 µm lengths. Hematoxylin and eosin (H and E) were used to
stain the slides, and a 400× light microscope was used for the histopathological examination.

5. Conclusions

The current study concludes that sesamin (SM) is effective in attenuating oxidative
stress and inflammatory cytokines associated with CP-induced nephrotoxicity in rats. No
apparent adverse effects were noted during treatment with SM.
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