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Abstract: Titanium alloy Ti6Al4V manufactured by additive manufacturing (AM) is an attractive
material, but the fatigue strength of AM Ti6Al4V is remarkably weak. Thus, post-processing is very
important. Shot peening can improve the fatigue strength of metallic materials, and novel peening
methods, such as cavitation peening and laser peening, have been developed. In the present paper, to
demonstrate an improvement of the fatigue strength of AM Ti6Al4V, Ti6Al4V manufactured by direct
metal laser sintering (DMLS) and electron beam melting (EBM) was treated by cavitation peening,
laser peening, and shot peening, then tested by a plane bending fatigue test. To clarify the mechanism
of the improvement of the fatigue strength of AM Ti6Al4V, the surface roughness, residual stress, and
surface hardness were measured, and the surfaces with and without peening were also observed
using a scanning electron microscope. It was revealed that the fatigue strength at N = 107 of Ti6Al4V
manufactured by DMLS was slightly better than that of Ti6Al4V manufactured by EBM, and the
fatigue strength of both the DMLS and EBM specimens was improved by about two times through
cavitation peening, compared with the as-built ones. An experimental formula to estimate fatigue
strength from the mechanical properties of a surface was proposed.

Keywords: additive manufacturing; post-processing; fatigue; Ti6Al4V; cavitation peening; laser
peening; shot peening; direct metal laser sintering; electron beam melting

1. Introduction

Additive manufactured (AM) titanium alloy is an attractive material for medical implants [1–4]
and aviation components [5–7], as the geometry of the parts are directly produced from computer-aided
design (CAD) data, and the lead time for production can be reduced remarkably. However, the fatigue
strength of AM titanium alloy is significantly weaker, compared to that of wrought materials [5,6,8–11].
As manufacturing conditions and post-processing affect fatigue properties [5,6,12], and mechanical
surface treatment improves fatigue strength [5,13–15], it is worthwhile to develop peening methods to
improve the fatigue strength of AM titanium alloy.

As is well known, in AM metallic materials, tensile and compressive residual stress are introduced
during the AM process [6,16] as a heat source is deposited locally on the material surface; this produces
a three-dimensional distribution of temperature in the AM process which is similar to welding [17,18].
Moreover, residual stress affects fatigue performance [19,20]. Thus, the relaxation of residual stress
improves the fatigue life and fatigue strength of AM titanium [21]. A heat treatment after the AM
process is one way to improve fatigue properties [21,22]. As defects and pores are also produced in
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AM metallic materials, hot isostatic pressing (HIP) can improve the fatigue properties of AM titanium
alloy [22–28]. The surface roughness caused by un-melted particles is one of the reasons for the weak
fatigue performance [29,30]. However, HIP cannot improve fatigue performance, which is closely
affected by surface defects, and it is difficult to apply the HIP process with large-scale components.
It was reported that, in the case of AM titanium with an as-built surface, the fatigue life depended
on the crack initiation from the rough surface, compared with internal defects [31]. The combined
treatment of HIP and chemical etching was reported to improve fatigue properties [32]. There have
been a lot of reports that revealed an improvement of fatigue properties by mechanical finishing or
polishing after HIP [8,10,11,21,24,25,27,31,33–36]. However, some shapes cannot be machined, and the
benefits of the topology optimization of AM metals [5,37] are lost.

As mentioned above, a large surface roughness was introduced by the AM process [29,30], cracks
were initiated on the as-built surface of AM Ti6Al4V, compared with the machined surface [38], and the
relation between the surface roughness and fatigue life of AM Ti6Al4V was reported [39]. Regarding
the effect of surface roughness on AM Ti6Al4V, the Kitagawa–Takahashi plot [40], El Haddad–Topper
approach [41], and root area parameter [42] have been investigated [43,44]. It was also reported that the
fatigue life of AM Ti6Al4V was estimated by the equivalent initial flaw size (EIFS) [45]. In order to reduce
the surface roughness, without machining, to improve the fatigue properties of AM Ti6Al4V, surface
finishing, such as tribofinishing [46], vibratory finishing [47], electropolishing [48], tumbling [49], barrel
polishing [50], chemically accelerated vibratory finishing [51], and cavitation abrasive finishing [15,52]
have been proposed. Laser polishing of AM Ti6Al4V was also proposed [53,54]; however, the effect of
laser polishing on fatigue properties was not investigated. As is well known, large surface irregularities,
such as in as-built AM metals, can be smoothed, as shot peening can deform metallic surfaces. It was
reported that the fatigue strength of AM Ti6Al4V at 107 cycles was in the order of shot peening, HIP,
tribofinishing, electropolishing, and as-built surfaces [46]. Thus, peening methods are some of most
effective tools for improving the fatigue properties of AM Ti6Al4V.

While there are several methods for AM Ti6Al4V, the two major methods are direct metal laser
sintering (DMLS) and electron beam melting (EBM). In both cases, the environment, temperature,
and material particles during the AM process are different. When the fatigue strength of the DMLS
and EBM specimens was compared, it was also found that the DMLS specimen had a low roughness
and high fatigue strength [31,34,55–61], and the DMLS and EBM specimens were similar [21]. It was
also reported that DMLS and EBM specimens have different metallographic structures [61], and the
mechanical behavior of tension and compression of AM Ti6Al4V varies, depending on the strain
rate [62]. Rozumek and Hepner reported the influence of oxygenation time and heat treatment on
fatigue crack propagation under bending in alloy Ti6Al4V [63,64]. Therefore, the fatigue strength of
AM Ti6Al4V may differ, depending on the peening method and AM process, just as the strain rate
during peening is dependent on the peening method.

In previous studies, the effects of the mechanical surface treatment of AM metals were reported
using shot peening [5,6,13,65–67], ultrasonic peening [35,68], laser peening [13,66], and cavitation
peening [13,65]. It should be noted that shock waves are used in submerged laser peening, as laser
ablation and the collapse of the cavitation bubble, which is generated after laser ablation, producing
shock waves [69–71]. In the case of cavitation peening, the impact induced by a micro jet and/or shock
wave at the cavitation bubble collapse [72] is used for the mechanical surface treatment of metallic
materials [70,73]. As shots are not used in cavitation peening, there is no material transfer due to
shot collisions. This is a great advantage of cavitation peening for the mechanical surface treatment
of medical implant applications. The impacts induced by cavitation peening and submerged laser
peening might reach the bottom of deep valleys, which are produced by the AM process, and the
impacts might enhance the fatigue properties of AM Ti6Al4V with a rough surface, such as as-built
surfaces. Regarding the experimental investigation of plastic deformation induced by various peening
methods [74], the ratio of the plastic deformation depth and the depth of the dent depend on the
peening method. It was also reported that mechanical properties, such as roughness, residual stress,
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hardness, and crack propagation, differ remarkably, depending on the peening method, such as shot
peening, laser peening, and cavitation peening [75–77]. As is well known, a peening method changes
the surface characteristics, such as roughness, hardness, residual stress, and dislocation density, etc., of
metallic materials, and the effect of peening also depends on the materials. Thus, a systematic and
experimental investigation should be required to establish a suitable peening method to enhance the
fatigue properties of AM Ti6Al4V.

In the present paper, to find out the effects on the fatigue properties of AM Ti6Al4V treated by
various peening methods, Ti6Al4V manufactured by DMLS and EBM was treated by cavitation peening,
laser peening, and shot peening, and the fatigue performance was evaluated by a plane bending fatigue
test, comparing it with that of as-built specimens. In order to investigate the peening effects on the
surface characteristics of Ti6Al4V manufactured by DMLS and EBM, the surface roughness, hardness,
and residuals stress of the surface, with and without peening, were measured, and the surface was
observed by a scanning electron microscope and a laser confocal microscope. An experimental formula
to estimate the fatigue strength from the surface roughness, surface hardness, and residual stress was
proposed, and it was verified.

2. Materials and Methods

2.1. Titanium Alloy Manufactured by DMLS and EBM

Figure 1 shows the shape of the specimens for a displacement-controlled plane bending fatigue
tester. The specimens were manufactured by DMLS and EBM. The thickness of the specimen
manufactured by DMLS was 2.6 ± 0.2 mm, considering the result of a previous report [13], due to
the limitations of the displacement and the maximum moment of the tester. In the case of EBM, the
thickness was 2 ± 0.2 mm, which was also found in a previous report [13]. The stacking direction of
both DMLS and EBM specimens was in the width direction. After the DMLS and EBM process and
then the heat treatment, the edges of all the specimens were rounded by hand using rubber whetstones
of #80 and #180 to reduce the crack initiation from the edges; this was also conducted in a previous
report [13]. To investigate mechanical polishing, the surface of the specimens manufactured by DMLS
was grinded by rubber whetstones of #80 and #180, and it marked as “grinding” in the present paper.
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Figure 1. Geometry of the fatigue specimen for the displacement-controlled plane bending fatigue test.
The thickness was 2.6 ± 0.2 mm for the direct metal laser sintering (DMLS) specimen and 2.0 ± 0.2 mm
for the electron beam melting (EBM) specimen.

The particle used in the DMLS process was made of Ti6Al4V, and its average diameter was about
40 µm. The power, beam diameter, and scanning speed of the laser of DMLS was 400 W, 200 µm,
and 7 m/s, respectively. The stacking pitch was 60 µm. After the DMLS process, the specimen was
annealed at 923 K for 3 h to reduce the residual stress in the specimen. After the annealing, the
solution heat treatment was conducted at 1208 K under vacuum conditions for 105 min, then cooled in
argon. After that, aging was conducted at 978 K under vacuum conditions for 2 h, followed by argon
gas cooling.

The particle used in the EBM process was made of Ti6Al4V, and its average diameter was about
75 µm. The spot size of the electron beam for selective melting was 0.2 mm in diameter, and the
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stacking pitch was 90 µm, which was the same in a previous report [13]. After the EBM process, the
solution heat treatment and aging were conducted in the same way as the DMLS specimens.

2.2. Cavitation Peening

Figure 2 shows a schematic diagram of the peening section of the cavitation peening system. In the
present experiment, a submerged high-speed water jet was used to generate cavitation. The high-speed
water jet was pressurized by a plunger pump, with a maximum working pressure of 30 MPa and
maximum flow rate of 3 × 10−2 m3/min and injected into a chamber filled with water. The injection
pressure was controlled by the rotational speed of the invertor motor of the plunger pump. When
the high-speed water jet was injected into the chamber, cloud cavitation was generated inside the
nozzle and/or in the shear layer around the jet. A submerged jet with a cavitation bubble is called
a cavitating jet [70]. On the impinging surface, cloud cavitation became a ring vortex cavitation,
then collapsed. Thus, the area treated by the fixed cavitating jet shows an annular shape [70], and
the scanning cavitating jet can treat the surface uniformly [78]. In the present paper, the specimen,
which was put in a recess to make a flat surface, was placed perpendicular to the jet in the chamber.
The specimen was treated by scanning the nozzle, which moved horizontally at a constant speed v.
The throat diameter of the nozzle was 2 mm. As the cavitator and the guide pipe can enhance the
aggressive intensity of the cavitating jet [79], both of them were installed in the nozzle. The diameter
of the cavitator was 3 mm, which was optimized in a previous study [79]. As the geometry of the
outlet bore at the nozzle affects the aggressive intensity of the cavitating jet, the length L and the
diameter D of the bore were optimized as L = 16 mm and D = 16 mm [80]. As the cavitating flow was
separated at the upstream corner of the nozzle, the standoff distance s was defined by the distance
from the upstream corner of the nozzle to the surface of the specimen. When the specimen is set too
close to the nozzle, even though there is the cavitating jet, the specimen is treated by water jet peening,
in which water columns peen the target. The classification map, in which cavitation peening and
water jet peening were classified using the normalized standoff distance and cavitation number, was
proposed [73]. The standoff distance chosen in the present experiment was s = 222 mm, which was the
same in a previous report [13], and this was the cavitation peening condition.
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Figure 2. Schematic diagram of the peening section of the cavitation peening system.

The processing time per unit length tp is defined as follows.

tp =
n
v

(1)

where n is the number of passes. In the present experiment, the processing time per unit length tp = 10
s/mm, which was the same in a previous study [13], was used to compare the cavitation peening effect
on Ti6Al4V manufactured by DMLS and EBM.
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2.3. Laser Peening

Figure 3 shows a schematic diagram of the peening section of the laser peening system. In the
present experiment, a submerged laser peening system was used. In most cases, in conventional
submerged laser peening, the second harmonic of the Nd:YAG laser (i.e., 532 nm in wave length), is
used to mitigate the absorption of laser power due to water. As mentioned in the introduction, the
impact at the collapse of the bubble, which is developed and collapses after laser ablation, is also
affective for peening. In experimental studies of bubble dynamics, the fundamental harmonic of the
Nd:YAG laser (i.e., 1064 nm) is used to harness the heat [81]. Soyama revealed that submerged laser
peening, using a laser of 1064 nm in wave length, introduced compressive residual stress when the
distances in air and water were optimized [82]. Thus, in this experiment, the wavelength of 1064 nm
was used, which was the same in a previous report [13]. The pulse energy, beam diameter, pulse width,
and repetition frequency of the used Q-switched Nd:YAG laser were 0.35 J, 6 mm, 6 ns, and 10 Hz,
respectively. To minimize the damage to a glass chamber due to the laser, the laser was reflected by
mirrors and expanded by a concave lens, then focused by convex lenses onto the specimen placed in
the water-filled chamber, whose thickness was 3 mm. The length, width, and depth of the chamber
were each 150 mm. The deionized water was fed into the chamber at about 5 × 10−3 m3/min to remove
particles caused by the ablation. It should be noted that the water was degassed to minimize the
cushion effect at the bubble collapse. The focal distance of the final convex lens was 100 mm. In order
to minimize damage to the mirrors and lenses due to the reflection between the final convex lens and
the chamber, the convex was placed as shown in Figure 3. In the present laser peening, the distances
in air sa and in water sw were 84 mm and 19 mm, respectively, which was the same in a previous
study [13]. In the present condition, the diameter of the laser spot on the specimen surface was about
0.8 mm. The specimen was placed on a stage, which was moved by linear stepping motors in the
vertical and horizontal directions. The pulse density dL was controlled by the horizontal speed vs

and the stepwise movement in the vertical direction sv using the stepping motors. As the repetition
frequency was 10 Hz, dL was defined by Equation (2).

dL =
10 n
vh sv

(2)

In the present experiment, dL was set to 5 pulses/mm2, with n = 1, vh = 4.46 mm/s, and sv = 0.448
mm, which were the same in a previous study [13], to compare the laser peening effect on Ti6Al4V
manufactured by DMLS and EBM.
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2.4. Shot Peening

Figure 4 illustrates a schematic diagram of the peening head of the shot peening system. In the
present experiment, a recirculating shot peening system accelerated by a water jet [83] was used for
shot peening. Shots made of stainless-steel Japanese Industrial Standards JIS SUS440C were installed
in the chamber, whose diameter was 54 mm, and accelerated and recirculated in the chamber by the
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water jet, with an injection pressure of 12 MPa. The number and the diameter of the shots were 500 and
3.2 mm, respectively. The water jet was injected into the chamber through three holes with a diameter
of 0.8 mm. The standoff distance from the nozzle to the specimen surface was 50 mm. To avoid a loss
of shots, the specimen was set in the recess. It should be noted that no compressive residual stress was
introduced into the stainless steel without shots, so the water jet scarcely had any effect on the titanium
alloy. The chamber was moved by a motor to treat the specimen surface uniformly. tp was defined by
the scanning speed v and the number of scans n, as shown in Equation (1). In the present experiment,
tp was set to 1 s/mm, which was the same in a previous study [13], to compare the shot peening effect
on Ti6Al4V manufactured by DMLS and EBM.
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Figure 4. Schematic diagram of the peening head of the recirculating shot peening accelerated by a
water jet.

2.5. Fatigue Test and Evaluation of Surface Characteristics

The fatigue properties of the specimens, with and without peening, were evaluated by a
conventional Schenk-type displacement-controlled plane bending fatigue tester at R = −1. In the case of
the Schenk-type displacement-controlled plane bending fatigue tester, the displacement was produced
by the position of an eccentric wheel, and the applied stress was calculated from the bending moment,
measured by a load cell [13]. The span length at a fixed point was 65 mm, as shown in Figure 1, and the
test frequency was 12 Hz. The applied stress σa at the test was calculated from the bending moment M,
the width of the specimen b (i.e., 20 mm), and the thickness δ measured by a digital caliper, with an
accuracy of 0.01 mm, as shown in Equation (3).

σa =
6 M
b δ2 (3)

As mentioned in the introduction, the fatigue properties of AM Ti6Al4V are remarkably affected
by the surface roughness. Thus, the arithmetic mean roughness Ra and the maximum height of the
roughness Rz were measured by a stylus type profilometer. The used cutoff length was 2.5 mm,
as the surface of the as-built AM Ti6Al4V was rough. To obtain the mean value and the standard
deviation, the surface was measured three times in each case. As the bending stress was applied in the
longitudinal direction in Figure 1, the surface roughness was measured in the longitudinal direction of
the specimen.

In order to compare the work hardening effect of various peening methods with the as-built
AM Ti6Al4V, the hardness was measured using a Rockwell superficial hardness tester and a 120
degree diamond conical indenter, with an initial load of 3 kgf (29 N) and an applied load of 15 kgf
(147 N), which was the same in a previous study [13]. The measured hardness was identified by HR15N.
The hardness was measured five times in each case to obtain the mean value and the standard deviation.

As one of the remarkable peening effects on the surface is the introduction of compressive residual
stress, the residual stress σR on the surface was measured by the 2D method [84] using an X-ray
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diffraction apparatus, with a two-dimensional detector, as the sin2 ψ − 2θ diagram of the laser peened
metal was curved [85]. The optimal conditions for residual stress measurement using a 2D method,
considering the error, were already reported [86]. The X-ray tube used was Cu Kα, and it was operated
at 35 kV and 40 mA. The diameter of the collimator was 0.8 mm, and the diffraction from the 8 mm
× 8 mm area on the surface was obtained by moving the specimen perpendicularly to the X-rays.
The lattice plane (h k l) used for the measurement was the Ti (2 1 3) plane, and the diffraction angle,
without strain, was 139.5 degrees. The depth for the 90% contribution to the diffracted X-rays was
12.4 µm in the present condition. The 24 diffraction rings from the specimen at various angles were
detected, and the exposure time per frame at each single position was 5 min. As mentioned above, the
bending stress was applied in the longitudinal direction of the specimen, and the residual stress in the
longitudinal direction of the specimen are discussed in the present paper.

In order to observe the surface characteristics of Ti6Al4V manufactured by DMLS and EBM, the
specimen surface was observed by a laser confocal microscope and a scanning electron microscope
(SEM). To distinguish the crack initiation point, the fractured surface of the specimen was also observed
by SEM.

3. Results

3.1. Surface Characteristics of Ti6Al4V Manufactured by DMLS and EBM

In order to investigate the effect of various peening methods on Ti6Al4V manufactured by DMLS
and EBM, Figures 5 and 6 show the aspects of specimens manufactured by DMLS and EBM, observed
by a laser confocal microscope. In Figures 5 and 6, the aspect and height data, which are revealed by
the color map, from blue to red, were combined to clearly show the rough surface of AM Ti6Al4V.
For both the as-built specimens manufactured by DMLS and EBM, a lot of un-melted particles are on
the surface, and deep valleys, whose directions are perpendicular to the stacking direction, are shown.
As the averaged diameter of the used particle for DMLS and EBM is 40 µm and 75 µm, respectively,
the diameter particles on the DMLS surface are nearly half those on the surface of the EBM specimen.
After cavitation peening and laser peening (see Figure 5b,c and Figure 6b,c), some particles were
removed by impacts induced by the cavitation collapse and pulse laser. However, a lot of particles still
exist on the surface. In the case of shot peening, the un-melted particles on the surface were deformed
for both cases of DMLS and EBM, but deep valleys were still on the surface. As shown in Figure 5e, the
deep valleys were not removed in the present grinding. In the case of cavitation peening after grinding,
as shown in Figure 5f, the valleys are more remarkable. This is probably because the burrs generated
by the grinding were cleaned by the cavitation impacts.
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Figure 5. Aspects of the specimen manufactured by DMLS, observed by a laser confocal microscope.
(a) As-built; (b) cavitation peening; (c) laser peening; (d) shot peening; (e) grinding; (f) grinding and
cavitation peening.
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Figure 6. Aspects of the specimen manufactured by EBM, observed by a laser confocal microscope.
(a) As-built; (b) cavitation peening; (c) laser peening; (d) shot peening.

In order to compare the surface roughness, with and without peening, quantitatively, Figure 7a
reveals the arithmetical mean roughness Ra, and Figure 7b shows the maximum height of the roughness
profile Rz. The Ra and Rz of the as-built DMLS specimen are 11.7 ± 1.0 µm and 56.5 ± 2.7 µm,
respectively and those of the EBM specimen are 19.3 ± 1.3 µm and 116.1 ± 9.9 µm, respectively.
As shown in Figure 7, the surface of the EBM specimen is nearly two times rougher than that of the
DMLS specimen, as the diameter of the used particles of the EBM specimen is about two times larger
than that of the DMLS specimen. It should be noted that the Rz of both the DMLS and EBM specimens
was 1.5 times larger than that of the diameter of the used particles. After cavitation peening, the Rz and
Ra for both the DMLS and EBM specimens were slightly decreased, as some un-melted particles on the
surface were removed by the cavitation impacts. On the other hand, the Rz and Ra of laser peening are
nearly equivalent or slightly larger than those of the as-built specimen, even though some particles
were removed from the surface by impacts induced by the laser ablation and the collapse of the bubble,
which was generated after laser ablation. As mentioned in Section 2.3, the surface was treated in a
0.448 mm stepwise movement. Thus, a small wavy pattern in the 0.448 mm step was introduced by
laser peening due to plastic deformation. In the case of shot peening, the Rz and Ra for both the DMLS
and EBM specimens were drastically decreased by the deformation of the un-melted particles. The Rz
and Ra of grinding are slightly better than those of shot peening. In the case of cavitation peening after
grinding, Rz and Ra are increased, compared with those of grinding, as the burrs are removed, and the
cavitation impacts produce plastic deformation pits.
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Figure 7. Surface roughness of the as-built Ti6Al4V manufactured by DMLS and EBM and the Ti6Al4V
manufactured by DMLS and EBM through cavitation peening (CP), laser peening (LP), shot peeing
(SP), grinding (G), and cavitation peening after grinding (G + CP). (a) Arithmetical mean roughness Ra.
(b) Maximum height of the roughness profile Rz.

In order to compare the hardness of the specimens, the Rockwell superficial hardness HR15N is
shown in Figure 8. As the surface of Ti6Al4V is very rough, the scatter band of HR15N in each case
is relatively large. The hardness of the as-built DMLS specimen is HR15N = 67.1 ± 7.0, and this is
slightly harder than that of the EBM specimen (i.e., HR15N = 61.8 ± 6.3). The HR15N of the DMLS
specimen produced by cavitation peening was about 10% larger than that of the as-built Ti6Al4V, and
the increment for the EBM specimen by cavitation peening was 4%. In the case of laser peening, HR15N
was decreased in the DMLS specimen, and it was increased in the EBM specimen. This might be caused
by local melting and local plastic deformation due to the pulse laser. In the case of shot peening, HR15N
was increased in both the DMLS and EBM specimens. It should be noted that HR15N was affected
by the surface profile, such as the skewness Rsk [13], and the HR15N at Rsk < 0, as in the case of shot
peening, was larger than that at Rsk > 0, even though the hardness was equivalent. Thus, the increment
on HR15N by shot peening was caused by the work hardening and deformation of the surface. In any
case, the peening treatments caused a work hardening effect on both the DMLS and EBM surfaces.
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Figure 8. Surface hardness of the as-built Ti6Al4V manufactured by DMLS and EBM and the Ti6Al4V
manufactured by DMLS and EBM through cavitation peening (CP), laser peening (LP), shot peeing
(SP), grinding (G), and cavitation peening after grinding (G + CP).

As residual stress σR is also important factor for improving the fatigue strength of metallic
materials by peening methods, Figure 9 shows the residual stress on the surface of the DMLS and
EBM specimens, with and without treatments. The σR of the as-built DMLS and EBM specimens
is nearly zero. After cavitation peening, grinding, and shot peening, compressive residual stress
was introduced. In the case of laser peening, the σR of the DMLS specimen was tension, and the σR
of EBM was compression. As laser peening produces ablation and plastic deformation at the same
time, tensile residual stress was introduced by the ablation, and compression was introduced by the
peening through the plastic deformation. When 70 µm of the surface of the laser-peened specimen was
removed, the σR of EBM was −187 ± 11 MPa. It should be noted that the depth for the 90% contribution
in the residual stress measurement was about 12 µm, and the Ra of the as-built, cavitation peening
and laser peening are similar. Thus, it can be concluded that the measured value of the residual stress
was affected by the roughness, but all the treatments for the DMLS and EBM specimens introduced
compressive residual stress into the surface (see Appendix A).
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Figure 9. Surface residual stress of the as-built Ti6Al4V manufactured by DMLS and EBM and the
Ti6Al4V manufactured by DMLS and EBM through cavitation peening (CP), laser peening (LP), shot
peeing (SP), grinding (G), and cavitation peening after grinding (G + CP).

3.2. Fatigue Properties of Ti6Al4V Manufactured by DMLS and EBM

In order to reveal the fatigue properties of Ti6Al4V manufactured by DMLS and EBM, Figure 10
reveals the result of the plane bending fatigue test. The applied bending stress σa in Figure 10 was
calculated by Equation (3) using δ, which was measured by the calipers. When the fatigue life and



Materials 2020, 13, 2216 12 of 26

fatigue strength of the as-built specimen manufactured by DMLS and EBM were compared, those of
the DMLS specimen were better than those of the EBM specimen. In the case of the DMLS specimen,
the fatigue life at σa ≈ 450 MPa was improved by 10 times through cavitation peening after grinding,
5.9 times through cavitation peening, 4.7 times through shot peening, 3.5 times through laser peening,
and 1.5 times through grinding, compared with the as-built specimen. The fatigue strength σf1 at
N = 107 was calculated using Little’s method [87], as shown in Table 1. The improvement ratio R1 in
Table 1 means the ratio of the fatigue strength, compared with the as-built specimen, for each DMLS
and EBM specimen. The ratio R2 in Table 1 shows the ratio between the fatigue strength of DMLS
and EBM for each treatment. As shown in Figure 10 and Table 1, in the case of the DMLS specimen,
the fatigue strength at N = 107 was improved by 1.97 times through cavitation peening, 1.93 times
through laser peening, 1.92 times through shot peening, and 2.41 times through cavitation peening
after grinding, compared with the as-built specimen. In the case of EBM, it was improved by 1.75 times
through cavitation peening, 1.87 times through laser peening, and 1.95 times through shot peening. In
sum, all treatments improved the fatigue strength, and the fatigue strength of the DMLS specimen was
slightly better than that of the EBM specimen, as shown in Table 1.
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Table 1. Fatigue strength and improvement ratio of the as-built Ti6Al4V manufactured by DMLS and
EBM and the Ti6Al4V manufactured by DMLS and EBM through cavitation peening (CP), laser peening
(LP), shot peeing (SP), grinding (G), and cavitation peening after grinding (G + CP).

Number of
Specimens

Fatigue Strength
σf1 MPa

Improvement
Ratio R1

Ratio
R2 = σf1 DMLS/σf1 EBM

DMLS, as-built 8 185 ± 9 1 1.09
DMLS, CP 5 365 ± 8 1.97 1.23
DMLS, LP 5 357 ± 6 1.93 1.13
DMLS, SP 7 355 ± 10 1.92 1.08

DMLS, G + CP 4 445 ± 8 2.41 —
EBM, as-built 8 169 ± 14 1 1

EBM, CP 6 296 ± 13 1.75 1
EBM, LP 6 317 ± 7 1.87 1
EBM, SP 5 329 ± 1 1.95 1

3.3. Cracks of Ti6Al4V Manufactured by DMLS and EBM

In order to investigate the mechanism of the improvement of the fatigue properties by the
treatments, Figures 11 and 12 show the aspects of the specimen surface near the fracture, observed by a
scanning electron microscope (SEM), and Figures 13 and 14 reveal the fractured surface.

In Figures 11 and 12, black arrows show the cracks that were produced by the fatigue, and white
arrows show the cracks that existed before the fatigue test (see Appendix B). As shown in Figures 11a
and 12a, the cracks indicated by white arrows were observed on the surface of the as-built specimen,
and they exist at the bottom of the valleys, which were orthogonal to the stacking direction. These
cracks or steep valleys were produced during the AM process by layer-by-layer stacking. As shown in
Figures 11b and 12b, these steep valleys were opened by the cavitation attack. As the typical cavitation
erosion pattern shows a jaggy pattern, the cavitation impact concentrates at the bottom of the dent.
Thus, when the surface roughness was smoothed, the concentration of the cavitation impact was
slightly reduced. This is a reason why the cracks at the bottom of the specimen treated by cavitation
peening after grinding were fewer, compared with the specimen treated by cavitation peening without
grinding. Thus, the fatigue strength of the specimen treated by cavitation peening after grinding was
the best. As shown in Figures 11c and 12c, the laser-peened surface was partially melted and oxidized
on the surface. In the case of shot peening, the top of the un-melted particles was deformed, as shown
in Figures 11d and 12d. For both laser peening and shot peening, the cracks at the bottom of the valleys,
indicated by white arrows, in the specimen, were similar to those of the as-built specimen. Moreover,
the impacts produced by the pulse laser and shot collision did not open or close these cracks.

In Figures 11 and 12, the direction of the applied bending stress was in the horizontal direction.
Thus, the cracks produced by the fatigue, which are indicated by the black arrows, were developed
in the vertical direction, as shown in Figures 11 and 12. As is clearly shown in Figure 11b,d and
Figure 12a–d, the cracks were initiated at the bottom of the valleys and developed. Then, it can be
concluded that the weakest point of the Ti6Al4V manufactured by DMLS and EBM is where there are
cracks at the bottom of the valleys, which were produced in the AM process.

In order to investigate the crack initiation point at the fatigue fracture, Figures 13 and 14 show
the aspect of the fractured surface of the specimen, observed by the scanning electron microscope.
The crack initiation points are shown by arrows. As is clearly shown in Figure 13a,d–f and Figure 14a–d,
the surface of the un-melted particles can be clearly observed at the crack initiation point. Thus, it can
be said that the cracks were initiated at the bottom of the valleys, as mentioned above. In the present
paper, these are called surface defects. When the depth of the surface defect of the as-built specimen δd
was measured by the fractured surface using SEM, it was 206 ± 43 µm for the DMLS specimen and 188
± 22 µm for the EBM specimen. As shown in Figure 7b, the Rz of the as-built specimen was 56.5 ±
2.7 µm for the DMLS specimen and 116.1 ± 9.9 µm for the EBM specimen. Importantly, the δd was
remarkably larger than the Rz for both the DMLS and EBM specimens.
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Figure 11. Aspects of the surface near the fracture of the specimen manufactured by DMLS, observed
by scanning electron microscope (SEM). (a) As-built (σa = 301 MPa, N = 162,400); (b) cavitation peening
(σa = 370 MPa, N = 291,600); (c) laser peening (σa = 400 MPa, N = 352,200); (d) shot peening (σa = 361
MPa, N = 764,800); (e) grinding (σa = 350 MPa, N = 141,000); (f) grinding and cavitation peening
(σa = 450 MPa, N = 310,000).
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Figure 12. Aspect of the surface near the fracture of the specimen manufactured by EBM, observed
by SEM. (a) As-built (σa = 224 MPa, N = 510,300); (b) cavitation peening (σa = 328 MPa, N = 319,300);
(c) laser peening (σa = 320 MPa, N = 420,900); (d) shot peening (σa = 350 MPa, N = 505,700).
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Figure 13. Aspects of the fractured surface of the specimen manufactured by DMLS, observed by
SEM. (a) As-built (σa = 301 MPa, N = 162,400); (b) cavitation peening (σa = 370 MPa, N = 291,600);
(c) laser peening (σa = 400 MPa, N = 352,200); (d) shot peening (σa = 361 MPa, N = 764,800); (e) grinding
(σa = 350 MPa, N = 141,000); (f) grinding and cavitation peening (σa = 450 MPa, N = 310,000).
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(a) As-built (σa = 224 MPa, N = 510,300); (b) cavitation peening (σa = 328 MPa, N = 319,300); (c) laser 
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In the previous report, the core part δ and the surface roughness Rz were considered to calculate the 
bending stress, as shown Equation (4). Thus, δ was used as δ in Equation (3) [13]. In the present 
paper, the fatigue strength σf2, considering Rz, is shown in Table 2. As the core part is thinner than 
the thickness of the specimen, the increase of σf2, compared with σf1, was 3%–9% for the DMLS 
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Table 2. Fatigue strength considering the roughness and defect of the as-built Ti6Al4V manufactured 
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Figure 14. Aspects of the fractured surface of the specimen manufactured by EBM, observed by SEM.
(a) As-built (σa = 224 MPa, N = 510,300); (b) cavitation peening (σa = 328 MPa, N = 319,300); (c) laser
peening (σa = 320 MPa, N = 420,900); (d) shot peening (σa = 350 MPa, N = 505,700).

4. Discussion

4.1. Fatigue Strength Considering the Depth of the Surface Defect

The fatigue strength σf1 in Table 1 was calculated with the thickness of the specimen, measured by
the caliper as δ in Equation (3). In particular, the δ in Figure 15 was used as the δ in Equation (3). In the
previous report, the core part δ and the surface roughness Rz were considered to calculate the bending
stress, as shown Equation (4). Thus, δ was used as δ in Equation (3) [13]. In the present paper, the
fatigue strength σf2, considering Rz, is shown in Table 2. As the core part is thinner than the thickness
of the specimen, the increase of σf2, compared with σf1, was 3–9% for the DMLS specimen and 8–43%
for the EBM specimen.
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Figure 15. Schematic diagram of the thickness of the specimen for the calculation of the bending stress.

δ2 = δ1 − 2Rz (4)

As shown in Figures 13 and 14, the depth of the surface defect δd is much larger than Rz. This
means that the actual core part is thinner than δ2. Then, the fatigue strength σf3 was recalculated using
δ3, which was defined by Equation (5), instead of δ2. σf3 is shown in Table 2. It should be noted that δd
is 206 µm for the DMLS specimen and 188 µm for the EBM specimen in the present study.

δ3 = δ1 − 2δd (5)
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The σf3 of the DMLS specimen was 561 ± 12 MPa for cavitation peening after grinding and
497 ± 12 MPa for cavitation peening. Elsewhere [88], the fatigue strength at 107 of the bulk material
made of Ti6Al4V through heat treatment was 545 ± 10 MPa. The fatigue strength of the present
Ti6Al4V manufactured by DMLS was about 50% of the bulk Ti6Al4V, and it was improved by up to
90% of the bulk Ti6Al4V by cavitation peening, and it came to have a nearly equivalent strength to the
bulk Ti6Al4V.

Table 2. Fatigue strength considering the roughness and defect of the as-built Ti6Al4V manufactured
by DMLS and EBM and the Ti6Al4V manufactured by DMLS and EBM through cavitation peening
(CP), laser peening (LP), shot peeing (SP), grinding (G), and cavitation peening after grinding (G + CP).

Fatigue Strength σf2 MPa Fatigue Strength σf3 MPa

DMLS, as-built 202 ± 10 262 ± 18
DMLS, CP 392 ± 9 497 ± 13
DMLS, LP 389 ± 6 494 ± 8
DMLS, SP 366 ± 10 467 ± 12

DMLS, G + CP 459 ± 8 561 ± 12
EBM, as-built 221 ± 19 262 ± 17

EBM, CP 388 ± 18 442 ± 16
EBM, LP 451 ± 6 474 ± 30
EBM, SP 355 ± 1 468 ± 7

4.2. Experimental Formula to Estimate Fatigue Strength Improved by Mechanical Surface Treatments

In order to evaluate the effect of the surface roughness, surface hardness, and residual stress on
the improvement of the fatigue strength by mechanical surface treatment, the experimental formula
to estimate the improved fatigue strength σf est by mechanical surface properties was proposed in
Equation (6). In Equation (6), σf0 is the fatigue strength of the reference condition. It was reported that
the fatigue strength was decreased with the maximum surface roughness [39], equivalent crack length
of the defect [43], and root area parameter [44]. Thus, the parameter of the surface roughness should
be placed in the denominator, as shown in the second term of the right-side member of Equation (6).
The hardness suggests the tendency of the increase of the yield stress of the surface by the mechanical
surface treatments, and the hardness is expressed in Equation (6) as in the third term. As the residual
stress affects the fatigue properties of AM Ti6Al6V [15], σR is placed in the fourth term. ∆Rz’ and
∆HRNT’ are the differences in Rz and HRNT between the reference condition and the estimated condition,
normalized by the reference condition, as shown in Equations (7) and (8). The ∆σR is the difference in
residual stress between the estimated condition and the reference condition. In particular, the second
term of the right-side member of Equation (6) reveals the effect of surface roughness. The third term
shows the effect of work hardening (i.e., an increase of hardness). The fourth term reveals the effect of
residual stress. The second term and the third term were normalized by the reference values.

σ f est = σ f 0 + a
1

∆Rz′
σ f 0 + b ∆HR15N′ σ f 0 + c ∆σR (6)

∆Rz′ =
Rz0 −Rz

Rz0
(7)

∆HR15N′ =
HR15N −HR15N0

HR15N0
(8)

∆σR = σR − σR0 (9)

Here, a, b, and c are the constants calculated using the least squares method, and they reveal
the contributions of the surface roughness, surface hardness, and residual stress, to the improvement
of fatigue strength. The obtained constants are shown in Table 3, and the relationship between the
experimental fatigue strength σf1, σf2, and σf3 and the estimated fatigue strength σf1 est, σf2 est, and σf3 est
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is shown in Figure 16. The error bars in Figure 16 were calculated from the standard deviation of
the measured values (i.e., σf1, Rz, HRNT, and σR) using error analysis [89]. In Table 3 and Figure 16,
the values of the as-built EBM specimen were used as the reference condition to estimate the fatigue
strength. In the estimation, the residual stress of laser peening was −187 ± 11 MPa, as compressive
residual stress was introduced in the near surface, although the surface was abraded by laser ablation.
As shown in Figure 16, the relations between the experimental fatigue strength and the estimated
fatigue strength for all three cases (i.e., σf1 − σf1 est, σf2 − σf2 est, and σf3 − σf3 est, are roughly on the
line. These results show that the improved fatigue strength of the AM titanium alloy, enhanced by
surface mechanical treatments, can be estimated from the fatigue strength of the as-built specimen by
measuring the surface roughness, surface hardness, and surface residual stress of the treated one using
Equation (6). Now, let us investigate the effect of the surface roughness, surface hardness, and surface
residuals stress in the improvement of the fatigue strength. As mentioned above, although the surface
roughness of the cavitation peened and laser peened specimens were scarcely changed, the fatigue
strength was drastically improved by both peening methods. This means that the effect of the surface
roughness was smaller than the others in the present study. This is why a is relatively smaller than b
and c. When the absolute values of a, b, and c were compared, the absolute value of b was relatively
larger than the others. In particular, the contribution of HR15N was relatively large, and the scatter band
of HR15N was relatively large, as shown in Figure 8. Thus, the scatter band of the estimated fatigue
strength was relatively large, as shown in Figure 16. As the compressive residual stress (i.e., negative
value) enhances the fatigue strength, c is negative. As shown in Table 3, the absolute value of c was 0.34
for σf1 − σf1 est, 0.38 for σf2 − σf2 est, and 0.39 for σf3 − σf3 est. As the plane bending fatigue test was used
in the present study, and the maximum bending stress was applied at the surface, the fatigue strength
was improved by 34–39% of the introduced compressive residual stress. As shown in Figure 16, the
laser peening points for both the DMLS and EBM specimens are slightly further than the others, as
the measured work hardening was not so large, compared with the other treatments. The correlation
coefficient between the experimental fatigue strength and the estimated value was 0.896 for σf1 − σf1 est,
0.766 for σf2 − σf2 est, and 0.823 for σf3 − σf3 est. As the number of the dataset was nine in the present
study, the probability of a non-correlation is less than 0.1% for σf1 − σf1 est, 1.6% for σf2 − σf2 est, and
0.6% for σf3 − σf3 est. When the probability of a non-correlation is less than 1%, it can be concluded
that the relationship is highly significant. Thus, it can be concluded that the relationship between the
experimental fatigue strength and the estimated fatigue strength is highly significant. In particular,
the improved fatigue strength treated by the present post-processing can be estimated by the surface
roughness, surface hardness, and surface residual stress.

Table 3. Constants to estimate the improved fatigue strength of the Ti6Al4V manufactured by DMLS
and EBM through mechanical surface treatment using the surface roughness, surface hardness, and
surface residual stress.

Constant σf1 est σf2 est σf3 est

a 0.01 0.01 0.01
b 2.59 1.17 1.95
c −0.34 −0.38 −0.39
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5. Conclusions

In order to establish post-processing for the improvement of the fatigue strength of the additive
manufactured (AM) Ti6Al4V, Ti6Al4V manufactured by direct metal laser sintering (DMLS) and
electron beam melting (EBM) was treated by cavitation peening, laser peening, and shot peening, and
the fatigue properties were evaluated by the displacement-controlled plane bending fatigue test. To
clarify the mechanism of the improvement of the fatigue strength by mechanical surface treatments, the
surface mechanical properties were measured, and the experimental formula to estimate the improved
fatigue strength from the mechanical surface properties was discussed to compare the contribution of
each parameter. The results obtained can be summarized as follows:

(1) Cavitation peening, laser peening, and shot peening can improve the fatigue strength of Ti6Al4V
manufactured by DMLS and EBM. In the case of DMLS, the improvements in the fatigue strength
at N = 107, compared with that of the as-built specimen, were 97% for cavitation peening,
93% for laser peening, and 92% for shot peening in the present condition. In the case of EBM,
they were 75% for cavitation peening, 87% for laser peening, and 95% for shot peening in the
present condition.

(2) The fatigue strength of Ti6Al4V manufactured by DMLS is slightly better than that manufactured
by EBM, with and without peening. The difference in fatigue strength at N = 107 between the
DMLS and EBM specimens was +9% for the as-built specimen, +23% for the cavitation peening
specimen, +13% for the laser peening specimen, and +8% for the shot peening specimen.

(3) The fatigue strength of the Ti6Al4V manufactured by DMLS treated by cavitation peening was
improved to the same level as that of wrought Ti6Al4V, when the depth of the surface defects was
considered in the calculation of the fatigue strength. The fatigue strength at N = 107 of the DMLS
specimen was 497 MPa for cavitation peening and 561 MPa for cavitation peening after grinding
the surface.

(4) The improvement of the fatigue strength of AM Ti6Al4V caused by the treatments can be estimated
using the surface roughness, surface hardness, and residual stress.

Author Contributions: Conceptualization, H.S. and F.T.; methodology, H.S.; validation, H.S. and F.T.; formal
analysis, H.S.; investigation, H.S.; resources, H.S.; data curation, H.S.; writing—original draft preparation, H.S.;
writing—review and editing, H.S. and F.T.; funding acquisition, H.S. All authors have read and agreed to the
published version of the manuscript.
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Appendix A

Figure A1 shows X-ray diffraction patterns for Ti6Al4V manufactured by DMLS and EBM.
As shown in Figure A1, the X-ray diffraction patterns after the treatments are wider, compared with
that of the as-built specimen. There are two main reasons: One is that the local plastic deformation
is the same as the mechanical surface treatment of metallic materials, including wrought samples.
The peening methods used and grinding produce local plastic deformation, and the local plastic
deformation produces compressive residual stress and lattice fluctuations. The other reason is the
surface roughness caused by the AM process. Figure A2 shows a schematic diagram of the surface
roughness and depth for a 90% contribution of X-ray diffraction. As mentioned in Section 2, the average
diameter of the particle used was used 40 µm for the DMLS process and 75 µm for the EBM process,
and the depth for the 90% contribution of diffracted X-rays was 12.4 µm in the present condition.
The compressive residual stress introduced at the top of the un-melted particle was relatively low,
compared with that in the flat area, as shown in Figure A2. The difference in compressive residual
stresses also causes a widening of the X-ray diffraction profile, as the peaks in each area are also
different. Thus, it can be concluded that the measured value of the residual stress was affected by the
roughness, but all the treatments for the DMLS and EBM specimens introduced compressive residual
stress at the surface.
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Figure A1. X-ray diffraction pattern for the Ti6Al4V manufactured by DMLS and EBM through
cavitation peening (CP), laser peening (LP), shot peening (SP) grinding (G), and cavitation peening
after grinding (G + CP), compared with the as-built specimen.
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Figure A2. Schematic diagram of X-ray diffraction, considering the surface roughness and depth of the
contribution to the diffracted X-ray.
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Appendix B

In order to reveal the cracks that existed before the fatigue test, Figure A3 shows the aspect of the
surface of the as-built specimens manufactured by DMLS and EBM. The white arrows in Figure A3
indicate a typical sharp valley. As the aspects were observed by SEM at a higher magnification, cracks
or defects were observed at the bottom of the sharp valley.
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