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Abstract
Fungi are a key component of tropical biodiversity. However, due to their inconspicu-
ous and largely subterranean nature, they are usually neglected in biodiversity inven-
tories. The goal of this study was to identify the key determinants of fungal richness, 
community composition, and turnover in tropical rainforests. We tested specifically 
for the effect of soil properties, habitat, and locality in Amazonia. For these analyses, 
we used high-throughput sequencing data of short and long reads of fungal DNA 
present in soil and organic litter samples, combining existing and novel genomic data. 
Habitat type (phytophysiognomy) emerges as the strongest factor explaining fun-
gal community composition. Naturally open areas—campinas—are the richest habitat 
overall. Soil properties have different effects depending on the soil layer (litter or 
mineral soil) and the choice of genetic marker. We suggest that campinas could be a 
neglected hotspot of fungal diversity. An underlying cause for their rich diversity may 
be the overall low soil fertility, which increases the reliance on biotic interactions es-
sential for nutrient absorption in these environments, notably ectomycorrhizal fungi–
plant associations. Our results highlight the advantages of using both short and long 
DNA reads produced through high-throughput sequencing to characterize fungal di-
versity. While short reads can suffice for diversity and community comparison, long 
reads add taxonomic precision and have the potential to reveal population diversity.
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1  | INTRODUC TION

Fungi are inconspicuous organisms, only a proportion of which spo-
radically reveal their presence through the formation of tangible mor-
phological structures such as fruiting bodies (Moore, 1985). The study 
of fungi has therefore benefited immensely from the development of 
molecular (DNA) sequencing tools during the last 30 years. However, 
even with the use of molecular tools, studies involving the tropics have 
neglected fungi, despite the fact that the majority of undescribed fungi 
are thought to occur in the tropics (Hawksworth, 2001; Hawksworth 
& Rossman, 1997; Lodge et al., 1995). Among all tropical biomes, rain-
forests provide the widest range of ecosystem services through high 
above- and below-ground biodiversity (Wardle et al., 2004), including 
water cycling and carbon storage (Fearnside, 2008; Ojea, Martin-
Ortega, & Chiabai, 2012). The largest and most diverse of those for-
ests is Amazonia (Antonelli et al., 2018; Hansen et al., 2013), which 
comprises approximately 40% of the area occupied by rainforest hab-
itats around the world. Amazonian ecosystem services can only be 
maintained through abiotic and biotic processes, many of which are 
mediated by fungi.

To better characterize fungal communities in Amazonia, short-
read high-throughput sequencing (HTS) platforms such as Illumina 
are being increasingly used (Dunthorn, Kauserud, Bass, Mayor, & 
Mahé, 2017; Ritter, Zizka, et al., 2019; Ritter et al., 2018; Tedersoo 
et al., 2014; Vasco-Palacios, Bahram, Boekhout, & Tedersoo, 2019). 
These approaches are often used together with PCR techniques 
to amplify individual markers. In particular, the nuclear ribosomal 
Internal Transcribed Spacer (ITS) region has been selected as the 
best DNA region to identify the widest possible range of fungal 
groups and is therefore commonly used as a universal DNA barcode 
for fungi (Schoch et al., 2012). This region is typically 500–600 bases 
long, preventing it from being sequenced under some sequencing 
technologies. The use of partial sequencing (targeting only a sub-
region such as ITS1 or ITS2) has at times limited the taxonomic 
coverage and identification of fungi by not providing enough vari-
ation to tell species apart (Nilsson, Ryberg, Abarenkov, Sjökvist, & 
Kristiansson, 2009). Furthermore, even though HTS approaches 
produce hundreds of thousands or millions of sequences per sample, 
the limited length of these sequences can introduce critical biases 
to the precise taxonomic identification of the underlying lineages 
(Nilsson et al., 2019; Tedersoo, Tooming-Klunderud, & Anslan, 2018).

Long-read HTS has the potential to overcome some of these 
limitations, but it has rarely been used in environmental studies 
(Tedersoo et al., 2018; Purahong, Mapook, Wu, & Chen, 2019). 
One of the most well-developed platforms is the single-molecule 
real-time sequencing platform of Pacific Biosciences (PacBio®) 
(Rhoads & Au, 2015). Although the PacBio platform had a high error 
rate at the time it was launched, the error rate is currently less than 
1% (Goodwin, McPherson, & McCombie, 2016). Recent studies have 
shown that the potential of the PacBio platform for the identifi-
cation of fungal communities using environmental samples is high 
(Purahong et al., 2019; Tedersoo et al., 2018), but so far it has not 
been widely applied to any ecosystems.

Taken together, the use of short- and long-sequence HTS tech-
niques offers the potential to overcome the challenges of character-
izing fungal diversity in species-rich ecosystems, such as Amazonia in 
northern South America. Amazonia is a heterogeneous biome, and its 
biodiversity has been shown to vary considerably across geographical 
ranges. On a large scale, a west (more diverse) to east (less diverse) 
diversity gradient has been observed in many animal and plant groups 
(Hoorn et al., 2010; Steege et al., 2003; Zizka, ter Steege, Pessoa, & 
Antonelli, 2018) and also in micro-organisms, including fungi (Ritter, 
Faurby, et al., 2019; Ritter, Zizka, et al., 2019). Another source of het-
erogeneity in Amazonia is the presence of distinct habitats types. Each 
phytophysiognomy comprises a largely distinct biota, its own soil char-
acteristics, flooding regime, and nutrient availability (Myster, 2016; 
Ritter et al., 2018). Four widespread and important habitats, here given 
in the order of decreasing plant and animal diversity (Myster, 2016; 
Ritter, Faurby, et al., 2019), are as follows: unflooded tropical forests 
(terra-firme); forests seasonally flooded by fertile white-water rivers 
(várzeas); forests seasonally flooded by unfertile black water rivers 
(igapós); and naturally open areas associated with white-sand soils 
(campinas). The richness gradient for micro-organisms has been found 
to differ from this general trend, as campinas harbor the highest mi-
crobial richness (Ritter, Faurby, et al., 2019; Ritter, Zizka, et al., 2019).

Soil physicochemical characteristics are often considered cru-
cial for biotic dynamics, vegetation, and diversity patterns at local 
to regional scales across Amazonia (Higgins et al., 2011; Laurance 
et al., 2010; Vasco-Palacios et al., 2019; Vogel et al., 2009). Although 
several studies have reported on the importance of soil characteris-
tics in shaping community structure, no unified pattern has emerged. 
In a recent study using HTS with short reads from environmental 
samples in Amazonia, members of our team showed a mixed effect 
of soil properties on the microorganism richness and community 
turnover (Ritter et al., 2018). In that study, we used general primers 
to target all eukaryotes, and we did not address specifically these 
effects on fungi.

This study seeks to characterize fungal communities across 
Amazonia using environmental samples of soil and litter. For the first 
time (to our knowledge) in an Amazonian context, we use a long-read 
approach to sequence the full fungal ITS region on the PacBio plat-
form. In addition, we combine our novel long-read data with our pre-
viously released short-read HTS data of the nuclear ribosomal 18S 
rRNA small subunit (18S) gene and the mitochondrial cytochrome 
c oxidase subunit I (COI) gene produced in an Illumina sequencing 
platform. We discuss the patterns of fungal richness and community 
turnover across Amazonia and compare the results obtained from 
different genes and platforms.

2  | METHODS

2.1 | Study area and sampling design

We sampled four localities across Brazilian Amazonia (Figure 1) 
following the sampling design described by Tedersoo et al. (2014). 
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Detailed locality descriptions are available in Ritter, Zizka, et al. 
(2019). Benjamin Constant (BC), to the south of the Amazon river, is 
the westernmost study locality (3 igapós, 3 terra-firme and 3 várzeas 
plots); Jaú is located to the west and Cuieras to the east of the Negro 
river, and both are located to the north of the Amazon river (3 campi-
nas, 3 igapós and 3 terra-firme plots at each); Caxiuanã is located to 
the south of the Amazon river and is the easternmost study locality 
(3 campinas, 3 igapós, 3 terra-firme, and 3várzeas plots). We sam-
pled all depths of the litter layer above the mineral soil (all organic 
matter, including leaves, roots, and animal debris) and the top 5 cm 
of the mineral soil in a total of 39 circular plots, each with a radius of 
28 m. We chose 20 random trees inside each plot and collected litter 
and soil on both sides of each tree. We then pooled the samples by 
substrate to produce one litter sample and one soil sample per plot. 
The soil physicochemical properties were determined by a Brazilian 
company (EMBRAPA); additional details of the soil analysis can be 
found in Ritter et al. (2018).

2.2 | Data generation

For the nuclear ribosomal small subunit (SSU) 18S rRNA (18S) and the 
mitochondrial cytochrome c oxidase subunit I (COI) genes, we used 
the OTU table produced in Ritter, Faurby, et al. (2019). We selected 
the OTUs assigned to the fungal kingdom based on SILVA (Quast 
et al., 2012) for 18S and GenBank (Benson et al., 2018) for COI data-
sets, respectively, for all our analyses. We present here the results of 
both markers in light of the fact that the previous publication did not 
analyze fungi separately, which imposed limits on the fungal richness 
and community structure analyses employed at the time.

For the ITS, we followed the approach described in Tedersoo 
et al. (2018). We used the forward primers ITS9MUNngs 
(5′-TACACACCGCCCGTCG-3′; Tedersoo & Lindahl, 2016) and 
ITS4ngsUni (5′-CCTSCSCTTANTDATATGC-3′; Tedersoo & 
Lindahl, 2016) to target the full ITS region (ITS1 - 5.8S - ITS2)". For 
amplification, we used a PCR mixture comprised 5 μl of The Firepol 

F I G U R E  1   Map of sampling localities and habitats. (a) Northern South America, where dark green represents forest biomes and light 
green open vegetation biomes, as delimited by Dinerstein et al. (2017). The rivers are colored by the type of water: Brown represents white-
water rivers, black is the Negro river, and blue represents clear water rivers. Circles represent the main localities sampled; (b) Terra-firme 
forest with the lead author as size reference; (c) Várzea forest showing the white-water river; (d) The confluence of the Amazon (white water) 
and Negro (black water) rivers; (e) Igapó forest showing a black water river; and (f) Campina showing the white sand soil. Map produced in 
Qgis (Pereira et al., 2019)

(a)

(b)
(c)

(d)

(e)

(f)
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is a thermostable Taq DNA polymerase used in the amplification. 
The mix contain the Firepol, primers, DNA and ddH2O, in a total 
of 25 μl of each forward and reverse primer (20 mM), 1 μl of DNA 
extract, with the original concentration, and 18 μl ddH2O. Thermal 
cycling included an initial denaturation at 95°C for 15 min; cycles of 
denaturation for 30 s at 95°C, annealing for 30 s, elongation at 72°C 
for 1 min; final elongation at 72°C for 10 min and storage at 4°C. The 
duplicate PCR samples were pooled; their relative quantity was esti-
mated by running 5 μl DNA on 1% agarose gel stained with ethidium 
bromide (Sigma-Aldrich, St Louis, MO, USA). We used negative (for 
DNA extraction and PCR) controls throughout the experiment. The 
amplicons were purified with FavorPrep PCR Clean Kit (FavorGen 
Biotech Corporation, Vienna, Austria). The concentration of PCR 
products was standardized for sequencing. The libraries were pre-
pared using PacBio amplicon library preparation protocol (Pacific 
Biosciences, Inc) and loaded to seven SMRT cells using the MagBead 
method. The libraries were sequenced using the PacBio RS II instru-
ment using P6-C4 chemistry following the manufacturer´s protocol.

Bioinformatics analyses were performed using the PipeCraft 
platform (Anslan, Bahram, Hiiesalu, & Tedersoo, 2017). PacBio cir-
cular consensus reads (CCS, reads_of_insert) were quality filtered 
with VSEARCH (Rognes, Flouri, Nichols, Quince, & Mahé, 2016) 
(maxee = 2, maxns = 0, minlen = 150). Filtered reads were demul-
tiplexed based on the unique sequence identifiers using mothur 
(Schloss et al., 2009) (bdiffs = 1). Putative chimeric reads were fil-
tered using de novo and reference-database-based methods in 
VSEARCH. Additionally, sequences where the full PCR primer was 
found anywhere in the read were filtered out using the PipeCraft 
built-in module, as these reads represent additional chimeras not de-
tected by VSEARCH. The full ITS region was extracted using ITSx 
(Bengtsson-Palme et al., 2013) and clustered using the UPARSE al-
gorithm (Edgar, 2013) with a 98% similarity threshold. Additionally, 
the postclustering curation method LULU (Frøslev et al., 2017) was 
applied (minimum_ratio_type = “min,” minimum_match = 98) to 
merge consistently co-occurring “daughter” OTUs. Taxonomy anno-
tation was performed using BLASTn (Camacho et al., 2009) against 
the UNITE (Abarenkov et al., 2010; Nilsson et al., 2018) and INSDC 
(Cochrane, Karsch-Mizrachi, & Takagi, 2016) databases.

2.3 | Statistical analysis

We performed all statistical analyses in R v.3.6.0 (R Core Team, 2003). 
Two samples (SCUICAMP3 and LCUITFP3) had a very low num-
ber of reads in the ITS results and were excluded from subsequent 
analyses of all markers. We use as a diversity estimate the effec-
tive number of OTUs, calculated with the unrarefied read counts 
as OTU abundance, using the exponential of the Shannon entropy 
diversity of order q = 1 (Jost, 2006). This measure is more robust 
against biases arising from uneven sampling depth than the simple 
number of OTUs (McMurdie & Holmes, 2014). For the abundance-
based community matrices, we transformed read counts using the 

“varianceStabilizingTransformation” function in DESeq2 (Love, 
Huber, & Anders, 2014) as suggested by McMurdie and Holmes 
(McMurdie & Holmes, 2014). This transformation normalizes the 
count data with respect to sample size (number of reads in each 
sample) and variances, based on fitted dispersion–mean relation-
ships (Love et al., 2014).

We tested the correlation between diversity of each marker 
through a Pearson correlation between each pair of markers. To 
test between the community composition correlation, we per-
formed a Mantel test with the Jaccard dissimilarity matrices, using 
the Pearson correlation and 999 permutations for significance. 
Both analyses were performed using the vegan v.2.5.5 R package 
(Oksanen et al., 2010).

For soil physicochemical analysis, we first normalized all vari-
ables to mean = 0 and variance = 1. We then performed two principal 
component analyses (PCA), one for soil grain size and the other for 
chemical compounds, using the vegan package. We used the first 
axis of each PCA (explaining 56% and 69% of the total variation, re-
spectively) in the subsequent linear models and multiple regressions 
analysis. Given the expected importance of soil organic carbon con-
tent (Nielsen, Ayres, Wall, & Bardgett, 2011; Ritter et al., 2018) and 
pH (Lauber, Hamady, Knight, & Fierer, 2009; Ritter et al., 2018), we 
used these as independent variables.

To test the effect of soil properties on fungal OTU richness, we 
performed a Bayesian general linear model (GLM) analysis, as imple-
mented in the R-INLA v.17.6.20 R package (Rue et al., 2009). The re-
sponse variables were the OTU diversity by soil layer (litter and soils) 
and marker (18S, ITS and COI), giving a total of six models. In each 
case, the soil properties (PC1 for the physical, PC1 for the chemi-
cal, organic carbon content, and pH both standardized to mean = 0 
and variance = 1) were used as explanatory variables. We tested the 
effect of spatial autocorrelation by comparing analyses of standard 
GLMs with GLM analysis using stochastic partial differential equa-
tions (SPDE) that explicitly consider spatial correlation.

To test the effect of soil properties on fungal community turn-
over, we used multiple regressions on dissimilarity matrices (MRM) 
with the R package ecodist v.2.0.1 (Goslee & Urban, 2007). The 
response variables were dissimilarity matrices calculated using the 
Jaccard dissimilarity. In each case, the explanatory variables were 
the distance matrices based on soil properties (physical PC1, chem-
ical PC1, organic carbon, and pH) and one geographical distance 
matrix (all calculated using Euclidean distances). Statistical signifi-
cance of the regression coefficients was determined using 10,000 
permutations.

For the analysis of differences of community composition by lo-
cality and habitat, we performed a nonmetric multi-dimensional scal-
ing (NMDS) analysis using the Jaccard dissimilarity matrix and tested 
the significance of groups using the envfit test, which fits vectors 
of continuous variables—in this case the NMDS axes—and centroids 
of levels of class variables (locality, habitat, and soil layer) using the 
vegan package. Additionally, we performed a permutational analysis 
of variance (PERMANOVA) to test the significance of each factor 
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(locality, habitat, soil layer, first PC of both PCAs, pH, and carbon) in 
the community composition of each dataset (18S, COI, and ITS) using 
the vegan package. To assess the difference between the habitats 
and localities, we performed a post hoc test of PERMANOVA using 
the R package pairwiseAdonis v.0.4 (Arbizu, 2020).

Based on literature and experience, V.X.L. assigned all OTUs clas-
sified as fungi to putative functional groups. Based on the literature, 
OTUs were assigned individually to one of five functional groups: 
“lichen,” “mycorrhizae,” “parasite,” “phytopathogen,” and “saprobe.” 
As the name implies, all lichenized fungi are classified as “lichen” 
(e.g., Lecanora, Lepidostroma). “Mycorrhiza” are all fungi in a mutu-
alist association with root plants (e.g., Glomeromycotina, Amanita). 
“Phytopathogen” refers to all fungi associated with plant diseases 
(e.g., Clodosporium spp., several Venturiaceae spp.). “Parasite” 
refers to parasites of other organisms except plants (e.g., most 
Zoopagomycotina, Metarhizium sp.). The fifth category, “Saprobe,” 
contains all nonobligatory biotrophic fungi, including coprophilous 
and opportunistic parasites. Most OTUs classified at family level 
or higher are impossible to categorize confidently (e.g., Agaricales, 
Dothideomycetes), as are species that are only known from a single 
or few collections without associated information on their ecology 
(e.g., Alloconiothyrium aptrootii, Dictyochaeta mimusopis) were kept as 
“unknown.” As many OTUs identified at genus level may represent 
undescribed species, their functional classification was by associ-
ation. For instance, unidentified species of a genus predominantly 
composed of saprobe species were also classified as “saprobe” (e.g., 
Mucor spp., Phlebia spp.); likewise, those in a predominantly ecto-
mycorrhizal group were classified as “mycorrhiza” (e.g., Lactarius 
spp., Paxillus spp.). Nevertheless, several genera are composed of 
species in two or more functional groups, such as Bionectria and 
Tricholoma; in cases such as this, unidentified species were classified 
as “unknown.”

We performed an analysis of indicator OTUs of each locality, 
habitat, and soil layer using the R package indicspecies v.1.7.6 (De 
sCaceres, Jansen, & De Caceres, 2016) using the matrix of relative 
abundance. This analysis identifies the species, in our case the OTUs, 
that are associated with a determined group. We performed the 
analysis three times with each dataset (18S, COI, and ITS): the first 
grouped the OTUs by locality, the second by habitat, and the third 
by soil layer. We tested significance with 9,999 permutations, from 
which we quantified the number of indicator OTUs for each group 
with an alpha < 0.05. We also used the previous guild classification 
to categorize all possible indicator OTUs (Table S2).

We calculated the mean number of OTUs by each factor (locality, 
habitat, and soil layer) in each dataset (18S, COI, and ITS) using the 
vegan R package. We produced a Venn diagram for visualization of the 
number and proportion of exclusive and shared OTUs for each fac-
tor (locality, habitat, and soil layer) in each dataset (18S, COI, and ITS) 
using the online tool Venny 2.0 (Oliveros, 2007). Additional R pack-
ages used for data curation were tidyverse v.1.2.1 (Wickham, 2017) 
and ggplot2 v.3.1.1 (Wickham, 2016). All scripts and data used in the 
analyses are available as supplementary material.

3  | RESULTS

3.1 | OTU classification and marker correlation

After sequencing, processing, and filtering of short reads (Illumina), 
we found a total of 10,745 OTUs (9,149,502 reads), of which 2,212 
(20%) were identified as fungi for the 18S dataset. For COI, we 
found a total of 6,227 OTUs (242,977 reads), of which 2,161 (35%) 
were fungal. For the long reads (PacBio) of ITS, we obtained a total 
of 3,711 OTUs, of which 3,039 (82%) were fungal. The majority of 
the fungal OTUs were found to belong to the phylum Ascomycota, 
followed by Basidiomycota (Figure 2). The 18S dataset was found 
to contain a higher proportion of non-Dikarya (Ascomycota plus 
Basidiomycota) than did the other datasets (Figure 2). All the follow-
ing results are based only on OTUs classified as Fungi.

The effective number of OTUs showed a weak correlation across 
datasets, with COI being more correlated with 18S (r = .36). The ITS 
was not correlated with either 18S (r = −.08) or COI (r = −.02). The 
Mantel tests showed a significant (p = .001) correlation in all matri-
ces of similarity, with the strongest correlation between 18S and COI 
(r = .52) and a weaker correlation with the ITS datasets (ITS and COI 
r = .30, ITS and 18S r = .17).

3.2 | Soil characteristics and their effect on fungal 
diversity and composition

The principal component analysis (PCA) recovered more than 56% 
of data variability in the first principal component axis (PC1) for both 
physical and chemical properties. The PC1 of each PCA was used in 
further analyses (Figure 3). In our PCA for physical characteristics, 
the negative values represent fine texture soils (silt and clay), which 
are predominantly present in seasonally flooded forests—igapós 
and várzeas (Figure 3a). The campinas had plots at both extremes of 
PC1, having the plots in Jaú and Cuieras localities with fine texture 
and the others plots localized in Caxiuanã with coarse soil textures 
(Figure 3a). Terra-firme was more spread across different gradi-
ents of the soil texture (Figure 3a). In the PCA for chemical com-
pounds, positive values in PC1 represent low-fertility soils. Campina 
and terra-firme were more associated with low-fertility soils, while 
várzea forests showed different fertility levels (Figure 3b). Plots in 
igapó forests also showed low soil fertility except for the plots in 
Benjamin Constant (Figure 3b). For details of soil characteristics, see 
Ritter et al. (2018).

Only the mineral soil had some soil properties with a significant 
effect on the OTU Shannon diversity, an effect that varied by marker 
(Table 1). For 18S, only the organic carbon (C) content was signifi-
cant, with a negative effect. Organic carbon was also significant and 
negative for soil ITS diversity. Chemical PC1 was significant for COI 
and ITS soil diversity, with a higher effective number of OTUs in-
crease following decreasing soil fertility. The pH and soil texture had 
no significant effect on OTU diversity.
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Geographical distance was significant for all datasets. However, 
since juxtaposed localities are usually similar in many respects, we 
cannot differentiate the level of spatial correlation from the effect of 
soil properties in our analysis of community turnover (Table 2). For 
community turnover, organic carbon and pH were significant for all 
soil communities (18S, COI and ITS), as was pH for all litter commu-
nities. Organic carbon was also significant for the COI litter dataset. 
Soil texture was significant in all communities except for the ITS soil 
dataset (Table 2). The PC1 for chemical properties was significant 
for the 18S and COI litter communities. In the PERMANOVA anal-
ysis, the soil properties were all significant with a low effect on all 
datasets (Table S3).

The soil layer, organic litter, and mineral soil had a low but signif-
icant effect on the number of OTUs (PERMANOVA results: p < .001 
for all datasets, 18S – R2 = .05, COI – R2 = .04, and ITS – R2 = .03). 
There were small differences between the soil and litter communi-
ties in the two axes of nonmetric multi-dimensional scaling (NMDS) 
in all datasets (Figure 4). The litter COI and ITS datasets had a higher 
mean number of OTUs, where a higher number of OTUs is consid-
ered litter indicators (OTUs with a significantly higher probability to 
be found in litter than soil; Table 3), and a high number of exclusive 

OTUs than 18S (Figure 5). For 18S, the results contrast with those 
of the other markers, showing soil as the most diverse substrate, 
with the highest number of exclusive and indicator OTUs (Table 3, 
Figure 5c). The majority of indicator OTUs for both layers are sapro-
trophs (Table S2).

3.3 | The effect of localities

Regarding locality, Benjamin Constant had the most differentiated 
community in all datasets (Figure 4). The effect of localities was sig-
nificant (p < .001) and had a higher effect than the soil layer factor in 
explaining the community composition in all datasets (18S – R2 = .10, 
COI – R2 = .12, and ITS – R2 = .11). Benjamin Constant was signifi-
cantly different from all other localities for all datasets (Table S4). In 
general, the pattern of highest mean, number of exclusive, and num-
ber of indicator OTUs by locality varied between markers (Table 3, 
Figure 5). For 18S and ITS, Benjamin Constant had the highest mean 
number of OTUs (Table 3) and the highest number of exclusive OTUs 
(Figure 5). Benjamin Constant also had the highest number of OTUs 
considered indicators of this locality for the 18S dataset (Table 3). 

F I G U R E  2   Number of OTUs by fungal phylum. Each bar is the number of OTUs in each plot in (a) litter samples and (b) soil samples. 
The colors represent the different molecular markers sequenced for this study. All datasets are dominated by Ascomycota, followed by 
Basidiomycota
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Cuieras had the lowest number of exclusive OTUs for COI and 18S 
but had the highest number of indicator OTUs for the COI datasets 
(Figure 5). The majority of indicator OTUs at all localities were sap-
rotrophs, followed by a high proportion of OTUs that could not be 
classified by their functional group (Table S2).

3.4 | The effect of habitat

Habitat type was the strongest factor (p < .002) explaining commu-
nity composition in the PERMANOVA analysis (18S – R2 = .12, COI 
– R2 = .18, and ITS – R2 = .08), with the exception of the ITS dataset. 
All habitats were significantly different from each other in the 18S 
and COI datasets (Table S4). For ITS, campinas were significantly 
different from terra-firme and igapós, and igapós were also signifi-
cantly different from várzeas (Table S4). In NMDS, the seasonally 
flooded forests, igapós, and várzeas were more similar to each other 
than to campinas and terra-firmes, which were the most similar to 
each other (Figure 5). Campinas had the highest mean number of 
OTUs and the highest number of OTUs considered indicators of this 
habitat for all datasets (Table 3). Regarding the number of exclusive 
OTUs, campinas had the highest number of OTUs in the COI data-
sets (Figure 5e). Terra-firme was the habitat with the highest number 
of exclusive OTUs for the 18S and ITS datasets (Figure 5b,h). In all 

habitats, the majority of indicator OTUs were saprotrophs, followed 
by a high proportion of OTUs that could not be classified by their 
functional group (Table S2). The functional guilds by habitat and 
their proportion are shown in Table S5.

4  | DISCUSSION

Our results highlight the importance of habitat type for fungal com-
munity composition in Amazonia and suggest that Amazonian fungi 
have different diversity patterns for habitat and locality variables, 
with the importance of each predictor varying between markers. By 
contrast, community turnover shows a consistent pattern, with habi-
tat being a strong factor explaining community similarity between 
plots. This is likely to be because different areas can have similar 
species richness but different species composition, due to historical, 
geographic, and environmental factors. For instance, in a study of 
leaf litter fungi in Central Amazonia, the abundance and richness of 
fungal morphospecies did not change between low and high rainfall 
periods, but there was a low proportion of shared morphospecies 
between periods (Braga-Neto, Luizão, Magnusson, Zuquim, & de 
Castilho, 2008). Our results also showed a low proportion of shared 
OTUs when compared with a HTS study of micro-organisms in gen-
eral in the same area (Ritter, Zizka, et al., 2019) (Figure 5).

F I G U R E  3   Physical and chemical soil similarity of sample sites across Amazonia. The figure shows the study sites colored by habitat type 
on the first two axes of a principle component analysis for (a) physical properties (silt, clay, and sand categorized in fine and coarse fractions) 
and (b) chemical proprieties: phosphorus (P), exchangeable bases (Na, K, Ca, and Mg), exchangeable aluminum (Al), saturation index by 
aluminum (m), base saturation index (V), effective cation exchange capacity (t), and cation exchange capacity (T). The symbols represent the 
localities, in the west-to-east order: Benjamin Constant (BC), Jaú (JAU), Cuieras (CUI), and Caxiuanã (CXN). The blue rows show the values of 
each variable's loading in the two first PC axes. For the physical PCA, we found that flooded forests (igapós and várzeas) are associated more 
fine soil texture (silt and clay), with a wider spread of terra-firme and campinas. For the chemical PCA, the positive end of the first PC axis, 
which represents low-fertility soils, is occupied by a campinas group, followed by terra-firmes
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Soil texture did not explain fungal diversity, while chemical soil 
characteristics were of importance for COI and ITS soil communities, 
indicating a high diversity in less fertile soil (Table 1). Although it ap-
pears counter-intuitive, the habitat with lowest soil fertility was the 
one with highest fungal and other microbial diversity: the campinas 
(Ritter, Faurby, et al., 2019; Ritter, Zizka, et al., 2019). These results 
suggest that factors other than soil properties explain a habitat's 
fungal diversity and community composition.

The soil diversity of the 18S dataset was negatively correlated 
with carbon, while the specifics of the other datasets were not 

related to carbon. This could be explained by taxonomic coverage of 
the 18S dataset, which included the Chytridiomycota and Mucorales 
(mostly comprising saprotrophic fungi) (Barr, 2001; Benny, Humber, 
& Voigt, 2014). Saprobes decompose matter into various constitu-
ent components, making the nutrients available to other organisms. 
Saprobes are, in other words, important agents in carbon cycling 
(Swift, 1982). Hence, a high fungal richness may lead to a faster 
carbon decomposition in soil, as well as a faster carbon assimi-
lation in the above-ground biomass. This is in agreement with Liu 
et al. (2015), who found that phylotype richness and phylogenetic 

Marker
Soil 
layer Variable Mean SD 0.025 0.5 0.975

18S Litter Intercept 3.871 11.000 −19.413 4.034 25.957

pH 0.067 0.061 −0.054 0.067 0.187

Carbon −0.057 0.077 −0.209 −0.056 0.089

Chemical 0.109 0.090 −0.069 0.109 0.278

Physical 0.017 0.043 −0.070 0.018 0.100

Soil Intercept 3.393 0.703 1.804 3.456 4.653

pH −0.019 0.045 −0.108 −0.019 0.070

Carbon −0.287 0.048 −0.384 −0.287 −0.194

Chemical 0.049 0.034 −0.011 0.048 0.122

Physical 0.029 0.031 −0.033 0.030 0.089

COI Litter Intercept 3.871 11.000 −19.413 4.034 25.957

pH 0.067 0.061 −0.054 0.067 0.187

Carbon −0.057 0.077 −0.209 −0.056 0.089

Chemical 0.109 0.090 −0.069 0.109 0.278

Physical 0.017 0.043 −0.070 0.018 0.100

Soil Intercept −1.670 12.588 −26.767 −1.834 24.665

pH 0.085 0.055 −0.022 0.085 0.192

Carbon 0.109 0.074 −0.037 0.109 0.253

Chemical 0.620 0.082 0.460 0.619 0.782

Physical −0.019 0.035 −0.087 −0.019 0.050

ITS Litter Intercept 3.871 11.000 −19.413 4.034 25.957

pH 0.067 0.061 −0.054 0.067 0.187

Carbon −0.057 0.077 −0.209 −0.056 0.089

Chemical 0.109 0.090 −0.069 0.109 0.278

Physical 0.017 0.043 −0.070 0.018 0.100

Soil Intercept −1.400 10.548 −22.631 −1.470 20.545

pH −0.114 0.058 −0.229 −0.114 0.000

Carbon −0.389 0.085 −0.557 −0.388 −0.224

Chemical 0.319 0.081 0.161 0.319 0.480

Physical −0.046 0.037 −0.119 −0.046 0.027

Note: The table shows the coefficients of each predictor in four Bayesian general multivariate 
regression models using stochastic partial differential equations (SPDE) that explicitly consider 
spatial correlation, modeling OTU diversity dependent on soil properties for Amazonian fungi in 
litter and soil. Since the organic carbon content and pH are considered important variables for soil 
biota, we use them as independent variables. Bold indicates important predictor variables (credible 
intervals not crossing zero). The importance of soil properties differed between markers and 
were significant only for the soil diversity. Carbon content was important for 18S and ITS soil, and 
chemical PC1 was important for COI and ITS.

TA B L E  1   Soil effects on OTU Shannon 
diversity by marker
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diversity of black soil fungi responded negatively to total carbon 
content in China. Experiments controlling the variables and quan-
tifying the above-ground biomass are necessary to further verify 
these observations.

Contrary to our expectations, pH had no effect on fungal richness. 
This finding was surprising, since soils with more neutral pH gener-
ally have a higher richness of micro-organisms (Glassman, Wang, & 
Bruns, 2017; Ritter et al., 2018; Rousk et al., 2010; Wang et al., 2015). 
Our soil samples were all acidic, with the pH varying between 3.5 and 
5.14. Soil fungi studied by Liu et al. (2015) displayed a similar pattern 
to that reported in this study—a higher relative influence of soil carbon 
content than of soil pH. They also noted that fungi often have a wider 
tolerance to pH variation than other micro-organisms, suggesting that 
in soils with low pH variation such as presented here, the acidity impact 
should be less striking (Liu et al., 2015). On the other hand, pH was 
important in explaining community turnover for all datasets (Table 2). 
Furthermore, in tropical areas the relationship between fungal com-
munities and soil pH is affected by the fungal trophic guilds (Pärtel, 
Bennett, & Zobel, 2016). It may indicate that in a highly diverse area, 
such as Amazonia, fungal diversity will not be impacted by pH variation 
but there will be a turnover of fungal species related to the pH range.

4.1 | Spatial differences

Different Amazonian habitats varied considerably in their biotic 
composition (Borges et al., 2016; Ritter, Zizka, et al., 2019). Habitat 
was the most significant factor explaining community turnover in 
18S and COI datasets. All habitats were significantly different from 
each other in the 18S and COI datasets (Table S4). In the ITS data, 
we found that campinas and igapós are dissimilar in their communi-
ties (Figure 4a). This can be explained by the physicochemical soil 
properties (Figure 3). When it comes to chemical properties, campi-
nas and igapós were placed at opposite extremes of PC1 and PC2 
(Figure 3b). With respect to the physical properties, campinas have 
plots in both extremes of PC1, but igapós were better explained by 
clay content (Figure 3a). Clay content was an important factor in ex-
plaining leaf litter in central Amazon fungi (Braga-Neto et al., 2008). 
Campinas communities were also significantly different from terra-
firme and igapós, and várzeas were dissimilar in their communities 
(Figure 4a, Table S4). However, in contrast with campinas and igapós, 
these differences cannot be explained by soil properties and may be 
more related to the difference in plant communities (Peay, Baraloto, 
& Fine, 2013).

Marker Predictor

Litter Soil

Coefficients p value Coefficients
p 
value

18S Intercept 94.615 1.000 77.103 1.000

Geo.Dist 0.144 .003 0.084 .050

pH 0.193 .002 0.143 .026

Carbon 0.110 .096 0.286 .001

Chemical 0.168 .015 0.109 .162

Physical 0.115 .035 0.160 .017

COI Intercept 18.726 1.000 −1.402 1.000

Geo.Dist 0.114 .007 0.192 .000

pH 0.175 .008 0.130 .030

Carbon 0.267 .001 0.299 .000

Chemical 0.177 .023 0.137 .069

Physical 0.215 .002 0.246 .000

ITS Intercept 157.504 1.000 110.212 1.000

Geo.Dist 0.116 .015 0.094 .033

pH 0.229 .006 0.180 .010

Carbon 0.111 .223 0.362 .000

Chemical −0.115 .227 0.046 .589

Physical 0.212 .006 0.005 .945

Note: The multiple regressions were based on the geographical distance, Euclidean distance 
matrices of soil properties, and community Jaccard dissimilarity index values. Bold indicates 
significant results. Community dissimilarity is significantly associated with geographical distance 
(Geo.Dist) for Amazonian fungal communities in soil and litter. All community turnovers were 
significant using 10,000 permutations (p < .05) with the following R2: 18S litter = .18 (F = 31.6) and 
soil = .18 (F = 30.1), COI litter = .26 (F = 50.2) and soil = .28 (F = 54.5), and ITS litter = 0.12 (F = 18.8) 
and soil = .18 (F = 30.1).

TA B L E  2   Association between 
environmental distance and community 
turnover
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For the 18S and COI data, the similarity between habitats is bet-
ter explained by comparing seasonally flooded and nonflooded hab-
itats (Figure 4). In both communities, igapós and várzeas are similar 
to each other and distinct from terra-firme and campinas. This is in 
agreement with results from studies of micro-organisms in general 
in the same areas (Ritter, Zizka, et al., 2019). These results were ex-
pected, as the flooded period is a powerful factor that selects for 
a very specific vegetation type (Assis et al., 2015; Haugaasen & 
Peres, 2006; Myster, 2016; Steege & Hammond, 2001). Igapós and 
várzeas are more restricted to a fine soil texture, while in terra-firme 
and campinas the soil texture varies more (Figure 3a). However, 
regarding the chemical properties, terra-firme and campinas have 
almost exclusively poor soils, while igapós and várzeas present dif-
ferent gradients of soil fertility (Figure 3b). These distinct patterns 

among markers might be explained by the differences in taxonomic 
coverage of each marker, since different species of fungi have dis-
tinct habitat preferences (Tedersoo et al., 2014).

We were surprised to find that campinas were, on average, 
the richest habitat for fungi. This stands in contrast to patterns 
observed for animals and plants (Adeney, Christensen, Vicentini, 
& Cohn-Haft, 2016; Damasco, Vicentini, Castilho, Pimentel, & 
Nascimento, 2013), and fungi in Colombian Amazonia (Vasco-
Palacios et al., 2019). One explanation for the campinas being 
the richest environment may be the need for plants to associate 
with micro-organisms that fix nutrients in the poor soil habitats. 
For instance, some studies of campinas in Amazonia address 
the diversity of ectomycorrhizal fungi (Roy et al., 2016; Singer & 
Aguiar, 1986; Singer & Araujo, 1979; Singer, Araujo, & Ivory, 1983; 

F I G U R E  4   Community structure 
related to substrate type (litter and soil), 
locality, and habitat type. Visualization 
of differences in OTU composition 
(assessed through abundance matrices 
using the Jaccard dissimilarity index) 
using nonmetric multi-dimensional 
scaling (NMDS) for (a) ITS by habitat, 
(b) ITS by locality, (c) 18S by habitat, (d) 
18S by locality, (e) COI by habitat, and (f) 
COI by locality. Circles represent litter 
samples and triangles soil samples. Both 
the habitat and the locality factor were 
statistically significant (EnvFit test). The 
R2 and p values of each test are provided 
inside each subfigure. The strongest and 
most significant separation is observed 
between habitat types
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Vasco-Palacios, Hernandez, Peñuela-Mora, Franco-Molano, & 
Boekhout, 2018). The general pattern is that the diversity of ec-
tomycorrhizal fungal diversity is the highest in temperate zones 
(Tedersoo et al., 2012, 2014; Tedersoo & Nara, 2010), but due to 
the poor soil in campinas, the ectomycorrhizal fungi will be more 
diverse.

The origin of the campinas environments in Amazonia is debated 
(Adeney et al., 2016), but the nature of their soil, which is character-
ized by high drainage and high acidity, is considered one of the poor-
est in the world (Janzen, 1974). In this context, Singer et al. (1983) 
hypothesized that the ectomycorrhizal fungi increase the ability of 
their host plant to acquire nutrients and water in these very stress-
ful habitats. We found a high richness and number of indicator 
OTUs in campinas (Figure 5, Table 3), suggesting that the campinas 
may be hotspots for the diversity of fungi and other micro-organ-
isms. However, we detected very few mycorrhizal indicator OTUs, 
although these results could be biased by the lack of representa-
tive DNA sequences from tropical areas (Looney, Ryberg, Hampe, 
Sánchez-García, & Matheny, 2016)—the high number of unclassified 
guilds supports this (Table S5). The most up to date list of tropical 
ectomycorrhizal fungi includes just 135 species (http://tropi calfu ngi.
org/wp-conte nt/uploa ds/UPDAT ED-Total -Taxa-List-12-25-17.pdf) 
and most of them are not from campinas studies (Roy et al., 2016). 
In another study, 15 ectomycorrhizal fungi species were found in 
campinas based on ITS sequencing (Vasco-Palacios et al., 2018). 
However, these studies sampled only ectomycorrhizal host trees, 
which optimizes the detection of ectomycorrhizal fungi. It is inter-
esting that várzea areas have fewer OTUs that correspond to known 
mycorrhizal species for the three markers. Of the four habitats ana-
lyzed, várzea soils exhibit the highest fertility as they are flooded by 
nutrient-rich waters, decreasing the necessity for plants to associate 
with mycorrhizal fungi, in accordance with the hypothesis proposed 
by Singer et al. (1983).

4.2 | Comparison between short and long 
reads and markers

Our results showed a similar pattern for the habitat diversity of 
long and short reads, corroborating the patterns previous re-
ported (Ritter, Faurby, et al., 2019; Ritter, Zizka, et al., 2019; Ritter 
et al., 2018). These similarities support the view that our findings are 
real and independent of any possible methodological biases intro-
duced by the different markers and platforms.

The importance of soil properties on the diversity and commu-
nity turnover varied among markers. We acknowledge the different 
taxonomic coverages of each marker and the limitations of the avail-
able databases. For instance, the diversity of the early-diverging fun-
gal lineages Chytridiomycota, Cryptomycota, and Zoopagomycota 
using 18S is higher and it is in stark contrast with the ITS and COI 
data. Also, Mortierellomycotina were only detected with ITS. This 
difference may be the result of either PCR biases and primer choices 
that amplify some groups better than others, or of gaps in the refer-
ence databases used. The ITS and 18S reference databases are well 
populated for fungi, but due to the most universal coverage of 18S, 
some groups were more detected but not the Mortierellomycotina 
that was able to be detected with the ITS primers. The COI is usually 
used as barcode for metazoans (Huang, Meier, Todd, & Chou, 2008), 
with lower sequence available for fungi. Our COI data showed 
around 40% of unidentified OTUs (Ritter, Faurby, et al., 2019), which 
could represent at least in part some fungal lineages without public 
reference sequences. Uneven availability of reference sequences 
may have had impact on our diversity and community composition 
results for the various markers used, with the highest effect for the 
COI results.

The use of short-read fragments (for both 18S and COI) resulted 
in a higher number of OTUs, for all organisms, than did the long-read 
technique. Long-read ITS, on the other hand, detected more fungal 

18S COI ITS

Mean Indicator Mean Indicator Mean Indicator

Locality BC 436 90 107 75 165 174

JAU 369 73 176 98 111 43

CUI 338 58 181 173 142 189

CXN 386 52 222 153 148 58

Habitat TF 376 36 179 108 139 58

VZ 399 101 145 184 127 118

IG 370 61 133 79 144 73

CAM 404 173 252 358 156 144

Soil layer Litter 375 42 209 169 176 98

Soil 393 106 142 29 109 12

Note: Localities are ordered west to east: BC = Benjamin Constant, JAU = Jaú, CUI = Cuieras, and 
CXN = Caxiuanã. Habitats are ordered by plant and vertebrate diversity gradient: TF = Terra-firme, 
VZ = Várzea, IG = Igapó, and CAM = Campina. The highest number in each group is given in bold. 
Although the richest locality and soil layer varies depending on marker, for habitats campinas are 
consistently the richest for all markers.

TA B L E  3   Mean number of OTUs and 
number of indicator OTUs of Amazonian 
fungi by markers in each locality, habitat, 
and soil layer

http://tropicalfungi.org/wp-content/uploads/UPDATED-Total-Taxa-List-12-25-17.pdf
http://tropicalfungi.org/wp-content/uploads/UPDATED-Total-Taxa-List-12-25-17.pdf
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OTUs even though the total number of OTUs was smaller than for 
short reads. It is important to stress here that, unlike for the ITS re-
gion, for short reads we used general primers targeting all eukary-
otes and not just fungi, such that only a portion of reads belonged to 
fungi in the 18S and COI datasets. In addition, the ITS data did not 
hit the asymptote for most of the plots (Figure S1) and was worse for 
soil samples. This result could be explained by the fast DNA degrada-
tion in hot and humid environments (Taberlet, Coissac, Hajibabaei, & 
Rieseberg, 2012), which makes it harder to sequence long-read DNA 
fragments, and also the poor read depth of the PacBio platform.

Although the differences in primer design preclude us from re-
liably identifying the “best” marker or sequencing platform choice 
for fungal assessments in general, we highlight the main advantages 
and disadvantages of those used here. On the one hand, we showed 
that the use of 18S under the Illumina platform provides the overall 

highest taxonomic coverage (Ritter, Faurby, et al., 2019; Ritter, Zizka, 
et al., 2019). So for studies aiming to compare diversity and com-
munity turnover, the use of short reads can be recommended. In 
economic terms, this is also currently the more cost-efficient op-
tion. However, due to the short fragment size of Illumina reads, 
some OTUs could be potentially misidentified or categorized only 
at, for example, the family or genus level. For instance, in an earlier 
study comparing the taxonomic identification of short-read HTS, the 
choice of the ITS subregion, ITS1 or ITS2, affected 51% of fungal 
identifications (Nilsson et al., 2009). Long-read HTS methods have 
the potential to identify fungi with higher accuracy, despite record-
ing fewer sequences per sample (Tedersoo et al., 2018). In our data, 
PacBio detected the highest number of OTUs classified as fungi but 
the lowest number of total OTUs. This is expected, since PacBio 
platforms have a small number of reads in total (Quail et al., 2012) 

F I G U R E  5   Venn diagrams showing the number of exclusive and shared OTUs for localities (a), habitats (b), and sample type (c) in the 18S 
dataset; for localities (d), habitats (e), and sample type (f) in the COI dataset; and for localities (g), habitats (h), and sample type (i) in the ITS 
dataset
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and also will not sequence partially degraded DNA. Additionally, 
long reads have the potential of combining population analysis with 
environmental data. This is limited with short reads, which provide 
a more limited genetic variation for environmental diversity analysis 
or require the sequencing of several markers for a limited number of 
target individuals.

5  | CONCLUSIONS

Tropical fungal diversity is surprisingly high and poorly understood. In 
our study, we found that the equivalent to a teaspoon of Amazonian 
soil contained as many as 1,800 OTUs, of which up to 400 were 
classified as fungi. It might therefore not be an exaggeration to call 
fungal diversity the “dark matter” of life on Earth, alongside many 
other poorly studied groups. Our results highlight the importance of 
habitat type for fungal community composition. We also show that 
the known general patterns found for macro-organisms in Amazonia 
may not apply to fungi. It is important to improve our understand-
ing of the patterns and drivers of fungal diversity and community 
composition, since this is one of the most diverse eukaryotic king-
doms, whose members play key roles in nutrient cycling and biotic 
interactions in terrestrial ecosystems. Deforestation of Amazonia is 
increasing rapidly (Pereira, Ferreira, de Santana Ribeiro, Carvalho, & 
de Barros Pereira, 2019), and to protect this vast biome it is funda-
mental to understand the processes underpinning ecosystem stabil-
ity. For this, we have to identify and understand the distribution and 
diversity of organisms essential for ecosystem functionality, includ-
ing fungi.
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