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Abstract. C. Elegans has four muscle quadrants that 
are used for locomotion. Contraction is converted to 
locomotion because muscle cells are anchored to the 
cuticle (the outer covering of the worm) by a special- 
ized basement membrane and hemidesmosome struc- 
tures in the hypodermis (a cellular syncytium that 
covers the worm and secretes the cuticle). To study 
muscle assembly, we have used antibodies to deter- 
mine the spatial and temporal distribution of muscle 
and attachment structure components in wild-type and 
mutant C. elegans embryos. Myofibrillar components 
are first observed diffusely distributed in the muscle 
cells, and are expressed in some dividing cells. Later, 
the components accumulate at the membrane adjacent 
to the hypodermis where the sarcomeres will form, 

showing that the cells have become polarized. Assem- 
bly of muscle attachment structures is spatially and 
temporally coordinated with muscle assembly suggest- 
ing that important developmental signals may be 
passed between muscle and hypodermal cells. Analysis 
of embryos homozygous for mutations that affect mus- 
cle assembly show that muscle components closer to 
the membrane than the affected protein assemble quite 
well, while those further from the membrane do not. 
Our results suggest a model where lattice assembly is 
initiated at the membrane and the spatial organization 
of the structural elements of the muscle is dictated by 
membrane proximal events, not by the filament com- 
ponents themselves. 

M 
ECHANISMS that govern the assembly of the highly 
ordered structures of striated muscle are not well 
understood. Early investigations emphasized the 

self assembly properties of thick and thin filament proteins 
in controlling filament length and association. However, re- 
cent evidence from both vertebrate and invertebrate systems 
have focused on the role of auxiliary proteins in dictating the 
structure. The vertebrate studies have used morphological 
studies of muscle cells in tissue culture and perturbation with 
drugs. Invertebrate studies with Drosophila and Caenorhab- 
ditis have centered on genetic dissection to define important 
components and to discern their roles. 

In vertebrate studies molecular rulers have been put for- 
ward as regulators of thick and thin filament length. The size 
of nebulin is correlated with thin filament length in different 
types of vertebrate muscle (37, 39, 65). Furthermore, the se- 
quence of nebulin contains repeats with a periodicity similar 
to that of the axial periodicity of thin filaments and individual 
repeats have been shown to bind actin (32, 33). Similarly, 
titin, a large molecule extending from the Z-disc to the 
M-line (22, 74), may regulate thick filament length (74). Ti- 
tin has repeats that correspond to the periodicity of thick ilia- 
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ments and the repeats localize to the region of the molecule 
that extends across the A-band (38, 40). 

The placement of filaments within the lattice must also be 
precisely regulated. CapZ, a barbed end actin-capping pro- 
tein (10, 11), and ot-actinin, an actin cross-linking protein 
(46, 54), are thought to be involved in positioning thin fila- 
ments, because both associate with nascent Z-discs before 
actin filaments become organized into the I-bands (57, 59). 
Furthermore, CapZ may orient the thin filaments in the lat- 
tice such that they always have their barbed ends at the Z-disc 
(12). 

Titin, the proposed thick filament ruler, has also been im- 
plicated in the placement of thick filaments at the center of 
the sarcomere. This is based on the structure and localization 
of the molecule, as mentioned above, and on the observa- 
tion that titin assembles at the Z-line before A-bands form 
(23, 59). 

Microtubules may act as a scaffold for overall organization 
of the fibril. A cage of microtubules is observed surrounding 
developing fibrils in many systems (13, 19, 69). Colcemid, 
which blocks micmtubule assembly, disrupts muscle assem- 
bly (64). In contrast, taxol treatment, which stabilizes mi- 
crotubules allows for normal spatial organization of struc- 
tural elements, except that thin filaments are replaced by 
microtubules (1). Furthermore, Drosophila mutants which 
accumulate very little if any 33 tubulin, an isoform tran- 
siently expressed in developing muscle cells of Drosophila 
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(35), show reduced viability and fertility, both of which 
could be affected by defects in muscle function (36). These 
results suggest that microtubules can specify the spatial orga- 
nization of the fibril and hexagonal packing of filaments. 

In addition to tubulin, directed mutant screens have iden- 
tified over 100 genes from D. melanogaster (7) and about 50 
genes from C. elegans (73, 75) that have been implicated in 
muscle assembly or function. Phenotypic studies of mutants 
carrying genetic lesions in some of these genes have clarified 
the in vivo roles of the wild-type gene products. 

Thick filaments of C. elegans are composed of two myosin 
isoforms with differential localization within the filament: 
myosin A is localized at the central region of the thick fila- 
ment, while myosin B is localized at the ends, where the fila- 
ment tapers (47). Genetic analysis has shown that myosin A 
is uniquely required for the initiation of thick filament as- 
sembly (72), whereas paramyosin, a component of thick fila- 
ment cores, is required for assembly of thick filaments of the 
correct length (45). 

Thick and thin filaments in D. raelanogaster and C. ele- 
guns can organize independently of one another (5, 6, 72, 
75). In both D. melanogaster indirect flight muscle and 
C. elegans body wall muscle, the lateral alignment of thin 
filaments is not specified by their interaction with thick fila- 
ments, since mutants lacking thick filaments contain a near 
normal arrangement of thin filaments (6, 72). Similarly, in 
D. melanogaster, mutants lacking thin filaments can assem- 
ble thick filaments in a normal hexagonal array (6). 

One possibility is that structures that anchor the filaments 
are important for their proper positioning. Vinculin is local- 
ized at the base of the nematode dense body, the structure 
that anchors the thin filaments. C. elegans mutants lacking 
detectable vinculin do not organize their thin filaments into 
I-bands (5). Thus, vinculin is clearly important for anchor- 
ing thin filaments, although the interaction may not be direct 
since vinculin is not thought to bind to actin (17). In contrast, 
ot-actinin, another dense body or Z-disc component, one that 
cross-links actin filaments, is dispensable for assembly of the 
indirect flight muscle of D. melanogaster (56). 

Based on the observation that muscle assembly occurs 
near the membrane in primary cultures of muscle cells (15, 
44, 59), the membrane is thought to play an important role 
in muscle assembly. This is also true in C. elegans where 
perlecan and/~1 integrin (75), and in D. raelanogaster where 
/~1 integrin (50, 66, 76) are required for proper muscle as- 
sembly. However, whether these molecules act as nucleation 
sites for assembly and/or as indicators of spatial organization 
is not clear from these studies. 

C. elegans offers several advantages for the study of mus- 
cle assembly in vivo. C. elegans embryology has been exten- 
sively characterized (62) allowing the identification of mus- 
cle cell precursors at early developmental times, as well as 
the accurate staging of fixed embryos. In addition to the 
many muscle-affecting mutants already identified (reviewed 
in 71, 73, 75), about 40 monoclonal antibodies which recog- 
nize muscle and muscle-associated molecules are available 
(20, 21, 47). These antibodies can be used to characterize 
muscle structure at various developmental times. 

In this paper we describe the spatial and temporal distribu- 
tion of structural components (see Table I) of the body wall 
muscle and of muscle attachment structures in wild-type and 
mutant embryos at various stages of development. The 

results identify four stages of muscle assembly which are 
summarized in Table II. Furthermore, muscle assembly is 
spatially and temporally coordinated with the assembly of 
structures required for the transmission of force to the out- 
side of the animal. These structures are assembled in part by 
the hypodermis, and therefore it is likely that muscle cells 
and hypodermal cells communicate during development. 
Parallel experiments determining the distribution of muscle 
components in mutants suggest that body wall muscle is as- 
sembled by the stepwise addition of components, beginning 
at the membrane. Furthermore, the spatial organization of 
the muscle is dictated by membrane proximal events. 

Materials and Methods 

Strains and General Maintenance of Stocks 

Worms were grown on bacterial strain OP50 spread on NGM (nematode 
growth media) agar plates according to Brenner (8). The Bristol variety of 
the N2 strain of C. elegans is used as the wild-type strain, and the genotypes 
of the mutant strains used are as follows: rayo-3(st386)/sqt-3(e24) (72), unc- 
44(e362)deb-l(st555)/unc-5(e53)unc-24(e138) (5), pat-3(st552)/qC1 (75), 
and unc-52(st549)/mnDp34 (75). 

The muscle affecting mutations (myo-3(st386), deb-l(st555), pat-3(st552), 
and unc-52(st549) are recessive lethals and therefore the strains were car- 
ried as balanced heterozygous strains. Recessive, closely linked markers in 
trans were used as balancers for this purpose, and alone have no affect on 
muscle structure. The balancer rnnDp34 (27) is a free duplication that 
covers the unc-52 gene, and therefore adds a wild-type copy of the uric-52 
gene to the chromosomal copies. Embryos that do not receive the duplica- 
tion during oocyte production or fertilization will only carry mutant alleles. 

Staging of Fixed Embryos 

Two landmarks were used to determine the stage of fixed embryos, both of 
which take advantage of the invariant developmental program of C. elegans 
as documented by Sulston et al. (62). Between 290 and 340 min after the 
first cleavage, the dorsal hypodermal cells undergo characteristic changes 
in shape and position. The shape and position of each dorsal hypodermal 
cell at various developmental times is known (62), and can therefore be used 
as a marker for a given developmental stage. The position and shape of these 
cells was determined by staining embryos with monoclonal antibody MH27, 
which labels hypodermal cells boundaries (21). 

The other developmental landmark used is the length of the embryo. The 
embryo elongates 3--4-fold between 350 rain aider the first cleavage and the 
time of hatching (62). Due to the constraints of the eggshell, as the embryo 
elongates it curls up, so that when it is twice its original length, the anterior 
and posterior ends touch. The length of the embryo is used to denote the 
developmental stage; the 1.5-fold stage occurs when the embryo is 1.5 times 
the length of the eggshell. The developmental time at which the embryo 
reaches certain lengths has been documented (62), and therefore, the length 
of the embryo can serve as a marker for different developmental stages. 

The developmental time scale used in this paper is according to Sulston 
et al. (62), and the times stated refer to min after the first cleavage at 25"C. 

Immunological Techniques 

Embryos were prepared for antibody staining in one of two ways. Most of- 
ten, embryos were obtained by alkaline hypochlorite treatment of gravid 
adults as described by Sulston and Hodgkin (62). The embryos were then 
fixed in 3% paraformaldehyde (Electron Microscopy Sciences EM grade) 
in phosphate buffer (0.1 M sodium PO4, 0.1 mM EDTA, pH 7.0) for 10 
min, washed three times in PBS (150 mM NaCI, 10 mM sodium PO4, pH 
7.2), permeabilized for 10 rain in - 2 0 o c  MeOH, and washed three times 
in PBS and one time in wash buffer (PBS plus 0.5% Tween 20). Parafor- 
maldehyde fixation was found to be incompatible with monoclonai antibody 
4Al(anti-mbulin), and therefore, embryos to be stained with 4AI were 
freeze fractured by the method of Strome (60). Briefly, embryos obtained 
by cutting open gravid adults were sandwiched between a subbed slide 
(0.4 g gelatin, 0.04 g chromium potassium sulfate and 200 nag polylysine 
in 200 ml) and a coverslip in a small amount of Mg. Excess M9 was removed 
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Table 1. Summary o f  Antibodies 

Antibody Antigen Gene Adult Localization Reference 

MH25 UNK* UNK* base of m-lines and dense bodies; 20 
attachment plaques 

MH24 vinculin deb-1 base of dense bodies; 3, 20 
attachment plaques 

MH35 u-actinin UNK* throughout the dense body 4, 20 
C4 actin act-l,2,3,4,50 thin filaments; cytoplasmic 18, 42, 70 

actin filaments 
DM5.6 myosin A myo-3 central region of thick filaments 47, 72 
DM5.8 myosin B unc-54 distal region of the thick filaments 47, 48 
R6-2 (polyclonal) myosin A and myo-3 thick filaments 48, 72 

myosin B unc-54 
MH42 UNK UNK 
MH46 300-380-Kd proteins UNK 

MH4 UNK UNK 

MH5 UNK UNK 
MH3 pedeean unc-52 
4A 1 tubulin LINK 
MH27 UNK UNK 

M-line 71 
basement membrane; associates 21 

with hemidesmosomes 
hemidesmosomes; intermediate 21 

filament subunit 
hemidesmosomes 21 
basement membrane 21, 55 
tubulin-containing structures 53 
hypodermal cell boundaries: 21 

tight junctions 

UNK, unknown 
* epitope dependent on 3-integrin (75), the pat-3 gene product (Gettner, S., C. Kenyon, L. Reichardt, J. Plenefisch, M. B. Buchner, and E. Hedgeecck. 1992. 
Mol. Biol. Cell. 3:1088a). 

unknown if MH35 recognizes the product of the atn-1 gene which is one of the ¢-actinin genes of C. elegans. 
act-5 is the fifth C. elegans conventional actin identified to date (Sehriefer, L. A., J. A. Waddle, and R. H. Waterston, unpublished data). 

with a piece of filter paper until contact was made between the embryo and 
the slide, and the embryo and the coverslip. The sample was frozen in liquid 
nitrogen for 10 rain, removed, and the coverslip was pried off. The embryos 
were immediately fixed at 0*C in MeOH for 10 min, at 0*C in acetone for 
2 min, and then air dried. 

Fixed embryos were incubated in primary antibodies diluted in antibody 
dilution buffer (30% NGS, in wash buffer) for 1 h, followed by four 5-rain 
washes in wash buffer. The primary antibodies were detected using either 
fluorescein or rhodamine conjugated goat anti-mouse or goat anti-rabbit 
IgG. All secondary antibodies were purchased from Chemicon and used at 
10 ng/mi in antibody dilution buffer. After the final wash, embryos were 
resuspended in mounting medium (20 mM Tris pH 8, 0.2 M 1,4-diazabi- 
cyclo[2.2.2loctane (Sigma Chem. Co., St. Louis, MO), in 90% glycerol). 
Fluorescence was viewed using a Zeiss Universal fluorescence microscope 
equipped with epifluorescent illumination and selective filters. Photomicro- 
graphs were recorded on TMAX 400 film and the film was developed with 
TMAX developer according to the manufacturer (Kodak). 

Results 

S t ruc ture  o f  A d u l t  B o d y  Wall Musc le  

The body wall muscle cells of  C. elegans adults are orga- 
nized into four quadrants that are positioned adjacent to the 
hypodermis (61) which secretes the cuticle or outer covering 
of the worm. The hypodermis is partitioned into four sec- 
tions that run parallel to the long axis of  the worm; a dorsal, 
a ventral, and two lateral or seam hypodermal sections. The 
dorsal and ventral hypodermis is in turn divided into left and 
right sections by hypodermal ridges (61). Two body wall 
muscle quadrants are associated with the dorsal section, one 
on either side of the dorsal ridge, and two with the ventral; 
each quadrant consists of two rows of  mononucleated cells 
(61). The cells are polarized in that the contractile apparatus 
is located adjacent to the membrane that contacts the hypo- 

dermis, while other organelles, like the nucleus and the mi- 
tocbondria, are situated closer to the interior of  the worm. 

The muscle is made up of repeated units with similarities 
to the sarcomeres of  vertebrate-striated muscle (see Fig. 1). 
The contractile units of  the body wall muscle are delineated 
on either end by a dense body, a structure analogous to the 
Z-line. Actin-containing thin filaments extend in either 
direction from the dense body, and interdigitate over part of  
their length with myosin-containing thick filaments. The illa- 
ments of  each unit are oriented parallel to the long axis of  
the worm, but, unlike the sarcomeres of cross-striated mus- 
cle of  vertebrates, the contractile units of the body wall mus- 
cle are offset from the adjacent unit by more than one 1 #m 
(45). Therefore, the striations observed are oblique, oriented 
at a 6 ° angle to the long axis of  the worm, and to the thick 
and thin filaments. 

Thick and thin filaments are anchored to the membrane by 
the M-line and the dense body, respectively (20). Each 
M-line and dense body extends the entire depth of  the lattice, 
anchoring all filaments directly to the membrane. At the 
ends of  the cell, a half I-band ends the lattice, where thin illa- 
ments extend from the last A-band to a membrane associ- 
ated, electron dense plaque, called an attachment plaque (20). 

Body wall muscle cells are anchored to the cuticle of  the 
worm in order for the force generated by contraction to be 
transduced into movement. Attachment is thought to be 
mediated by a specialized region of  the basement membrane, 
and by hemidesmosome structures of  the hypodermis (21). 
This region of the basement membrane adjacent to muscle 
cells is molecularly distinct from other regions (21). The 
hemidesmosome structures in the hypodermis are found ad- 
jacent to muscle cells and certain mechanosensory neu- 
rons (21). 
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Table II. Summary of Stages 
Basement membrane Hemidesmosome 

Muscle assembly stages Developmental events Lattice components components components 

I. accumulation of <290 min; before MH46 antigen diffusely 
structural components dorsal hypodermal distributed in dorsal 

cells interdigitate and ventral 
hypodermal ceils 

II. polarization of muscle 
cells; basement 
membrane and 
hemidesmosome 
components 
accumulate in regions 
adjacent to muscle 
cells 

HI. muscle cells flatten 
against hypodermis; 
muscle, basement 
membrane, and 
hemidesmosome 
components are 
coextensive 

IV. organization of 
sarcomeres and 
attachment structures 

290 rain; muscle cells 
adjacent to seam cells 

310 rain; interdigitation 
of dorsal hypodermal 
ceils almost complete; 
muscle cells 
migrating onto dorsal 
and ventral 
hypodermis 

350 rain; interdigitation 
of dorsal hypodermal 
cells is complete; 
muscle ceils 
organized into 
quadrants adjacent to 
dorsal or ventral 
hypodermis 

420 min; 1.5-fold stage 

430 rain; 1.75-fold 
stage 

450 rain; twofold stage 

>520 min; late 
threefold stage 

vinculin, integrin and 
myosin A and B 
diffusely distributed 
in muscle cells 

muscle components 
localize to 
membranes where 
adjacent muscle ceils 
contact each other 
and the hypodermis; 
this is referred to as 
muscle cell 
polarization 

MH42 first detected at 
this stage; breadth of 
region occupied by 
muscle components 
increases forming a 
band rather than a 
thin line 

muscle components 
organized into 
sarcomeres 

MH46 antigen and 
perleean localize to 
regions of contact 
between muscle cells 

MH46 antigen and 
perlecan localized to 
regions adjacent to 
muscle components 

MH46 antigen and 
perlecan localized to 
regions adjacent to 
muscle; MH46 
antigen appears to be 
associated with 
specific muscle 
structures 

MH46 antigen appears 
to be associated with 
hemidesmosomes 

MH4 and MH5 antigens 
diffusely distributed 
in dorsal and ventral 
hypodermal cells 

MH4 and MH5 antigens 
organize in regions of 
dorsal and ventral 
hypodermis adjacent 
to muscle cells 

MH4 and MH5 antigens 
localized to regions 
of the dorsal and 
ventral hypodermis 
adjacent to muscle 
components 

MH4 and MH5 antigens 
organized into 
hemidesmosomes 

Components of the lattice, l~asement membrane, and hemi- 
desmosomes have been identified immunologically, and rep- 
resent a potential molecular chain between the contractile 
apparatus and the hypodermis, and therefore to the cuticle. 
Integrin, a transmembrane receptor, is a component of  the 
base of the dense bodies and M-lines (20), anchoring these 
structures to the basement membrane. The attachment may 
be mediated by perlecan, a basement membrane protein that 
is concentrated at dense bodies and M-lines (21). Another 
basement membrane component, the MH46 antigen, associ- 
ates with hemidesmosomes, and therefore extends the chain 
to the hypodermis and cuticle (20). These connections would 
provide for closely spaced, periodic linkages between the lat- 
tice and the cuticle. A number of the components of  the lat- 
tice and the basement membrane have also been identified 

genetically (55, 71, 73, 75). The schematic in Fig. 1 summa- 
rizes some of  the components and their localization in adult 
WOrmS. 

Muscle and Hypodermal Cell Movements 
in the Embryo 
C. elegans embryogenesis is invariant from one animal to the 
next (62), and from the time of the first cleavage to hatching 
takes ,~800 rain. The first half of embryogenesis is devoted 
to cell proliferation and gastrulation, while the second half 
is devoted to organogenesis. Soon after gastrulation, which 
occurs between 100 and 260 rain, hypodermal and muscle 
cells undergo a characteristic set of  movements that result in 
the formation of four muscle quadrants positioned adjacent 
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Figure 1. Schematic diagram illustrating the structural elements of 
a body wall muscle sarcomere. The diagram is not meant to indicate 
the relative size of the structures but is meant to depict the location 
of components defined by antibodies and the identified protein, 
where known. 

to dorsal and ventral hypodermis. At 250 min, the hypoder- 
mal cells are clustered in six rows (two each of dorsal, lateral 
or seam, and ventral hypodermal cells) forming a continuous 
sheet of cells covering the dorsal and lateral surfaces of the 
embryo, leaving the neuroblasts that occupy the ventral sur- 
face uncovered (62). In order, from the dorsal midline to the 
lateral edge of the embryo, is one row each of dorsal, seam, 
and ventral hypodermal cells. By ~290 rain, the seam cells 
have migrated to the lateral surfaces of the embryo and the 
ventral cells have begun to enclose the ventral surface. At 
this stage, the muscle cells are organized in two lateral rows 
positioned at the midplane of the embryo, and are therefore 
probably adjacent to seam cells (Fig. 2, A and B). Over the 
next 20 rain, the hypodermis extends ventrally, completely 
enclosing the embryo (62). 

At 290 rain, each dorsal hypodermal cell extends a process 
across the dorsal midline, and between the two opposing 
dorsal hypodermal cells, eventually contacting the opposite 
seam cell. By 340 rain, a single row of rectangularly shaped 
hypodermal cells covers the dorsal surface, each cell strad- 
dling the dorsal midline (62). During this time (290-340 
rain), the muscle cells, which are initially in lateral rows ad- 
jacent to seam cells, migrate dorsally or ventrally away from 
the seam (see Fig. 13). By 340 rain, the muscle cells are or- 
ganized into four quadrants adjacent to dorsal and ventral 
hypodermis (Fig. 2 C). 

The embryo begins to elongate at ~,,350 rain, reaching 
more than three times its original length by hatching. As the 
embryo elongates, the muscle cells flatten against the hypo- 
dermis, and elongate to maintain continuity of the muscle 
ceils in each quadrant. Muscle twitching is first detected at 
,'~430 min and by 450 min the embryo rolls within the egg- 
shell. 

Muscle Development in Four Distinct Stages 

Four stages of muscle assembly and the developmental time 
at which each occurs are summarized in Table II. The stages 
are compared with events occurring in the basement mem- 
brane and the hypodermis with respect to the development 

Figure 2. Position of hypodermal and muscle cells in 290- and 
340-min embryos. Fluorescence micrographs of embryos labeled 
with MH27 to identify boundaries between hypodermal cells (ar- 
rows), and with DM5.6 to mark the position of muscle cells in the 
embryo. Embryos are oriented with their anterior ends toward the 
top of the page. Arrows indicate lateral boundaries of dorsal hypo- 
dermal cells, and arrowheads mark myosin positive staining. (,4 and 
B) Dorsal view of a 290-min embryo focused on the dorsal surface 
(A) or on the mid-plane (B) of the embryo. The two rows of muscle 
cells (B) are more lateral and more ventral than the dorsal hypoder- 
real cells (A), and are therefore probably adjacent to seam cells. (C) 
Dorsolateral view of a 340-min embryo, showing the fight row of 
seam cells and the right half of each dorsal hypodermal cell. One 
of the two dorsal muscle quadrants is in focus, and is clearly adja- 
cent to the dorsal hypodermal cells. Bar, 10 #M. 

of muscle attachment structures (see below). Also listed in 
the table are key events in muscle and hypodermal cell move- 
ment, along with other general morphological changes that 
occur in the embryo. The times given in the table are based 
on the shape of dorsal hypodermal cells and on the length 
of the embryo as described by Sulston et al. (62; see Mate- 
rials and Methods) and have not been measured direcdy. 

Vinculin (Fig. 3 B), integrin (Fig. 3 C), and myosins A 
(Fig. 2 B; see also reference 16) and B (data not shown; see 
reference 25), can all be detected at 290 min, a stage when 
muscle cell precursors are in lateral rows adjacent to the 
seam cells. All these antigens appear widely distributed 
throughout the cytoplasm. Myosin A (Fig. 2 A), myosin B 
(data not shown), and integrin (Fig. 3 C) are restricted to 
muscle cell precursors, while vinculin (Fig. 3 B) is some- 
times detected in non-muscle ceils (compare Fig. 3, A and 
B). The non-muscle expression of vinculin appears to be in 
cells more exterior than the muscle cells, suggesting the 
presence of vinculin in hypodermal cells. 

Thus, the stage at which muscle components are first de- 
tected is before all muscle cell precursors become post- 
mitotic, which does not occur until ~o370 min; however, it 
should be noted that all the progeny of these cells will be- 
come body wall muscle (62). To confirm that the cells ex- 
pressing muscle components are the same cells that are 
dividing, embryos were double labeled for myosin and tubu- 
lin. Multiple embryos were found which contain a muscle 
myosin-positive cell that also contains a mitotic spindle and 
chromosomes condensed at the metaphase plate (arrows in 
Fig. 3, D-F).  Similar experiments using anti-integrin or 
anti-vinculin antibodies were not performed since this would 
have required direct labeling of the primary antibodies be- 
cause MH25 (integrin), MH24 (vinculin), and 4A1 (tubulin) 
are mouse monoclonal antibodies. However, other double- 
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Figure 3. Fluorescence micro- 
graphs showing the early expres- 
sion of muscle lattice components. 
(A-C) Dorsal view, focused on the 
mid-plane of 290-rain embryos la- 
beled with (A) R6-2 (myosin), (B) 
MH24 (vincutin), and (C) MH25 
(integrin). The antigens accumu- 
late in muscle cells while the mus- 
cle cells are in lateral rows adjacent 
to seam cells. A andB are of the 
same embryo. (D-b) Dorsolateral 
view of a 350-390-rain embryo, 
viewed for (D) 4A1- (tubulin), (E) 
DAPI- (chromatin), or (C) R6-2- 
(myosin) dependent fluorescence. 
Arrow indicates a myosin-positive 
cetl that is dividing, as indicated by 
the presence of a mitotic spindle 
(D) and comJcnscd chromosomes 
(E) at the metaphase plate. Bar, 
10 gm. 

labeling experiments show that muscle myosin-positive cells 
of embryos of various stages are also positive for integrin and 
vinculin. Therefore it is likely that all three components are 
expressed in dividing cells. Muscle-specific actin may also 
be expressed in presumptive muscle cells at this early stage; 
however, since the anti-actin monoclonal used (C4) (42) 
stains both muscle and non-muscle cells, the results cannot 
be interpreted. At this time, no C. elegans muscle-specific 
actin antibodies are available. 

A significant change is evident by 350 min, when muscle 
components become localized near the hypodermis, showing 
that the muscle cells have become polarized. For example, 
integrin is localized at the membrane where adjacent muscle 
cells contact each other and the hypodermis (Fig. 4, A and 
B); embryos must be viewed from two different angles to 
confirm this localization. The lateral view of the embryo in 
Fig. 4 A shows that integrin (arrowheads) has accumulated 
at the membrane where muscle cells contact the hypodermis, 
and the dorsolateral view of a slightly older embryo in Fig. 
4 B, shows integrin has accumulated at membranes where 
adjacent muscle cells contact each other. The integrin-depen- 
dent fluorescence in each micrograph appears as a continu- 
ous thin line along the length of the embryo. This specific 
subcellular distribution is also seen using antibodies against 
vinculin, actin, and myosin A or B (data not shown), which 
colocalize with integrin. The change in the distribution of 
muscle components from a diffuse distribution to a more 
localized distribution at the membrane is apparently a grad- 
ual change. Embryos of 310 min can be found that have some 

of a given muscle component concentrated at this mem- 
brane, while some antigen is still diffuse in the cell. 

As muscle cells polarize, perlecan, a muscle basement 
membrane proteoglycan, is first detected. Interestingly, it 
also localizes to membranes where adjacent muscle ceils 
contact each other and the hypodermis (Fig. 5). The fact that 
perlecan is first detected at this late stage does not rule out 
the possibility that it accumulates earlier, but is not detected 
by the fixation and staining procedures used here. 

In the third stage of assembly, muscle cells flatten against 
the hypodermis, and the breadth of the lattice increases, with 
evidence of alignment between cells (shown for integrin in 
Fig. 4 C). By the 1.5-fold stage (420 rain) integrin staining 
is not detected as a thin line, but as a band that runs along 
the anterior-posterior axis of the embryo. Sometimes em- 
bryos are seen that have two antibody-positive bands as- 
sociated with each quadrant, one associated with each row 
of muscle cells (data not shown). No obvious discontinuities 
are seen in the staining pattern shown in Fig. 4 C, suggesting 
alignment of components in adjacent cells. The M-line com- 
ponent recognized by MH42 is first detected at this stage and 
colocalizes with other lattice components at the membrane 
that contacts the hypodermis (data not shown). 

Finally, the details of sarcomere organization become evi- 
dent. At about the stage when the embryo starts twitching, 
structural elements of the muscle (i.e., dense bodies, I- and 
Ao bands, and M-lines) can be detected using appropriate an- 
tibodies, and by the twofold stage (450 min), the structures 
can be detected along the entire length of each quadrant. AI- 
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Figure 5. Localization of perleean with respect to muscle cells in 
a 350-rain embryo. Fluorescence micrograph of a dorsal view 
showing both dorsal muscle quadrants of an embryo labeled with 
(A) MH3 (perlecan; arrowheads) and (B) R6-2 (myosin). Compari- 
son of A and B shows that perlecan is localized to regions of contact 
between muscle cells. MH27-dependent fluorescence is seen as fine 
lines that form a grid pattern in A. Bar, 10 ~m. 

Figure 4. Localization of integrin (MH25) in embryos of various 
developmental stages. Fluorescence micrographs, each showing a 
single dorsal muscle quadrant, of embryos stained with MH25 and 
MH27. MH27-dependent fluorescence can be seen as a grid pattern 
in panels C and D. (A) Right lateral view of a 350-rain embryo and 
(B) dorsolateral view of a 390-min embryo showing MH25-depen- 
dent fluorescence (arrowheads) at membranes of muscle cells that 
contact each other and the hypodermis. Muscle cell nuclei can be 
seen in B as negatively stained holes in the fluorescence pattern (ar- 
rows). (C) Dorsolateral view of a 420-rain embryo. No obvious dis- 
continuities in the MH25 staining pattern (arrowheads) are de- 
tected along the length of the quadrant. (D) Embryo of at least 520 
min (threefold stage), showing the MH25 staining pattern (arrow- 
heads) of lines and rows of dots that run obliquely to the long axis 
of the embryo. This pattern indicates that integrin is organized into 
dense bodies and M-lines. Bar, 10 #m. 

though actin can be detected along the length of the quad- 
rant, the actin is not restricted to I-bands until the late three- 
fold stage (>520 rain). The structural elements can be easily 
resolved in threefold embryos (Figs. 4 D and 6). 

The ot-actinin isoform recognized by MH35, and detected 
in adult body wall muscle (20) is not detected in embryos 
fixed by the method used here or any others used to date (Fig. 
6 D). The method used allows penetration of antibodies up 
to the stage of cuticle deposition which begins at least 3 1/2 h 
after the muscle starts contracting (62). 

Development of  Muscle At tachment  Structures 
in Four Distinct Stages 

The close association between muscle cells and the hypo- 
dermis led us to investigate the temporal and spatial distribu- 

don of hypodermal components. The hypodermal antigens 
recognized by MH4 and MH5, and the basement membrane 
antigen recognized by MH46 all associate with hemidesmo- 
somes in adults (21). The antigens detected by these antibod- 
ies are first seen in embryos younger than 290 rain. All three 
are expressed by the dorsal and ventral, but not seam, hypo- 
dermis at a stage when the muscle cells are adjacent to seam 
cells (shown for MH4 in Fig. 7 A). The MH5 and MH46 an- 
tigens are diffusely distributed in these cells, whereas the 
MH4 antigen localizes to the periphery of the cells. 

By 310 rain, all three antigens accumulate in regions adja- 
cent to muscle cells. By this time the muscle ceils have begun 
to migrate off the seam cells and onto dorsal and ventral 
hypodermis. The MH4 and MH5 antigens in 310-rain em- 
bryos colocalize in patches in regions of the dorsal and 
ventral hypodermis adjacent to the body wall muscle quad- 
rants (shown for MH4 in Fig. 7, B and C). These MH4 (52) 
and MH5-positive patches are at opposite ends of adjacent 
dorsal hypodermal cells and are always associated with the 
end of the hypodermal cell that does not extend a process 
during interdigitation. The ventral hypodermal cells at this 
stage are in two rows, one on each side of the ventral midline. 
Patches of MH4 and MH5-positive material are seen in each 
cell and are adjacent to the ventral muscle quadrants (data 
not shown). 

The MH46 antigen, a hypodermal basement membrane 
component, also becomes localized to regions adjacent to 
muscle cells, but unlike the MH4 and MH5 antigens, it re- 
mains dispersed until 350 rain. In 350-rain embryos, the 
MH46 antigen colocalizes with perlecan at the junction be- 
tween adjacent muscle cells and the hypodermis (compare 
Fig. 8, A and B with Fig. 5, A and B). 

By 420 rnin (1.5-fold stage), as the embryo elongates and 
the muscle cells flatten, all three hypodennal antigens, as 
well as perlecan, are coextensive with the developing mus- 
cle. That is, the regions occupied by the contractile appara- 
tus, the basement membrane and hemidesmosome compo- 
nents have the same boundaries, although in different tissues. 
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Figure 6. Localization of mus- 
cle components in embryos of 
at least 520 min (threefold 
stage). Embryos were labeled 
with MH27 (seen as fine lines 
that form a grid pattern in A, 
C, D, F,, ar~ G) and (a) DMS.6 
(myosin A), (B) R6-2 (myo- 
sin), (C) MH24 (vinculin), (D) 
MH35 (r,-actinin), (E) (24 (ac- 
tin), (F) MH42 (M-line com- 
ponent), and (G) MH3 (perle- 
can). Staining of at least one 
muscle quadrant is shown in 
each panel, and where appli- 
cable, arrows indicate stain- 
ing of a second quadrant. Bar, 
10 #m. 

The arrow in Fig. 7 D indicates a break in the MH4 staining 
pattern associated with a ventral quadrant (shown for MH4 
in Fig. 7 D; Curry, A.,  G. R. Frances, and R. H. Waterston, 
unpublished results). A similar break is observed in the 
MH3 (perlecan), MHS, and MH46 staining patterns and is 
associated with both ventral quadrants. The gap appears to 
coincide with a region of  the ventral hypodermis that con- 
tacts the H-shaped excretory cell, which is interposed be- 
tween the muscle cells and the hypodermis (49). The pattern 
detected with MH4 at this stage appears fibrous, while that 

Figure 7. Localization of the MH4 antigen in embryos of various 
developmental stages. Fluorescence micrographs of embryos la- 
beled with MH27, MH4, and R6-2. Embryos shown in A-D are 
oriented with their anterior ends toward the top of the page. (A) 
Dorsal view, focused on the surface of a <290-min embryo showing 
MH4-dependent fluorescence in the rows of dorsal and ventral hy- 

podermal cells. At this stage, all the hypodermal cells are clustered 
on the dorsal surface of the embryo. Anterior and posterior ends 
of the rows of dorsal (arrows) and ventral (arrowheads) hypodermal 
cells are indicated. (B and C) Dorsal view, focused on the surface 
(B), showing localization of MH4, or just below the surface (C), 
showing the position of muscle cells in a 310-rain embryo. Compar- 
ison of A and B shows that the MH4 positive material is organized 
into patches, marked by arrows in R in regions of the hypodermis 
adjacent to the muscle quadrants. (D) Lateral view of a 420-rain 
embryo showing MH4-positive material (arrowheads) adjacent to 
one ventral muscle quadrant. Arrow indicates a break in the MH4 
staining pattern associated with a region of the ventral hypodermis 
that contacts the H-shaped excretory cell. (E) Surface view of an 
embryo of at least 520 rain showing MH4-positive material associ- 
ated with one quadrant. The MH4 staining pattern is coincident 
with muscle cells, and consists of lines oriented perpendicular to 
the muscle lattice. Bar, 10 ~m. 
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Figure 8. Localization of the. 
MH46 antigen in embryos at vari- 
ous developmental stages. Flu- 
orescence micrographs of em- 
bryos labeled with MH46, MH27, 
and R6-2. (A and B) Dorsal view, 
with the anterior end towards the 
fight, showing both dorsal muscle 
quadrants. Comparison of (.4) 
R6-2 (myosin) and (B) MH46 
(basement membrane component) 
staining in a 340-min embryo, 
shows that the MH46 antigen is 
localized to sites of contact be- 
tween muscle cells. (C) Embryo 
of at least 520 min, with parts of 
2 quadrants in focus. The MH46- 
dependent fluorescence is seen as 
rows of dots that run obliquely to 
the long axis of the worm. (D) A 
threefold stage embryo older than 
the embryo shown in C. The 
MH46-dependent fluorescence 
(arrowheads) is seen as lines that 
transverse the muscle cells, and 
are oriented perpendicular to the 
long axis of the worm. E and F 
are higher magnifications of re- 
gions of the embryos shown C 
and D, respectively. Arrowheads 
in F indicate the MH46-dependent 
fluorescence. Bars: (A-D) 10/zm 
or (E and F) 33 #m. 

of MH5 appears punctate (data not shown), a difference that 
persists through adulthood (21). 

Finally, the MH4 and MH5 antigens organize. This occurs 
by about the twofold stage (450 rain), when the MH4 and 
MH5 staining pattern becomes similar to that seen in adults; 
i.e., a series of lines that run perpendicular to the muscle lat- 
tice in the region of the hypodermis adjacent to muscle cells 
(shown for MH4 in Fig. 7 E). 

By contrast, the MH46 antigen does not appear to associ- 
ate with hemidesmosomes until still later in development. At 
the twofold stage, and even into the threefold stage, the 
MH46 antigen is organized into dots aligned in rows that are 
oblique to the long axis of the embryo (Fig. 8, Cand E). The 
pattern is reminiscent of the oblique striations of the body 
wall muscle, suggesting that the MH46 antigen is associated 
with a specific muscle structure. Remarkably, in older three- 
fold embryos the MH46 staining pattern becomes similar to 
that detected by MH4 and MH5, as well as by MH46 in 
adults (compare Fig. 7 E with Fig. 8, D and F), and suggests 
an association with hemidesmosomes. 

The Effect o f  pat Mutations on Body Wall 
Muscle Assembly 

The spatial and temporal distributions of muscle components 
in mutants with defects in muscle assembly were compared 
with those of wild type to determine when the assembly pro- 
cess was, and what components were, disrupted by the muta- 
tions. The proteins encoded by the genes to which the muta- 
tions map are known and represent components of dense 

bodies, M-lines, thick filaments, and the basement mem- 
brane. Embryos homozygous for the mutations are negative 
for the antibody that recognizes the wild-type gene products 
and therefore the mutations may represent null alleles. We 
cannot rule out the possibility that an undetectable amount 
of the wild-type product or an undetectable truncated prod- 
uct is made (for a description of the mutant phenotype see 
reference 75). The distribution of components representing 
the major structural elements of the sarcomere, the dense 
body, M-line, A-band, and 1-band was examined in embryos 
homozygous for each of the mutations. 

The mutations most disruptive to muscle assembly, unc- 
52(st549) (55, 75) andpat-3(st552), (75) map to genes that 
encode the membrane-associated molecules perlecan (55) 
and integrin (Gettner, S., C. Kenyon, L. Reichardt, J. 
Plenefisch, M. B. Buchner, and E. Hedgecock. 1992. MoL 
Biol. Cell. 3:1088a). The body wall muscle cells of unc- 
52(st549) and pat-3(st552) embryos migrate to form quad- 
rants, and attach to and spread on the basement membrane. 
This can easily be seen in mutant embryos stained for myosin 
(Fig. 9, A and B). Four quadrants can be detected, and the 
myosin-positive cells contact adjacent myosin-positive cells 
along the anterior-posterior axis. This could only occur if 
the cells flatten and elongate as the embryo elongates. 

Although the muscle ceils in pat-3(st552) and unc-52(st549) 
embryos migrate, attach and spread, the structural elements 
of the muscle are completely disrupted (75; Fig. 9, C-F). 
The MH42 antigen, an M-line protein, localizes to a region 
at the middle of each body wall muscle cell in the mutant em- 
bryos. Interestingly, this localization is similar to the local- 
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Figure 9. Localization of mus- 
cle lattice components in em- 
bryos homozygous for the mu- 
tation unc-52(st549) (A, C, E, 
and G) or pat-3(st552) (B, D, 
and ~ .  Fluorescence micro- 
graphs showing embryos la- 
beled for a muscle antigen and 
for the MH27 antigen. MH27- 
dependent fluorescence is seen 
as fine lines that form a grid 
pattern in the embryos shown 
in C-G. (A and B) Embryos 
labeled with 116-2 (myosin). 
No gaps are detected between 
muscle cells, although the 
myosin is not organized into 
A-bands. (C and D) Embryos 
labeled with MH42 (M-line 
component). The MH42 anti- 
gen appears to accumulate in 
the central region of each 
body wall muscle cell. (F) 
Embryo labeled with MH24 
(vinculin). The MH24-posi- 
tive material (arrowheads) 
does not appear to be organized 
into dense bodies (compare 

with Fig. 6 C). (E and G) Embryos labeled with MH25 (integrin). (E) A 420-450-rain embryo (l.75-fold stage), where the MH25 positive 
material (arrowheads) does not appear to be organized into M-lines or dense bodies. (G) A 420-min embryo in which the MH25-positive 
material (arrowheads) is not associated with the membranes where adjacent muscle cells contact each other and the hypodermis. Bar, 
10 #m. 

ization of myosin A (75), but not of myosin B (Fig. 9, A and 
B) in these mutants, suggesting that the MH42 antigen is as- 
sociated, even in mutant animals, with myosin A or a myosin 
A-associated protein. 

Vinculin (MH24) and integrin (MH25) are both compo- 
nents of the base of the dense body (20). pat-3(st552) em- 
bryos show an MH24 staining pattern consistent with dense 
body disruption (Fig. 9 F). Likewise, unc-52(st549) em- 
bryos show an MH25 staining pattern consistent with dense 
body or M-line disruption (Fig. 9 E). Furthermore, the lo- 
calization of integrin in unc-52 (st549) embryos may be dis- 
rupted early, at the stage of muscle cell polarization. Em- 
bryos at the 1.5-fold stage (420 rain) can be found in which 
integrin is not at the membranes where adjacent muscle cells 
contact each other and the hypodermis (Fig. 9 G). 

On the other hand, mutations that affect internal compo- 
nents of the lattice are less disruptive to muscle assembly. 
deb-1(st555) embryos, which are mutant for vinculin (5), 
have disrupted 1-bands, but A-bands assemble quite well (5); 
myo-3(st386) embryos, which are mutant for myosin A (72), 
have disrupted A-bands, but I-bands assemble quite well 
(72). Furthermore, the localization of muscle components in 
myo-3(st386) and deb-1(st555) embryos shows that compo- 
nents closer to the membrane than the affected gene product 
are organized relatively well, whereas components further 
from the membrane are not. Integrin is associated with the 
base of the dense body, and is therefore closer to the mem- 
brane than vinculin. The integrin staining pattern seen in ar- 
rested deb-1(st555) embryos is not as well organized as in 
wild-type embryos (see Fig. 4 D), but lines and rows of dots 
that run obliquely to the long axis of the worm are detected 

and appear to be spaced as in wild type (Fig. 10 A). This re- 
sult is consistent with the organization of integrin into 
M-lines and dense bodies. However, actin filaments, which 
are anchored to the membrane by the dense body, and therefore 
further from the membrane than vinculin, are seen through- 
out the cell (compare Figs. 2 E and 10 B; see also 5). Like- 
wise, at the M-line, integrin is located closer to the mem- 
brane than myosin A. The integrin staining pattern in myo-3- 
(st386) embryo is consistent with the organization of integrin 
into M-lines as well as into dense bodies (Fig. 10 C). How- 
ever, myosin B, which is further from the site at which the 
thick filaments are anchored to the membrane than is myosin 
A, is disorganized in myo-3(st386) embryos (Fig. 10 D). 

The Effect of pat Mutations on the Assembly 
of Attachment Structures 
Homozygous unc-52 (st549) and pat-3 (st552) embryos show 
an almost wild-type distribution of MH4 in late arrested 
animals, when considerable structural degradation might be 
expected (Fig. 11, A and D). Thin stripes, perpendicular to 
the anterior-posterior axis of the wormeare seen in regions 
of the hypodermis adjacent to muscle cells, and the spac- 
ing of these perpendicular stripes appears wild-type. The 
width of the region with respect to the circumference of the 
worm varies however, unlike the uniform width in wild-type 
embryos. Younger embryos with abnormal staining patterns 
were not seen. 

The MH5 antigen in unc-52(st549) and pat-3(st552) em- 
bryos appears less organized than the MH4 antigen in that 
by the 1.75-fold stage (435 rain) an abnormal pattern is de- 
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positive stripes traversing the muscle cells (Fig. 8, D and F)  
were never seen (Fig. 12 D). 

Figure 10. Localization of muscle components in embryos homozy- 
gous for debt(st555) (A and B) or myo-3(st386) (C and D). (A and 
C) Fluorescence micrographs of arrested embryos labeled with 
MH25 (integrin) and MH27. MH27-dependent fluorescence is visi- 
ble only in A. The MH25 staining pattern is seen as lines and rows 
of dots that run obliquely to the long axis of the worm, similar to 
the pattern seen in wild-type (compare to Fig. 4 D). (B) Fluores- 
cence micrograph of an embryo almost twofold in length (430--450- 
min) labeled with C4 (actin). Bundles or aggregates of actin illa- 
ments are seen all through the muscle ceils, and are not organized 
into I-bands (compare to Fig. 6 E). (D) Fluorescence micrograph 
of a twofold embryo (450 rain) labeled with DM5.8 (myosin B). Myo- 
sin B is seen all through the muscle cell and is not organized into 
A-bands. Bar, 10 #m. 

tected (Fig. 11, B and E). The staining pattern looks more 
diffuse and the zone where the antigen localizes is not of uni- 
form width. Late arrested embryos show a near wild-type 
pattern of transverse stripes (Fig. 11, C and F),  although in 
almost all cases the intensity of staining is reduced when 
compared to the staining seen in wild-type embryos. 

Another component of muscle attachment structures, the 
basement membrane, is affected in unc-52(st549) and pat- 
3(st552) embryos, as shown by an altered MH46 staining 
pattern. By the 1.75-fold stage (compare Fig. 12, B and C 
with A) the MH46-positive zone is not of uniform width, and 
the dots of antigen are more randomly distributed than in 
wild-type embryos. Mutant embryos arrest elongation at the 
twofold stage, but development continues through hatching 
as assayed by pharyngeal development (75). However, in con- 
trast to late wild-type threefold embryos, mutants with MH46- 

Discussion 

The observations presented in this paper define four stages 
of muscle assembly that can be detected in the body wall 
muscle cells of C. elegans. The stages are summarized in Ta- 
ble II and shown schematically in Fig. 13, With two clear ex- 
ceptions, the observations are consistent with models depict- 
ing muscle assembly in vertebrates. Muscle components 
accumulate at the membrane before sarcomeres are detected, 
suggesting that membrane or membrane-associated mole- 
cules are important in templating or initiating the assembly 
process. This observation is consistent with observations 
made using primary cultures of cardiocytes (15, 44, 59, 68) 
or skeletal myocytes (2, 26), where myofibrils also appear 
to form at the membrane. A- and I-bands can assemble in- 
dependently of one another in C. elegans (5, 72, 75), as well 
as in D. melanogaster (6) and cultured cells (1, 26, 29, 59, 
64). Finally, actin is one of the last components to form fully 
striated sarcomeres in the body wall muscle. One of the late 
events in muscle assembly in vertebrate muscle cells in cul- 
ture is the change from non-striated to striated actin bundles 
(26, 51), a process that may involve CapZ (57). 

One clear difference between C. elegans and vertebrate 
muscle cell differentiation is the stage at which muscle 
specific proteins first accumulate in the cells. The only mus- 
cle protein known to be expressed in replicating vertebrate 
myoblasts is desmin (14, 28), whereas in C. elegans at least 
three, and probably other muscle proteins are expressed be- 
fore all the ceils become post-mitotic. This is shown for myo- 
sin in Fig. 3, D--F, where a dividing cell, as indicated by the 
presence of a mitotic spindle and condensed chromatin, is 
positive for muscle myosin. Although not directly demon- 
strated, vinculin and integrin are almost certainly expressed 
before the cells become post-mitotic, since both are ex- 
pressed at about the same time and in what appear to be the 
same cells as myosin. 

A second difference between muscle assembly in ver- 
tebrates and in C. elegans concerns the role of ot-actinin. 
Sarcomeric a-actinin in cultured muscle cells is a compo- 
nent of NSMF (non-striated myofibrils) and of I-Z-I com- 
plexes, leading some investigators to propose that aggregates 
containing a-actinln act as nucleating or organizing centers 
for thin filaments (59). Alternatively, others have proposed 
that ot-actinin may act to stabilize thin filaments at the Z-disc 
in cardiac muscle cells (63). The a-actinin isoform present 
in the adult body wall muscle of C elegans and recognized 
by MH35 is not detected in embryos, but is detected in L1 
larvae (Frances, G. R., and R. H. Waterston, unpublished 
result). This result suggests that this isoform of ot-actinln is 
not required for the assembly of I-bands in body wall mus- 
cle cells. Similarly, D. melanogaster mutants lacking the 
a-actinln isoform expressed in the indirect flight muscle have 
fairly well organized flight muscles, again suggesting o ~ - ~  
is not required for assembly (56). Interestingly, neither the 
ot-actinin recognized by MH35, or the D. melanogaster lar- 
val isoform of ot-actinin are required for embryonic contrac- 
tions, whereas the adult D. melanogaster muscle isoform is 
required for flight (24). Perhaps ot-actinin is required only 
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Figure 11. l.,oc~liTafion of hypodermal 
hemklesmosome components in em- 
bryos homozygous for mutations unc- 
52(st549) (A--C) or pat-3(st552) (D--F). 
(A, C, D, and F) Fluorescence 
micrograpbs of arrested embryos 
double labeled with MI-I27 and MH4 
(A and D) or MH5 (C and F). The 
MH4 and MH5 staining patterns (ar- 
rowheads) reveal a series of lines, 
perpendicular to the muscle lattice, 
in regions directly adjacent to the 
muscle cells. This pattern is similar 
to that detected in wild type. (B and 
E) Fluorescence micrograph of 1.75- 
fold (420--450 rain) embryos labeled 
with MH27 and MHS. The MI-IS- 
dependent fluorescence (arrowheads) 
is detected as dots, randomly distrib- 
uted in the region of the hypodermis 
adjacent to muscle cells. The grid 
pattern seen in the micrographs is 
due to MI-I27-dependent fluorescence. 
Bar, 10 ~m. 

for stabilizing thin filaments within the I-band. Alterna- 
tively, D. melanogaster and C. elegans may express other 
c~-actinin isoforms that are responsible for organizing thin 
filaments during muscle formation. There is evidence for at 
least two ,-actinin genes in C. elegans (4), and multiple 
o~-actinin messages in flies (56). 

An early step in the assembly of C. elegans body wall mus- 
cle is the accumulation of muscle components at membranes 
where adjacent muscle ceils contact each other and the 
hypodermis, which occurs at "~350 rain. These components 
include proteins that will become part of the dense body, and 
thin and thick filaments (16). The resolution of the light mi- 
croscope is not sufficient to allow us to decipher what assem- 
blages are forming, but possibly filament assembly and mus- 
cle polarization occur simultaneously. 

Genetic evidence presented here and in the accompany- 
ing paper (75) support the contention that membrane or 
membrane-associated molecules are important for body wall 
muscle assembly. Integrin is a transmembrane, heterodi- 
merit receptor, consisting of an ot and a 13 subunit, which has 
been implicated in signal transducti0n (reviewed in 30, 34) 
and in assembly of multi-component structures (9). The pat- 
3(st552) mutation, a mutation in the C. elegans ~ integrin 
gene (Gettner, S., C. Kenyon, L. Reichardt, J. Plenefisch, 
M. B. Buchner, and E. Hedgecock. 1992. Mol. Biol. Cell. 
3:1088a), has dramatic effects on the assembly of body wall 
muscle. The body wall muscle cell precursors ofpat-3(st552) 
embryos migrate and align to form quadrants, and flatten 
against the hypodermis. However, the contractile units, at the 

level of the dense bodies, the M-lines and the A- and I-bands 
are completely disrupted. The defect can be observed as early 
as 1.75-fold stage (430 min) when the structural elements of 
the muscle are first discernible in wild-type embryos. There- 
fore, it is likely that the disruptions are due to a failure to 
assemble the lattice, rather than due to secondary degrada- 
tion of correctly assembled muscle. 

The results presented concerning pat-3(st552) homozy- 
gotes are consistent with the observation that Z-discs do not 
form during embryogenesis of Drosophila let(myospheroid) 
(66), a null mutation in the/3~ integrin gene (41). However, 
our results contradict those of Jaffredo et al., who suggest 
that/31 integrin is important for muscle cell migration in 
chick embryos (31). The reasons for the contradiction are not 
clear at this time. Possibly there are as yet unidentified/3 in- 
tegrin genes of C. elegans that encode subunits required for 
migration, attachment, and flattening of muscle cells. 

Another class of membrane-associated components that 
affect muscle cell differentiation are extracellular matrix pro- 
teins. It is clear that the composition of the extracellular ma- 
trix is important for muscle differentiation in vitro, although 
the molecules involved have not been fully defined. Mouse 
embryonic muscle cells will continue to divide when plated 
on laminin until fibronectin is removed from the media (67). 
Drosophila embryonic muscle cells in culture will not ad- 
here to, or spread on, a number of known Drosophila ex- 
tracellular matrix components, but will attach and undergo 
terminal differentiation when plated on laminin (66). Simi- 
larly, proper assembly of A- and I-bands (75) as well as the 
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Figure 12. Localization of the MH46 antigen in wild-type (A), pat- 
3(st552) (B), or unc-52(st549) homozygotes (C and D). (A-C) 
Fluorescence micrographs of 1.75-fold (420--450-rain) embryos. 
MH46-dependent fluorescence in wild-type embryos (A) is ob- 
served as an ordered array of dots associated with muscle cells, and 
in the mutants (B and C) is observed as a random distribution of 
dots associated with muscle ceils. (D) Fluorescence micrograph of 
an arrested unc-52 (st549) homozygous embryo. Arrowheads indi- 
cate MH46-dependent fluorescence which is observed in a random 
distribution associated with muscle cells. The grid pattern seen in 
the micrographs is due to MH27-dependent fluorescence. Bar, 
10 t~m. 

assembly of the dense bodies and the M-lines (Fig. 8, C-G) 
is dependent on perlecan, a basement membrane proteogly- 
can, and thus identifies a specific basement membrane com- 
ponent necessary for muscle assembly. 

In contrast, mutations in genes encoding internal compo- 
nents of the muscle do not completely disrupt lattice assem- 
bly, but instead selectively disrupt assembly of a subset of 
structures. Furthermore, only the distribution of compo- 
nents further from the membrane than the affected gene 
product is altered, while the distribution of components 
closer to the membrane is much less affected. This is true for 
both myo-3(st386) and deb-1(st555) which disrupt A- and 
I-bands, respectively, but do not affect the organization of 
integrin at the base of the M-line and the dense body. This 
suggests that body wall muscle assembly occurs by the step- 
wise addition of components, and is nucleated at the mem- 
brane or extracellular matrix. In addition, since A- and 
I-bands can assemble independently of one another (5, 72, 
75), it is possible that M-lines plus A-bands, and dense bod- 

Figure 13. Schematic diagram of muscle assembly in C. elegans 
depicting cross-sections of embryos at various developmental stages. 
The diagrams represent our view of body wall muscle assembly 
based on the data presented in this paper. (A) 290-min embryo. 
Hypodermal cells (2 dorsal, 2 lateral or seam, and 2 ventral) are 
shown as thin cells covering most of the embryo; only the ventral 
surface is exposed. Dorsal hypodermal cells reach only to the dor- 
sal midline since they have not yet interdigitated. Hypodermal 
hemidesmosome eornponents are present in dorsal and ventral 
hypodermal cells as indicated by the hatched region. Muscle cells 
(circles) which have begun to accumulate muscle components 
(dots), are adjacent to seam ceils and will migrate dorsally or ven- 
trally to contact dorsal or ventral hypodermis. Some muscle cells 
will divide again before assuming their final position. Muscle cells 
(circles) are still rounded, but have become polarized. That is, 
myofibrillar components (dots) are localized to membranes where 
adjacent muscle cells contact each other and the hypodermis. Base- 
ment membrane components (black) are also localized to regions 
of contact between muscle cells. Hypodermal hemidesmosome 
components (hatched region) have become restricted to regions of 
the hypodermis adjacent to muscle cells. (C and D) One dorsal 
quadrant plus the surrounding region is used to illustrate events that 
occur in each of the four quadrants. (C) 420-min embryo. Muscle 
cells (ovals) are flattened, and the muscle (dots), basement mem- 
brane (black) and the hemidesmosome (hatched regions) compo- 
nents are coextensive. (D) 450-min embryo. Organization of the 
structural components of the muscle (stippled region) and the 
hypodermal hemidesmosomes (hatched regions of the hypodermis) 
is evident. See text for details of the model. 

ies plus I-bands assemble as units, with the process in both 
cases beginning at the membrane. It is interesting to note that 
two membrane-associated components that are required for 
muscle assembly, perlecan and integrin, localize to the base 
of the dense body and M-line in adults. Perhaps these two 
molecules are part of the nucleation site for muscle assembly. 

Strikingly, the pattern and spacing of the structural ele- 
ments present in the body wall muscle of myo-3(st386) and 
deb-1(st555) embryos is quite well preserved. The spacing of 
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dense bodies and M-lines, as marked by anti-integrin anti- 
bodies, is not significantly different from that of wild type. 
This suggests the spacing of structural elements of the mus- 
cle are not imposed by the filamentous elements, but by 
events that occur at the membrane. 

The spatial and temporal association of muscle and hemi- 
desmosome assembly suggests that important developmental 
signals may be passed between muscle and hypodermal cells. 
Muscle cells may signal the recruitment of hemidesmosome 
components to regions of the hypodermis adjacent to muscle 
cells. The localization of the MH4 antigen in embryos in 
which the Cap or Cpp lineages are missing is consistent with 
this idea. Laser ablation of Cap or Cpp at the 28 cell stage 
results in embryos that are missing 16 muscle cells from the 
posterior of the left or the right side of the animal, respec- 
tively. The hypodermal cells of such embryos organize MH4 
only in regions adjacent to muscle cells but not adjacent to 
regions lacking the ablated muscle cells (Shrimankar, P., and 
R. H. Waterston, personal communication). Hypodermal 
cells may in turn signal the recruitment of myofibrillar com- 
ponents to the membrane that contacts the hypodermis. This 
possibility is suggested by the observation that as muscle 
cells migrate onto dorsal or ventral hypodermis, muscle 
components associate with the membrane that contacts the 
hypodermis. It is interesting that the basement membrane 
protein recognized by MH46 is synthesized by dorsal and 
ventral hypodermis but associates with muscle cells and pos- 
sibly with a specific structural element of the muscle during 
muscle assembly. 

The contractile apparatus is linked to and assembles coor- 
dinately with hypodermal hemidesmosomes, but mutations 
that completely disrupt muscle assembly have little, if any, 
effect on the assembly and positioning of hemidesmosomes. 
The distribution of the MH4 and MH5 antigens in arrested 
pat-3(st552) and unc-52(st549) embryos, which have com- 
pletely disrupted muscle structure, is similar to the distribu- 
tion observed in wild-type embryos. This suggests that al- 
though signals passed between the muscle cells and the 
hypodermis may coordinate the assembly of muscle and the 
hemidesmosomes, the position of the hemidesmosomes in 
the hypodermis is not dictated by the position of structural 
elements in the muscle. We cannot rule out that the position 
of the structural elements of the muscle depends on the posi- 
tion of hemidesmosomes in the hypodermis, since no muta- 
tions are known that disrupt the assembly of hemidesmo- 
somes. 

Although unc-52(st549) andpat-3(st552) have no effect on 
the assembly of the hemidesmosomes, both alter the struc- 
ture of the basement membrane as assayed by the distribution 
of the MH46 antigen. The unc-52 gene product is a compo- 
nent of the same basement membrane as the MH46 antigen, 
and therefore it is not unexpected that a mutation in the unc- 
52 gene might affect the organization of the MH46 antigen. 
The altered distribution of the MH46 antigen in pat-3(st552) 
mutants could be a secondary effect of disorganized muscle 
since the MH46 antigen appears to associate with muscle 
during part of embryogenesis. 

A Summary of Muscle Assembly 
The stages of C. elegans muscle assembly described below 
are diagrammed schematically in Fig. 13. Muscle compo- 
nents begin to accumulate while muscle cells are in two 

lateral rows adjacent to the seam cells and before some mus- 
cle cells have undergone their terminal division. As the mus- 
cle cells migrate dorsally and ventrally to contact dorsal or 
ventral hypodermis, they encounter signals that direct the 
polarization of muscle cells. At about this time, hemidesmo- 
some and basement membrane components are recruited to 
regions adjacent to muscle quadrants. The recruitment of 
hemidesmosome components is most likely specified by sig- 
nals from the muscle cells. 

Muscle cells flatten against the hypodermis, and the breadth 
of the developing lattice increases. At this stage, muscle, 
basement membrane and hemidesmosome components be- 
come coextensive and presumably early contacts are set up 
between structural elements of the muscle and the hemides- 
mosomes that help to keep the structures in register through- 
out elongation. 

As sarcomeres assemble, events occurring at the mem- 
brane dictate the spatial deployment of structural elements 
along the fibril. The information that specifies spatial ar- 
rangement may involve integrin, which has been implicated 
in signal transduction in other systems, and perlecan. Once 
properly positioned, integrin and perlecan nucleate the as- 
sembly of dense bodies and the M-lines, which probably oc- 
curs by the stepwise addition of more internal components. 

Actin becomes fully organized into I-bands late in devel- 
opment, at least 90 min after contractions are first observed. 
Even later, a-actinin accumulates and assembles at the dense 
body. 

Coordinate with muscle assembly is the organization of 
hypodermal components into hemidesmosomes. The mech- 
anisms that specify the position and spacing of hemidesmo- 
somes are unknown, but clearly perlecan is not required. Al- 
though links between the muscle and hemidesmosomes are 
likely to be set up early, possibly as early as 310 rain, the 
connections may be reinforced later when the MH46 anti- 
gen, a basement membrane component that initially associ- 
ates with muscle structures, associates with the hemidesmo- 
somes. 

A number of predictions of this model are directly test- 
able. Muscle cell precursors can be killed early in develop- 
ment (62) to assess the influence of signals from muscle cells 
on the distribution of hemidesmosome and basement mem- 
brane components. Similar experiments can be done in 
which hypodermal cells are killed to assess their influence 
on the distribution of muscle components. Alternatively, the 
association between muscle cells, and dorsal or ventral 
hypodermal cells could be altered using mutations that 
change the fate of specific cells. In such mutants, muscle 
cells would be adjacent to cells which do not adopt the dorsal 
or ventral hypodermal cell fate, or dorsal and ventral 
hypodermal cells would be adjacent to cells which will not 
become muscle cells. 

The isolation of mutations that alter the position of hemi- 
desmosomes in the hypodermis would be useful in defining 
the molecules necessary for proper spacing of these struc- 
tures. Furthermore, these mutations would be useful in de- 
termining if structural information, dictated by the spacing 
of hemidesmosomes, is transmitted to muscle cells and in- 
fluences the spacing of structural elements of the muscle. Fi- 
nally, many mutations that disrupt muscle have already been 
isolated (reviewed in 71, 73, 75). Using specific antibodies 
and the wild-type distributions described here, it should be 
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possible to more clearly define how, and when, muscle as- 
sembly is disrupted in the mutants. 
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