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Abstract

Background: Celiac disease (CD) is a common autoimmune disorder. Efficient 
identification of patients may improve chronic management of the disease. Prior studies 
have shown searching International Classification of Diseases‑9 (ICD‑9) codes alone 
is inaccurate for identifying patients with CD. In this study, we developed automated 
classification algorithms leveraging pathology reports and other clinical data in 
Electronic Health Records (EHRs) to refine the subset population preselected using 
ICD‑9 code (579.0). Materials and Methods: EHRs were searched for established 
ICD‑9 code (579.0) suggesting CD, based on which an initial identification of cases was 
obtained. In addition, laboratory results for tissue transglutaminse were extracted. Using 
natural language processing we analyzed pathology reports from upper endoscopy. 
Twelve machine learning classifiers using different combinations of variables related to 
ICD‑9 CD status, laboratory result status, and pathology reports were experimented 
to find the best possible CD classifier. Ten‑fold cross‑validation was used to assess the 
results. Results: A total of 1498 patient records were used including 363 confirmed 
cases and 1135 false positive cases that served as controls. Logistic model based on 
both clinical and pathology report features produced the best results: Kappa of 0.78, F1 
of 0.92, and area under the curve (AUC) of 0.94, whereas in contrast using ICD‑9 only 
generated poor results: Kappa of 0.28, F1 of 0.75, and AUC of 0.63. Conclusion: Our 
automated classification system presented an efficient and reliable way to improve the 
performance of CD patient identification.
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INTRODUCTION

Celiac disease (CD) is a common autoimmune 
disorder estimated to affect approximately 1% of the 
US population.[1] Many studies have evaluated methods 
for identifying high‑risk populations of patients in need 
of proactive screening for case identification.[2,3] As with 
many chronic diseases, quality improvement approaches 
can be applied to populations of patients with CD to 

This article may be cited as:
Chen W, Huang Y, Boyle B, Lin S. The utility of including pathology reports in improving the 
computational identification of patients. J Pathol Inform 2016;7:46.

Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2016/7/1/46/194838

This is an open access article distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 3.0 License, which allows others to remix, 
tweak, and build upon the work non‑commercially, as long as the author is credited 
and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Access this article online
Website:  
www.jpathinformatics.org

DOI: 10.4103/2153-3539.194838

Quick Response Code:



J Pathol Inform 2016, 1:46 http://www.jpathinformatics.org/content/7/1/46

standardize care and track outcomes.[4‑6] Effectively 
identifying and tracking outcomes of these cohorts of 
patients requires the development of an accurate CD 
patient registry.

However, the development of CD patient registries often 
requires significant resources including practitioners, 
informatics teams, and administrative support. These are 
barriers that cannot be overcome at many centers. Our 
center has developed and maintained a patient registry 
including all newly diagnosed patients since early 2012.

Prior studies have evaluated the reliability of International 
Classification of Diseases‑9 (ICD‑9) searches to identify 
patients with CD with only moderate success yielding 
only 17% of sensitivity.[7] Contrast experiments have been 
done using manually defined keywords to classify high‑risk 
CD cases generating much more accurate results at 73% 
of sensitivity.[7] Few efforts combining different aspects 
of available information to further improve classification 
accuracy including the use of data from visits, laboratory 
tests and pathology reports have been described.

Pathology reports have been previously used in building 
natural language processing (NLP) systems for 
automated chart review of patients. Here, we define NLP 
broadly as methods to process textual data. One study 
found pathology reports to be insufficient for detecting 
breast cancer when using NLP approach compared 
with manual approaches[8] while others found the use 
of NLP for analyzing pathology reports to be effective 
on detection of colon cancer[9,10] and manifestation of 
prostatectomy details.[11] Currently, a lack of research 
exists on investigating the usefulness of pathology reports 
on automated CD detection.

Based on a subset of patients’ prescreened using ICD‑9 
code 579.0, we evaluated the effectiveness of using 
natural language features from pathology reports to 
improve the identification of CD patients. This paper was 
among the first to adopt a machine learning approach to 
further increase the accuracy of CD patient identification 
based on a combination of pathological and clinical 

metrics. In contrast to prior research, we conducted 
contrast experiments using both natural language features 
and clinical features under different machine learning 
configurations for celiac identification.

MATERIALS AND METHODS

We extracted data from our Epic (EPIC Systems, Inc. 
USA) clinical system on patients who visited our hospital 
from 2012 to 2015 and had ICD‑9 code of 579.0 assigned 
indicating concern for CD. Our subsequent analysis was, 
therefore, based on patients with concerns rather than 
general patient population. Laboratory results for tissue 
transglutaminase (tTG) were searched and reviewed. 
A laboratory test result was marked with a nominal value 
of either high (≥20 EU/mL) or normal (<20 EU/mL). 
An upper endoscopy (EGD) may also be performed then 
resulted in a text‑based pathology report, which could be 
used for NLP analysis.

The registry that we developed are all confirmed diagnosis 
of CD based on confirmation with both abnormal 
laboratory/serology testing and biopsy confirmation after 
detailed chart review. For each of our patients in the 
registry, CD could be considered a primary diagnosis. 
Most confirmed CD patients (confirmed by our experts 
for having CD) only had one pathology report while 
false‑positive CD patients (confirmed by our experts for 
not having CD) had either one or zero pathology report. 
Retrieved patient were restricted by having at most 
one pathology report. Twenty‑nine patients who had 
two or more pathology reports were excluded from our 
experiment as they presented a challenge to our analysis 
if inconsistent information about CD diagnoses existed at 
different periods of time. In patients with multiple tTG 
laboratories, the most elevated laboratory result obtained 
within the past 6 months of the EGD was chosen to 
represent the laboratory status of that CD patient.

Variables used for celiac classification are listed in 
Table 1. For the report category, the total number 
of pathology reports was used with one indicating 

Table 1: Variables for celiac disease classification

Category Variable description Variable name Variable set ID

Report Total number of pathology reports Number of reports V1
User defined high‑risk phrases High‑risk phrases V2
Automatically extracted n‑grams n‑grams V3

Lab Worst laboratory results in the past 6 months Laboratory results V4
Total number of laboratories Number of laboratories V5

ICD‑9 Total number of ICD‑9 codes Number of ICD‑9 V6
All‑1 All variables from V1 to V6

Without feature selection
All‑1 V7

All‑2 All variables from V1 to V6
With feature selection

All‑2 V8

ICD‑9: International Classification of Diseases‑9
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patients having EGD done and 0 otherwise (V1). 
Both user‑define phrases (high‑risk phrases, or V2) 
and automatically extracted phrases (n‑gram phrases 
generated from our machine learning program, or V3) 
were chosen to evaluate the effectiveness of utilizing 
pathology reports. For the laboratory category, both the 
laboratory results (V4) and total number of labs done 
were used (V5). For the ICD‑9 category, the total 
number of CD ICD‑9 codes assigned (V6) was used for 
classification.

To evaluate the effectiveness of using different 
combinations of variables and feature selection methods, 
we further developed two additional set of variables 
based on the aforementioned six sets of variables above 
(V1–V6). Combining all first six categories of variables 
created the variable set 7 (V7). Automatically selecting 
features out of V6 using a feature selection algorithm 
resulted in the variable set 8 (V8) [Table 1].

Feature Extraction from Pathology Reports for 
Classification
For expert‑knowledge‑driven feature selection, we 
identified a list of nine key phrases described by clinicians 
as commonly used in pathology reports as indicators 
of high‑risk CD. These nine key phrases, which were 
all converted to lower cases, included Brunner’s gland 
hyperplasia, flattening villi, intraepithelial lymphocytes, 
Marsh gland stage, Marsh lesion, Marsh s3 lesion, 
shortened villi, villous blunting, and villous atrophy. Each 
key phrase was first converted to a binary variable with 
the value of one indicating the phrase existed in the 
pathology report and 0 otherwise.

Automatically extracted n‑gram features were phrases 
generated using Weka, an open source Java‑based 
machine‑learning program, developed by The University 
of Waikato, New Zealand.[12] The maximum number 
of words included in n‑gram feature was chosen to be 
three resulting in a large set of text features consist of 
uni‑, bi‑ and tri‑grams. We only collected phrases up to 
trigrams because the length of the longest user‑provided 
high‑risk phrase was also three. We kept the first 4000 
text features with all stop words (i.e., a list of common 
words such as “the,” “of,” “is,” etc.) skipped.

During the process of converting documents into 
n‑gram features, term frequency‑inverse document 
frequency (TF‑IDF) was calculated on each n‑gram 
feature. TF‑IDF is a data transformation method 
commonly used in text classification to show the 
importance of a word to a document in a collection of 
documents. It has been found useful in several recent 
classification and information retrieval studies using 
medical documents.[13,14] Finally, all n‑grams were 
converted to lowercase to avoid duplications during 
TF‑IDF transformation.

Building Celiac Disease Classifiers
Classification model
There are many classification models available to use in 
Weka. Experimenting with all possible models is beyond 
the scope of this study. Therefore, we only chose the 
three most representative classifiers from four major 
categories to experiment with in this paper.

The four classifier categories included Bayes , 
function‑based , lazy model and tree classifiers. In 
each category, we further selected three classification 
models [Table 2]. Previous studies on classifying medical 
documents showed that the performance variation among 
different models could be relatively small within the 
category compared with across the categories.[15] This was 
another main reason we only chose to experiment with 
three classifiers rather than all available classifiers from 
each category.

There are different ways to configure a classifier. In 
most cases of our experiments, the default configuration 
was chosen as long as the setting was compatible with 
the type of data we classify. For example, for LibSVM 
the standard algorithm of regularized C‑support vector 
classification was selected as well as the default radial 
kernel type [Table 2].[16]

Variable configuration
For each one of the twelve classification models [Table 2], 
we also experimented with the use of the eight different 
variable configurations (V1–V8) [Table 1] to find the 
best variable configuration to produce the best possible 
classifier. Figure 1 is an overview of the architectural 
design of our experiments. Each variable configuration 
was used as the inputs to each one of the twelve 
classification models. Resulting in twelve experiments 
for each variable configuration. The classification model 
with the best performance was chosen as the best model 
for the underlying variable configuration used. The eight 
best performing models were reported [Figure 1].

Feature selection
Feature selection (or variable selection) is critical for 
optimizing a classification model. Appropriately selected 
features could minimize the chance of overfitting as well 
as reduce feature redundancy and training time in the 
face of high‑dimensional variables.[17] A typical feature 
selection process included two separate steps available 

Table 2: Selected classification models for 
experiments

Category Algorithm

Bayes BayesNet, NaiveBayes, NaiveBayesUpdatable
Function LibSVM, Logistic, SMO
Lazy IBK, KStar, LWL
Tree ADTree, J48, RandomForest
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in the Weka tool we used. The first step is to define a 
feature evaluation method using criteria based on which 
features are selected. The second step is to define a 
search method where features will be searched and 
selected into the final feature set. There is not a single 
rule of thumb for choosing the best possible feature 
selection method. After performing several experiments, 
we found the default feature selection method in Weka 
worked the best for us.

The feature selection model we used implemented 
a correlation‑based feature evaluation model called 
CfsSubsetEval. The CfsSubsetEval feature evaluation 
model ranks the features based on their correlation with 
the class while minimizing the redundancy of variables.[18] 
The underlying feature search model was the BestFirst 
feature search model which searches the attribute space 
by allowing backtracking.[18,19] Detailed discussion on 
CfsSubsetEval and BestFirst is beyond the scope of this 
paper and we recommend researchers to refer to the 
original work from the original authors.

Classifier Evaluation
Each classifier was validated using a 10‑fold 
cross‑validation method on our entire dataset. Confirmed 
cases and controls were provided by our clinicians. The 
best model with the highest area under the curve (AUC) 

for each variable configuration was reported. AUC was 
a commonly used metric for machine learning‑based 
evolution as a chance corrected measure and independent 
of class distributions.

Chi‑square test was conducted to test the statistical 
association between each of the variables and celiac 
status. In addition to AUC, we also reported precision, 
recall, F1, and Kappa. Precision, recall, and F1 were 
classic machine learning measures for evaluating overall 
accuracy with 1 being the best and 0 being the worst for 
predicting positive cases. The Kappa score measured the 
level of agreement between the user and the classifier 
with 1 being complete agreement and 0 being complete 
disagreement.

RESULTS

Our data extraction resulted in identification of 1498 
unique patients with ICD‑9 codes suggesting possible 
CD. We found 363 confirmed cases (positive celiac 
cases [Table 3]) matching the previously establish 
celiac registry and 1135 false positive cases (negative 
celiac cases [Table 3]). Demographic data are shown in 
Table 3. Chi‑square test found statistically significant 
associations between age, gender, race, and celiac 
status. However, ethnicity was not significant factor for 
differentiating CD. Classification variables such as those 
about visit, laboratory and pathology report counts and 
laboratory results were all found to be significant for 
differentiating CD patients. As this study mainly focused 
on using clinical variables for celiac classification we 
did not include any demographic variables in building 
classifiers [Table 3].

Table 4 listed the results summarizing the best 
classification model out of each variable configuration. 
Models were ranked based on AUC score from the 

Table 3: Patient characteristics and their association with celiac disease

Group Characteristics Positive celiac (363 cases) Negative celiac (1135 cases) Pa,b

Agea Age 11 (7, 15) 14 (10, 17) <0.001
Counta Number of ICD‑9 4 (3, 7) 2 (1, 6) <0.001

Number of laboratories 2 (2, 3) 1 (0, 2) 0.001
Number of reports 1 (1, 1) 0 (0, 0) 0.001

Genderb (%) Female 230 (27) 612 (73) 0.002
Male 133 (20) 523 (80)

Hispanicb (%) Nonhispanic 361 (24) 1121 (76) 0.215
Hispanic 2 (13) 14 (87)

Raceb (%) White 334 (25) 980 (75) 0.002
Nonwhite 29 (16) 155 (84)

Laboratory resultsb (%) High 250 (81) 59 (19) <0.001
Normal 22 (32) 46 (68)
Number of laboratoriesc 91 (8) 1030 (92) no labs

aFor continuous variables in the groups of age and count, we reported medium and interquartile range. The P value is the significance level based on two‑sample t‑test, bFor 
categorical variables in the groups of gender, ethnicity, race and lab results, we reported the number of cases and in‑group percentages. The P value is the significance level based 
on Fisher’s exact test, cThe patient has not done any labs in the past 6 months. ICD‑9: International Classification of Diseases‑9

Figure 1: Overview of the architectural design of experiments
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highest to the lowest. Among all twelve classification 
models, we experimented with the LibSVM was found to 
be the top performer in five experiments (experiments 
3, 4, 5, 6, 8), followed by Logistic model in two 
experiments (experiments 1, 7) and Naïve Bayes in one 
experiment (experiment 2). The best performing model 
was the Logistic model using all available features filtered 
by an automatic feature selection process. It achieved 
AUC of 0.94, Kappa of 0.78, and F1 of 0.92 [Table 4].

Among experiments using single category of 
variables (experiment 2 and 4–8), Naïve Bayes model 
based on automatically selected n‑gram features 
generated the best results: AUC of 0.92, Kappa of 0.73, 
and F1 of 0.90, which was also the overall second best 
performing model. Here, we also conducted feature 
selection on executing the Naïve Bayes model as we 
aimed to find the best possible performance of using 
text features. Despite the slightly lower performance, the 
Naïve Bayes model was much faster than other models in 
terms of model building and model evaluation time. In 
our case, it only took Naïve Bayes a few seconds to build 
and evaluate the model in 10‑fold cross‑validation while 
it took a few minutes for LibSVM and Logistic model to 
finish in the case of using all 4000 features.

Using only high‑risk phrases, number of laboratories and 
number of ICD‑9 (experiment 6, 7, 8) resulted in the 
lowest model accuracy. Using laboratory resulted in higher 
accuracy than the previous three. It was also intriguing that 
using the number of pathology reports alone only slightly 
underperformed using report text features alone. However, 
additional features resulted in higher accuracy given the 
results based on a combination of different features.

Table 5 listed some of the automatically selected n‑gram 
phrases in contrast to user‑provided high‑risk phrases. 
It was found that automatically created n‑gram features 

not only covered the majority of user‑provided high‑risk 
phrases but also had the potential of being more accurate 
and specific in finding relevant information. For example, 
automatically generated n‑grams such as celiac and 
abdominal pain were directly relevant features to CD but 
were not initially on our clinicians’ list.

Some of the provided high‑risk features were not 
included in our automatically selected feature list 
such as the phrase of Marsh lesion (converted to lower 
case for processing). We found this may be due to the 
extreme low frequency of the usage of such phrases in 
our pathology reports (only 1 out of all 363 confirmed 
cases had this exact phrase). In Table 5, the italicized 
phrases highlighted some of the overlaps between the 
two lists: user‑provided and automatically extracted. The 
automatically extracted list only represented a subset of 
most relevant n‑gram features [Table 5].

DISCUSSION

Our machine learning approach could quickly and 
effectively choose the most relevant variables from 
various clinical sources for automated CD classification. 
The level of accuracy we achieved was higher compared 
with previous studies on the same topic.[7,15] N‑gram 
features performed well in our CD detection experiment 
which agreed with and further improved the results 
from previous studies using text features.[7,15] In contrast 
to previous studies, our automated feature generation 
and selection approaches were more efficient in finding 
relevant classification features in a short period of time 
and more effective than user‑provided high‑risk phrases. 
This result showed the automated list was more effective 
in providing a comprehensive list of relevant keywords 
than manual methods.

Table 4: Statistics of the best classification models for each variable configuration

ID Feature set AFSa Number of features Best model Kappa Precision Recall F1 AUC

1 All‑2a Yes 70 Logistic 0.78 0.93 0.92 0.92 0.94
2 N‑grama Yes 60 Naive Bayes 0.73 0.91 0.90 0.90 0.92
3 All‑1 No 4000 LibSVM 0.74 0.91 0.91 0.91 0.89
4 Number of reports No 1 LibSVM 0.70 0.90 0.88 0.89 0.88
5 Lab results No 1 LibSVM 0.68 0.89 0.89 0.89 0.83
6 High‑risk phrases No 9 LibSVM 0.67 0.88 0.89 0.88 0.81
7 Number of labs No 1 Logistic <0.01 0.62 0.75 0.71 0.71
8 Number of ICD‑9 No 1 LibSVM 0.28 0.74 0.76 0.75 0.63

aAutomatic feature selection. ICD‑9: International Classification of Diseases‑9, AUC: Area under the curve

Table 5: Comparison of user‑defined high‑risk phrases and automated key phrases

User‑provided high‑risk phrases Automatically selected features

Flattening villi, gland hyperplasia, intraepithelial 
lymphocytes, Marsh gland stage, Marsh lesion, Marsh s3 
lesion, shortened villi, villous blunting, villous atrophy

Abdominal pain, abnormal, acute, blunting, celiac, correlation, disease, edema, 
elevated, hyperplasia, increased intraepithelial, intraepithelial lymphocytes, 
lymphocytes, villous, villous atrophy, villous blunting, with biopsy, with villous
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The number of laboratories done was as effective as 
the actual lab results reported in our case for CD 
classification (AUC of 0.71 vs. 0.83). This could be 
because an increased number of labs done or the fact 
that the laboratory was ordered may suggest a higher 
likelihood of abnormal laboratory result. Our experiments 
also agreed with previous studies on the fact that ICD‑9 
code alone produced very poor results (Kappa of 0.28, 
F1 of 0.75 and AUC of 0.63).[7] Therefore, we suggested 
researchers only use ICD‑9 code as a prescreening tool 
for subsetting patients as in this study.

In addition, our results added further evidence to 
previous studies that Naïve Bayes model generated 
the most accurate results even if only pathology report 
features were used (Kappa of 0.73, F1 of 0.90, and AUC 
of 0.92).[15] This further indicates that pathology report, as 
an important pierce of synoptic reporting of Celiac status, 
contains invaluable information for Celiac classification. 
In addition, by combining both clinical and text features 
altogether, classification accuracy and Kappa score could 
be further improved (Kappa of 0.78, F1 of 0.92, and AUC 
of 0.94). This suggests the complementary effect of using 
both structured data and unstructured data for Celiac 
classification.

Finally, feature selection was found to be a crucial step 
in celiac detection for further improving the efficiency 
and accuracy of classification. Feature selection 
dramatically removed redundant and noninformative 
terms (from  about 4000 to 60). Although new to the task 
of CD classification, feature selection methods have been 
found widely used in other disease classification studies 
including Alzheimer’s disease[20] and asthma.[21]

In our case, some variables (i.e., number of pathology 
reports and lab results) could individually predict celiac 
at a reasonably high accuracy. However, this result may 
be problem dependent. Other studies implementing 
the same metrics may or may not result in similar 
performance. Even that, we still observed performance 
gain by adding NLP features with both accuracy and 
agreement increased by a reasonable amount.

The automated tool we developed could speed up the 
process of refining the subset population initially identified 
based on ICD‑9 code 579.0. This refining process can 
automatically confirm the patient as either positive or 
negative CD case based on the knowledge of the patient 
obtained from the laboratories and pathology notes. The 
classification accuracy was over 90% of correctness (F1) 
in our case while it greatly eliminated the need of often 
time‑consuming process of manual review.

Limitations
This study has several limitations. First, since the CD 
classification task was performed on a subset of patients 
prescreened by ICD‑9 code rather than on the general 

patient population, the performance of final classification 
results may depend on the accuracy of initial ICD‑9 
assignment. For example, if actual CD patients were not 
assigned an ICD‑9 code 579.0 initially, they will not have 
the chance of being further identified by our machine 
learning system. It is, therefore, important to make sure 
the initial ICD‑9 code assignment will include as many 
high‑risk cases as possible.

Second, although feature selection method was found 
to be critical in yielding high performance, we have 
not conducted systematic experiments with all possible 
feature selection methods provided in the Weka machine 
learning system. Given our experience, it was likely that 
some methods may further improve accuracy while others 
may even lower the accuracy.

Finally, for most machine learning algorithms we 
experimented, only the default configuration was used 
for classification. It was likely different configurations 
of parameter setting may lead to very different results 
of accuracy. Therefore, researchers are encouraged to 
experiment with different classifier settings to achieve 
the best possible results for their tasks.

CONCLUSION

In this paper, we compared results from 96 
machine‑learning experiments for CD identification 
based on 12 classification model variations and eight 
feature set variations. The logistic model that used a 
combination of clinical and pathology report features 
generated the best results: Kappa of 0.78, F1 of 0.92, and 
AUC of 0.94. Our results were in agreement with previous 
studies on the insufficiency of using ICD‑9 codes alone 
and the merits of using pathology report features for 
CD identification. This study provides new evidence 
on adopting feature selection techniques to further 
improve classification efficiency and accuracy based on a 
subpopulation of prescreened patients using ICD‑9 code.

This study demonstrated a viable computational approach 
to automatically reviewing and confirming prescreened 
CD patients based on ICD‑9 code at the state of the art 
accuracy much improved from previous research on the 
same topic.
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