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Abstract: Molecular markers are one of the major factors affecting genomic prediction accuracy and
the cost of genomic selection (GS). Previous studies have indicated that the use of quantitative trait
loci (QTL) as markers in GS significantly increases prediction accuracy compared with genome-wide
random single nucleotide polymorphism (SNP) markers. To optimize the selection of QTL markers
in GS, a set of 260 lines from bi-parental populations with 17,277 genome-wide SNPs were used to
evaluate the prediction accuracy for seed yield (YLD), days to maturity (DTM), iodine value (IOD),
protein (PRO), oil (OIL), linoleic acid (LIO), and linolenic acid (LIN) contents. These seven traits were
phenotyped over four years at two locations. Identification of quantitative trait nucleotides (QTNs) for
the seven traits was performed using three types of statistical models for genome-wide association study:
two SNP-based single-locus (SS), seven SNP-based multi-locus (SM), and one haplotype-block-based
multi-locus (BM) models. The identified QTNs were then grouped into QTL based on haplotype blocks.
For all seven traits, 133, 355, and 1208 unique QTL were identified by SS, SM, and BM, respectively. A
total of 1420 unique QTL were obtained by SS+SM+BM, ranging from 254 (OIL, LIO) to 361 (YLD) for
individual traits, whereas a total of 427 unique QTL were achieved by SS+SM, ranging from 56 (YLD)
to 128 (LIO). SS models alone did not identify sufficient QTL for GS. The highest prediction accuracies
were obtained using single-trait QTL identified by SS+SM+BM for OIL (0.929 ± 0.016), PRO (0.893 ±
0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for LIN (0.837 ± 0.053), LIO (0.835
± 0.049), and IOD (0.835 ± 0.041). In terms of the number of QTL markers and prediction accuracy,
SS+SM outperformed other models or combinations thereof. The use of all SNPs or QTL of all seven
traits significantly reduced the prediction accuracy of traits. The results further validated that QTL
outperformed high-density genome-wide random markers, and demonstrated that the combined use
of single and multi-locus models can effectively identify a comprehensive set of QTL that improve
prediction accuracy, but further studies on detection and removal of redundant or false-positive QTL to
maximize prediction accuracy and minimize the number of QTL markers in GS are warranted.
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1. Introduction

Genomic selection (GS) is a form of marker-assisted selection (MAS) that predicts genomic
estimated breeding values (GEBVs) of test individuals through the use of genome-wide markers [1,2].
GS has been implemented in crop breeding to increase selection accuracy, reduce breeding cost, and
speed-up genetic progress [3,4]. In a practical GS scheme, many factors affect its accuracy: training
populations, statistical models, molecular markers, relatedness of the training populations and selection
(test) populations, and so on [1,3]. Markers are one of the critical factors. In the initial concept of GS,
high-density genome-wide random markers were used in genomic modeling [2]. With advances in next
generation sequencing technologies and genotyping methods such as genotyping-by-sequencing (GBS)
and single nucleotide polymorphism (SNP) arrays, a sufficiently large set of high-density genome-wide
markers for a genetic panel can be easily generated at a low cost. However, the cost associated
with obtaining such a large number of markers in the test lines can be excessive considering their
generally large number. In fact, only a few markers may be associated with the traits of interest in a
set of high-density genome-wide markers. This not only leads to the “large p, small n” problem [1],
where a high number of marker effects need to be estimated using a population of very small sample
size (p >> n), but also results in background noise in model construction because of uncorrelated
markers, contrarily decreasing the genomic prediction accuracy of GS models [5]. Previous studies have
confirmed that increasing marker density ensures the maintenance of association between markers
and quantitative trait loci (QTL) to obtain a high prediction accuracy, but prediction accuracy plateaus
when marker density increases to a certain threshold [5–7]. Using QTL associated with traits of interest,
instead of using a full set of random SNPs in a GS model, greatly reduces the number of markers,
which in turns reduces the cost of genotyping large breeding populations. Additionally, the exclusive
use of markers associated with traits in GS models can increase prediction accuracy through reducing
the background noise in the model construction [5,8]. Our previous study on pasmo resistance in
flax has showed that using 500 QTL identified through single-locus and multi-locus genome-wide
association study (GWAS) models [9] from a flax core collection (a germplasm population) [10,11] was
highly effective for GS and generated a prediction accuracy as high as 0.92 compared with 0.67 when
using 52,347 random SNPs [5].

The traditional GWAS methods, such as the general linear model (GLM) [12] and the mixed linear
model (MLM) [13], are single-locus models that test the significance of marker–trait association one
marker at a time and declare significant associations based on a stringent multiple-test correction
(most often Bonferroni). Because of the high significance stringency, these methods only detect
a few relatively large-effect quantitative trait nucleotides (QTNs) and, they lack the power to
identify small-effect polygenes for more complex quantitative traits. Thus, alternative multi-locus
methods have been proposed [14], including the multi-locus random-SNP-effect mixed linear
model (mrMLM) [9,15], the FAST multi-locus random-SNP-effect EMMA (FASTmrEMMA) [16],
the polygene-background-control-based least angle regression plus empirical Bayes (pLARmEB) [17],
the iterative modified-sure independence screening EM-Bayesian LASSO (ISIS EM-BLASSO) [18], and
the integration of the Kruskal–Wallis test with empirical Bayes under polygenic background control
(pKWmEB). These methods adapt statistical models that simultaneously test multiple markers and,
doing so, substantially increase the statistical power while simultaneously reducing Type 1 errors
and running time [9,15–19]. These methods also usually adapt LOD scores (usually LOD ≥ 3), rather
than the stringent Bonferroni correction (0.05/number of SNPs) [19], thus empowering the detection
of more large and small effect QTNs [10]. In contrast to these multi-locus models, the fixed and
random model circulating probability unification (FarmCPU) [20] still uses Bonferroni correction and
mostly detects a few large-effect QTNs [10]. The above two types of GWAS models can be described
as SNP-based single-locus (SS) and SNP-based multi-locus (SM) models. Another type of GWAS is
haplotype-block-based (BM) GWAS models. Close SNPs are more likely to be inherited together;
haplotype blocks are important in genetic studies [21], such as diversity studies [22], GWAS, and
genomic selection [23–25]. The use of haplotypes in the genomic prediction of traits of allogamous
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plants can increase its predictive ability by 20% [23]. A restricted two-stage multi-locus multi-allele
GWAS (RTM-GWAS) procedure [26] is one recently proposed BM [27–29]. This method first generates
SNP LD blocks (SNPLDB) and then groups SNPs into an SNPLDB based on LD blocks. Each block
as a marker may contain one or more SNPs that result in two or more haplotypes as its alleles for
QTL mapping [26]. Thus, the significantly associated SNPLDB markers (blocks or singletons) are
directly considered QTL. All these methods offer promise to identify an exhaustive set of QTNs/QTL
for breeding selection.

The objectives of this study were to evaluate GS prediction accuracies for seven major breeding
selection traits using QTL identified by different GWAS models of a genetic panel of 260 flax breeding
lines derived from bi-parental populations. Ten statistical GWAS models belonging to the SS,
SM, and BM classes were compared to first optimize QTL identification and second to maximize
prediction accuracy.

2. Results

2.1. Phenotyping of the Population

Seven breeding selection traits in flax, namely, seed yield (YLD), days to maturity (DTM), iodine
value (IOD), protein content (PRO), oil content (OIL), linoleic acid content (LIO) and linolenic acid
content (LIN) were measured from 260 lines from bi-parental populations grown in the field for four
years at two locations (Figure 1). Less variability was observed in 2009 at both locations across all
traits because only 96 of the 260 lines were evaluated that year at the two locations. DTM, PRO, and
YLD showed significant differences across four years and both locations, whereas the seed quality
traits (IOD, LIN, LIO, and OIL) had relatively similar performance at the two locations. All traits, with
the exception of PRO, had significantly higher values in Saskatoon than Morden (p < 2 × 10−16 for
all six traits except for PRO). The analysis of variance also showed a significant interaction between
years and locations for all traits except for LIO (p = 0.97; Table S1). The performance of the seven traits
in different years and locations suggested that the phenotypic data of each environment (years and
locations) should be used to identify all potential stable and environment-specific QTNs associated
with the traits.Int. J. Mol. Sci. 2020, 21, 1577 4 of 22 
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Figure 1. Boxplots of phenotypic data of the seven traits: seed yield (YLD) (A), days to maturity (DTM)
(B), protein content (PRO) (C), oil content (OIL) (D), iodine value (IOD) (E), linoleic acid content (LIO)
(F), and linolenic acid content (LIN) (G). BLUEs, best linear unbiased estimates across four years.
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2.2. Haplotype Blocks

RTM-GWAS was used to identify haplotype blocks of 17,277 SNPs in the 260 lines [26]. A total of
2776 haplotype blocks with two or more SNPs per block and 2852 singletons were generated. Although
a singleton has only one SNP, it can be treated as an independent block. As such, a total of 5628
haplotype blocks were considered for further QTL mapping and analyses. The number of blocks
ranged from 231 in chromosome 11 (Lu11) to 500 in chromosome 1 (Lu1) with an average block size of
20.09–29.78 kb (Table 1).

Table 1. The haplotype blocks identified from 17,277 single nucleotide polimorphsims (SNPs) in the
260 lines and association with quantitative trait loci (QTL) of traits.

Chr No of Blocks
(Including Singletons)

No of
Singletons

Average SNPs
Per Block

Average Block
Size (Kb)

No of Blocks
with QTL

Lu1 500 257 3.02 27.61 ± 32.99 126
Lu2 374 178 4.10 28.07 ± 34.68 101
Lu3 472 242 2.81 23.96 ± 30.24 116
Lu4 337 182 2.45 23.31 ± 32.50 108
Lu5 308 133 3.48 29.78 ± 35.16 57
Lu6 419 227 2.80 26.11 ± 32.91 80
Lu7 296 157 2.86 29.15 ± 35.21 116
Lu8 433 244 2.52 20.05 ± 27.18 126
Lu9 443 208 3.19 24.89 ± 31.83 95

Lu10 389 210 2.89 25.79 ± 31.75 80
Lu11 231 127 2.60 26.50 ± 33.37 44
Lu12 355 149 3.90 26.70 ± 32.72 112
Lu13 448 216 3.51 29.50 ± 34.34 111
Lu14 381 208 2.82 23.04 ± 31.60 89
Lu15 242 114 3.07 27.81 ± 33.42 59
Total 5628 2852 3.07 26.12 ± 32.64 1420

2.3. QTNs/QTL

To compare the performance of different statistical models to identify QTNs in GWAS, three types
of models were evaluated: (1) two SS models, including GLM [12] and MLM [13], (2) seven SM models,
including the six models implemented in the mrMLM package and FarmCPU implemented in the
MVP package, and (3) the BM model, RTM-GWAS [26].

A total of 268 and 407 unique QTNs for the seven traits were identified using SS and SM, totaling
608 unique QTNs, while 1208 significant haplotype blocks or singletons were detected using BM
(RTM-GWAS) (Table 2, Tables S2 and S3). The QTNs from SS and SM were further grouped based on
haplotype blocks; that is, the QTNs located in the same haplotype block were grouped into a QTN
cluster or a QTL. As such, 608 QTNs for the seven traits identified using SS and SM were grouped
into 427 unique QTN clusters or QTL for the seven traits. Since the results from RTM-GWAS were
haplotype-block-based, they were directly treated as QTL. Therefore, 1420 unique QTL were identified
for the seven traits when all models (SS+SM+BM) were considered, including 361, 351, 269, 254, 283,
254, and 256 QTL for YLD, DTM, PRO, OIL, LOD, LIO, and LIN, respectively (Table 2, Figure 2). For
each QTL, a tag QTN was selected to represent the QTL.
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Table 2. Quantitative trait nucleotides (QTNs)/quantitative trait loci (QTL) identified from 17,277 single
nucleotide polymorphisms (SNPs) in the 260 lines for the seven traits using three types of genome-wide
association study (GWAS) models.

Trait
QTNs QTL

SS SM SS SM SS+SM BM All
(SS+SM+BM)

Major
QTL

Major QTL
Effect (R2, %)

Minor QTL
Effect (R2, %)

All QTL
Effect (R2, %)

YLD 13 58 8 53 56 323 361 110 11.03 ± 6.75 1.32 ± 1.24 4.64 ± 6.14
DTM 43 76 28 71 87 301 351 39 6.99 ± 2.11 1.12 ± 1.25 1.70 ± 2.22
PRO 66 56 31 51 74 220 269 77 16.55 ± 12.50 1.24 ± 1.25 5.48 ± 9.54
OIL 17 88 10 84 87 186 254 111 15.80 ± 10.26 1.43 ± 1.30 7.88 ± 9.96
IOD 153 82 71 72 123 190 283 55 9.47 ± 3.79 1.30 ± 1.40 2.96 ± 3.91
LIO 146 102 68 87 128 152 254 70 9.86 ± 3.98 1.40 ± 144 3.50 ± 4.34
LIN 189 127 70 67 118 170 256 53 10.21 ± 4.10 1.25 ± 1.37 3.06 ± 4.22

All 268 407 133 355 427 1,208 1,420 520 12.06 ± 8.24 1.28 ± 1.33 3.99 ± 6.34

SS, SNP-based single-locus models; SM, SNP-based multi-locus models; BM, haplotype-block-based multi-locus
model. Major QTL are defined as R2

≥ 5%, while minor QTL as R2 < 5%.
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lines. Track 1 (from outer), chromosomes; Track 2, density of 17,277 SNPs (bin size of 300 kb); Track
3, QTNs for YLD; Track 4, QTNs for DTM; Track 5, QTNs for PRO; Track 6, QTNs for OIL; Track 7,
QTNs for IOD; Track 8, QTNs for LIO; Track 9, QTNs for LIN. The effects of QTNs are represented by
different colors. R2

≤ 1%, purple; 1% < R2
≤ 5%, green; 5% < R2

≤ 10%, blue; R2 > 10%, red. YLD, seed
yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic
acid content; LIN, linolenic acid content; SNP, single nucleotide polymorphism.
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The allelic effects of all QTL are illustrated and summarized in Figures 2 and 3, and Table 2, Tables
S2 and S3. Similar QTL effects were observed among the ten statistical models (Figure 3A, Table S3).
Using R2

≥ 5% as the criterion to define major QTL, 520 of the 1420 unique QTL would be considered
major, explaining 12.06 ± 8.24% of the variance. QTL for PRO, OIL, and YLD had relatively larger
effects than those of the other four traits (Figure 3B and Table 2). The number of QTL for YLD and OIL
exceeded that of the other traits, being 110 (30.5%) and 111 (43.7%), respectively, while the smallest
number of major QTL belonged to DTM with 36 out of 351 (10.3%).
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Figure 3. Boxplots of allele effects (R2) of quntitativ trait loci (QTL) for ten genome-wide association
study (GWAS) models (A) and seven phenotypic traits (B). YLD, seed yield; DTM, days to maturity;
PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid content; LIN, linolenic
acid content.

The GWAS models identified different sets of QTL (Figure 4, Tables S2 and S4). BM detected four
times more QTL than the SS+SM and most differed from one another. Of the 1420 QTL, only 215 QTL
were shared by both SS+SM and BM, ranging from 18 out of 361 QTL for YLD (5%) to 32 out of 256
QTL for LIN (12.5%). The average allele effect (R2) of the shared QTL among the three types of models
was 2.75%, whereas QTL that were not shared had R2 of 2.73% for BM, 3.16% for SM, and 2.62% for SS,
showing that the shared QTL did not necessarily have greater QTL effects. Between the SNP-based
models (SS and SM), the six SM models had more QTL in common with BM than the two SS models
(GLM and MLM). SS identified fewer QTL for YLD, DTM, PRO, OIL, and LIO than SM, but a similar
number was identified by the two model types for IOD and LIN.

Similarly, seven SNP-based multi-locus models also identified different sets of QTL (Figure 5, Tables
S3 and S4). For all seven traits, a total of 355 unique QTL were obtained using the seven SM models
(Table 2). Models pKWmEB, pLARmEB and pLARmEB identified 133, 130, and 121 QTL, respectively,
followed by ISIS EM-BLASSO (133), FASTmrMLM (96), and FarmCPU (96). FASTmrEMMA identified
the fewest QTL (52). More than half of the QTL (an average 58% across the seven traits) identified by
the seven SM models were detected by different single models, varying from different traits, ranging
from 47.6% (OIL) to 72.4% (LIO). The remaining 42% of the QTL were simultaneously identified by
two or more models. Out of 355 QTL, 194 (54.7%), 55 (15.5%), 45 (12.7%), 26 (7.3%), 16 (4.5%), 14 (3.9%),
and 5 (1.4%) were identified by a single, two, three, four, five, six, and seven models, respectively.
These results indicated that the seven SM models are complementary in QTL identification.
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Figure 4. Venn diagrams of quantitative trait loci (QTL) identified by three types of genome-wide
association study (GWAS) models for all seven traits (A) and individual traits (B–H). SS, SNP-based
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model. YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine
value; LIO, linoleic acid content; LIN, linolenic acid content; SNP, single nucleotide polimorphsm.
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Figure 4. Venn diagrams of quantitative trait loci (QTL) identified by three types of genome-wide 
association study (GWAS) models for all seven traits (A) and individual traits (B–H). SS, SNP-based 
single-locus models; SM, SNP-based multi-locus models; BM, haplotype-block-based multi-locus 
model. YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine 
value; LIO, linoleic acid content; LIN, linolenic acid content; SNP, single nucleotide polimorphsm. 

 
Figure 5. Histograms of quantitative trait loci (QTL) that were identified by one of the seven SNP-based
multi-locus models or simultaneously by two or more models for the seven traits. YLD, seed yield;
DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid
content; LIN, linolenic acid content; SNP, single nucleotide polimorphsm.

2.4. Pleiotropic QTL

Of the 1420 unique QTL identified with all models, 407 were pleiotropic with effects on two or
more traits, of which, 239, 139, 25, and 4 QTL were simultaneously associated with 2, 3, 4, and 5 traits,
respectively. Some QTL for YLD were associated with DTM as well as PRO and OIL, while many QTL
for IOD, LIO, and LIN were co-located (Figure 6). Table 3 lists the number of QTL shared between any
two traits. More than 50% of the QTL were shared between any two of LIO, LIN, and IOD. YLD and
DTM also had 19% of their respective QTL in common.
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Figure 6. Heatmap of pleiotropic effects of 168 quantitative trait loci (QTL) associated with three or 
more traits. YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, 
iodine value; LIO, linoleic acid content; LIN, linolenic acid content. 

Since more pleiotropic QTL were found between YLD and DTM, between PRO and OIL, and 
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the combined QTL of YLD+DTM, PRO+OIL, and IOD+LIO+LIN identified by all statistical models 
(Table 4). The results showed that the combined marker sets of two or three traits yielded a slightly 
higher r estimates for LIO only, but similar or slightly lower estimates than the ones obtained using 
the single-trait QTL markers. This indicated that using QTL from more traits did not improve 
prediction accuracy. Using single-trait QTL marker sets in GS yielded significantly better prediction 
accuracy. 

Table 4. Prediction accuracy (r ± s) of seven traits using all single nucleotide polymorphisms (SNPs) 
and different combinations of quantitative trait loci (QTL) identified by different combinations of 
statistical models. GBLUP was used to estimate r values. 

Traits Models Marker Sets No. of Markers r ± s 
YLD All QTL of YLD 361 0.892 ± 0.023a 

 BM QTL of YLD 323 0.885 ± 0.027a 
 All QTL for YLD + DTM 643 0.879 ± 0.026a 
 BM QTL of all traits 1,208 0.862 ± 0.030b 
 All QTL of all traits 1,420 0.860 ± 0.030b 
 SS+SM QTL of all traits 427 0.850 ± 0.031c 
 - All SNPs 17,277 0.841 ± 0.035d 
 SS+SM QTL of YLD 53 0.807 ± 0.034e 
 SS QTL of all traits 133 0.789 ± 0.045f 
 SS QTL of YLD 8 0.483 ± 0.085g 

DTM All QTL of DTM 351 0.730 ± 0.062a 
 SS+SM QTL of DTM 71 0.720 ± 0.063a 
 BM QTL of DTM 301 0.719 ± 0.066a 
 All QTL for DTM + YLD 643 0.689 ± 0.076b 
 BM QTL of all traits 1,208 0.608 ± 0.083b 
 All QTL of all traits 1,420 0.603 ± 0.088b 
 SS+SM QTL of all traits 427 0.599 ± 0.087b 
 SS QTL of all traits 133 0.497 ± 0.095c 

Figure 6. Heatmap of pleiotropic effects of 168 quantitative trait loci (QTL) associated with three or
more traits. YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD,
iodine value; LIO, linoleic acid content; LIN, linolenic acid content.

Table 3. Numbers of quantitative trait loci (QTL) that were pleiotropic on any two of the seven traits.

Trait YLD DTM PRO OIL IOD LIO LIN

YLD 361 69(19.1,19.7) 28(7.8,10.4) 30(8.3,11.8) 23(6.4,8.1) 17(4.7,6.7) 21(5.8,8.2)
DTM 351 26(7.4,9.7) 29(8.3,11.4) 23(6.6,8.1) 13(3.7,5.1) 14(4.0,5.5)
PRO 269 19(7.1,7.5) 21(7.8,7.4) 17(6.3,6.7) 22(8.2,8.6)
OIL 254 11(4.3,3.9) 9(3.5,3.5) 10(3.9,3.9)
IOD 283 133(47.0,52.4) 162(57.2,63.3)
LIO 254 149(58.7,58.2)
LIN 256

The diagonal values show the number of QTL for individual traits. The two values in parenthesis show percentages
of pleiotropic QTL of the two traits of the corresponding row and column. YLD, seed yield; DTM, days to maturity;
PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid content; LIN, linolenic acid content.

2.5. Genomic Prediction Accuracy

To define the marker sets that generate the best prediction accuracy, we constructed GS models for
the seven traits using GBLUP with three types of markers (all SNPs, QTL of all the traits, and QTL of
single traits). The QTL marker sets were obtained from four different combinations of GWAS models
(SS, SS+SM, BM, and all models, i.e., SS+SM+BM). For the marker type “All SNPs” or the “QTL of all
traits”, the same 17,277 SNPs or the same set of QTL of all seven traits (133, 427, 1208, and 1420 QTL
for SS, SS+SM, BM, and SS+SM+BM, respectively; Table 2) were used for GS model construction of
each trait. However, for the marker type “QTL of single traits”, the specific QTL sets for the respective
traits were used as marker sets (Table 2). A joint analysis of variance (ANOVA) of prediction accuracy
(r) for three factors, namely, traits, GWAS models, and types of markers, was performed. The ANOVA
results showed significant differences among traits, marker types, or marker sets due to GWAS models,
as well as interactions between the three factors (Table S5).

Among the seven traits, the GS models generated the highest r for OIL (0.887 ± 0.058), following
by PRO (0.838 ± 0.072), YLD (0.808 ± 0.126), LIO (0.776 ± 0.074), LIN (0.765 ± 0.083), IOD (0.753 ± 0.085),
and DTM (0.588 ± 0.150). They were all significantly different from each other at a 0.05 probability
level. This trend was consistently observed in terms of QTL identified by different GWAS models
(Figure 7) and in terms of QTL of all or single traits (Figure 8).
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all single nucleotide polymorphisms (SNPs) and quantitative trait locus (QTL) sets identified by 
different statistical models: (A) SNP based single-locus model (SS), (B) SS + SNP based multi-locus 
model (SM), (C) haplotype-block-based model (BM), and (D) all three models of SS+SM+BM (All). 
For each trait, three marker sets were compared for prediction accuracy: All SNPs, QTL of all traits 
(QTL together for all seven traits), and QTL of single traits (QTL for individual traits). Different 
letters represent statistical significance of r values among different types of markers within each trait. 
A tag quantitative trait nucleotide (QTN) for each QTL was used for analyses. YLD, seed yield; DTM, 
days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid content 
(LIO); LIN, linolenic acid content. 

In this study, the seven traits were phenotyped in two locations, Morden and Saskatoon, which 
are representative of the production areas of oilseed flax in Western Canada. To assess the effect of 
location on genomic prediction and whether or not separate GS models should be constructed in 
terms of different locations, we compared the prediction accuracy of models using the phenotypic 
values obtained in Morden and Saskatoon as well as the BLUEs calculated over both locations for the 
three different types of markers and the seven traits. Only the GS models for YLD at Saskatoon and 
PRO at Morden performed significantly better than the others. For all other traits, the prediction 
accuracies were similar regardless of the location-based data set (Tables 5 and S6). Single-trait QTL 
for all seven traits as markers significantly improved prediction accuracy compared to all SNPs or 

Figure 7. Comparisons of genomic prediction accuracy (r ± s) using different marker sets, including all
single nucleotide polymorphisms (SNPs) and quantitative trait locus (QTL) sets identified by different
statistical models: (A) SNP based single-locus model (SS), (B) SS + SNP based multi-locus model (SM),
(C) haplotype-block-based model (BM), and (D) all three models of SS+SM+BM (All). For each trait,
three marker sets were compared for prediction accuracy: All SNPs, QTL of all traits (QTL together for
all seven traits), and QTL of single traits (QTL for individual traits). Different letters represent statistical
significance of r values among different types of markers within each trait. A tag quantitative trait
nucleotide (QTN) for each QTL was used for analyses. YLD, seed yield; DTM, days to maturity; PRO,
protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid content (LIO); LIN, linolenic
acid content.
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Therefore the results obtained herein apply to practical breeding.  
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single traits were used for GS. A tag quantitative trait nucleotide (QTN) for each QTL was used for 
analyses. For each trait, different letters represent statistical significance of r values among different 
GWAS models. YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, 
iodine value; LIO, linoleic acid content (LIO); LIN, linolenic acid content; SNP, single nucleotide 
polymorphism. 

Given a training population in practical breeding, markers will be a critical factor for improving 
prediction accuracy since GS predicts breeding values of selection traits using a set of markers [2]. 
Prediction accuracy directly assesses the efficiency of a marker set in GS. Here, using prediction 
accuracy, we consistently demonstrated that QTL markers outperformed genome-wide random 
SNPs for GS of any traits, further confirming and validating the results observed for pasmo 
resistance using a flax core germplasm collection of 370 accessions [5]. The use of QTL identified by 
GWAS models significantly increased prediction accuracy for all seven traits, from 4% for OIL (from 
0.89 to 0.93) to 29% for DTM (from 0.45 to 0.73) compared to genome-wide random SNPs (Table 4). 

Figure 8. Comparisons of genomic prediction accuracy (r ± s) by different statistical models, including
SNP-based single-locus model (SS), SS+SNP-based multi-locus model (SM), haplotype-block-based
model (BM), and all three models of SS+SM+BM (All), which were used for quantitative trait locus
(QTL) identification. (A) QTL of all traits were used for GS, and (B) QTL of single traits were used
for GS. A tag quantitative trait nucleotide (QTN) for each QTL was used for analyses. For each trait,
different letters represent statistical significance of r values among different GWAS models. YLD, seed
yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic
acid content (LIO); LIN, linolenic acid content; SNP, single nucleotide polymorphism.
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Among the three types of markers, the GS models with the QTL markers (either QTL of all traits
or QTL of single traits) identified by SS+SM, BM or all models had significantly greater r values than
those with all SNPs for all seven traits (Figure 7B–D). An exception was for YLD, DTM, PRO, and OIL
when QTL identified by SS were used (Figure 7A). The GS models using single-trait QTL identified by
SS+SM (Figure 7B), BM (Figure 7C) or all models (SS+SM+BM) (Figure 7D) performed significantly
better than those using QTL of all traits. The average r values of the seven traits were 0.789 ± 0.155,
0.774 ± 0.116, and 0.709 ± 0.134 when using QTL of single traits, QTL for all traits, and all SNPs,
respectively, and they all significantly differed from each other.

Since more pleiotropic QTL were found between YLD and DTM, between PRO and OIL, and
among IOD, LIO, and LIN, we also compared prediction accuracy for all SNPs, single-trait QTL, and
the combined QTL of YLD+DTM, PRO+OIL, and IOD+LIO+LIN identified by all statistical models
(Table 4). The results showed that the combined marker sets of two or three traits yielded a slightly
higher r estimates for LIO only, but similar or slightly lower estimates than the ones obtained using the
single-trait QTL markers. This indicated that using QTL from more traits did not improve prediction
accuracy. Using single-trait QTL marker sets in GS yielded significantly better prediction accuracy.

In terms of QTL marker sets generated by different GWAS models, SS did not identify sufficient
QTL markers from YLD, DTM, PRO, and OIL, thus, resulting in low r values for these four traits
(Table 4, Figure 7A). All GS models using QTL by SS generated lower r values than those using QTL by
BM, SS+SM, or all models for all seven traits (Table 4, Figure 8) except IOD, LIO, and LIN with all-trait
QTL (Figure 8A) and IOD with single-trait QTL (Figure 8B).

BM and SS+SM are two different types of GWAS models. The GS models with QTL identified by
SS+SM outperformed BM for IOD, LIN, LIO, and OIL or had similar prediction accuracy for DTM with
BM. However, for YLD, BM consistently outperformed SS+SM. For PRO, SS+SM had similar or better
performance when all-trait QTL were used (Figure 8A). For the most part, the all-model (SS+SM+BM)
had similar to or better results than SS+SM or BM independently (Figure 8, Table 4). Due to significant
interactions between marker types and marker sets (Table S5), the GS models with the best prediction
accuracy were those using QTL of single traits identified by all GWAS models (SS+SM+BM) for OIL
(0.929 ± 0.016), PRO (0.893 ± 0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for
LIN (0.837 ± 0.053), LIO (0.835 ± 0.049), and IOD (0.835 ± 0.041).

In this study, the seven traits were phenotyped in two locations, Morden and Saskatoon, which
are representative of the production areas of oilseed flax in Western Canada. To assess the effect of
location on genomic prediction and whether or not separate GS models should be constructed in terms
of different locations, we compared the prediction accuracy of models using the phenotypic values
obtained in Morden and Saskatoon as well as the BLUEs calculated over both locations for the three
different types of markers and the seven traits. Only the GS models for YLD at Saskatoon and PRO at
Morden performed significantly better than the others. For all other traits, the prediction accuracies
were similar regardless of the location-based data set (Table 5 and Table S6). Single-trait QTL for all
seven traits as markers significantly improved prediction accuracy compared to all SNPs or all-trait
QTL in terms of different locations (Table 5). For all seven traits, the GS models with single-trait QTL
had significantly greater prediction accuracy than those with all SNPs or all-trait QTL (Table 5).
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Table 4. Prediction accuracy (r ± s) of seven traits using all single nucleotide polymorphisms (SNPs)
and different combinations of quantitative trait loci (QTL) identified by different combinations of
statistical models. GBLUP was used to estimate r values.

Traits Models Marker Sets No. of Markers r ± s

YLD All QTL of YLD 361 0.892 ± 0.023a
BM QTL of YLD 323 0.885 ± 0.027a
All QTL for YLD + DTM 643 0.879 ± 0.026a
BM QTL of all traits 1208 0.862 ± 0.030b
All QTL of all traits 1420 0.860 ± 0.030b

SS+SM QTL of all traits 427 0.850 ± 0.031c
- All SNPs 17,277 0.841 ± 0.035d

SS+SM QTL of YLD 53 0.807 ± 0.034e
SS QTL of all traits 133 0.789 ± 0.045f
SS QTL of YLD 8 0.483 ± 0.085g

DTM All QTL of DTM 351 0.730 ± 0.062a
SS+SM QTL of DTM 71 0.720 ± 0.063a

BM QTL of DTM 301 0.719 ± 0.066a
All QTL for DTM + YLD 643 0.689 ± 0.076b
BM QTL of all traits 1208 0.608 ± 0.083b
All QTL of all traits 1420 0.603 ± 0.088b

SS+SM QTL of all traits 427 0.599 ± 0.087b
SS QTL of all traits 133 0.497 ± 0.095c
- All SNPs 17,277 0.449 ± 0.101d

SS QTL of DTM 28 0.362 ± 0.125e

PRO All QTL of PRO 269 0.894 ± 0.023a
BM QTL of PRO 220 0.890 ± 0.024a
All QTL for PRO +OIL 504 0.879 ± 0.026ab

SS+SM QTL of PRO 51 0.877 ± 0.026b
SS+SM QTL of all traits 427 0.864 ± 0.031c

All QTL of all traits 1420 0.855 ± 0.031d
BM QTL of all traits 1208 0.854 ± 0.030d

- All SNPs 17,277 0.825 ± 0.034e
SS QTL of all traits 133 0.800 ± 0.042f
SS QTL of PRO 31 0.681 ± 0.069g

OIL All QTL of OIL 254 0.929 ± 0.016a
All QTL for PRO + OIL 504 0.927 ± 0.018a

SS+SM QTL of OIL 84 0.919 ± 0.017b
BM QTL of OIL 186 0.911 ± 0.023c

SS+SM QTL of all traits 427 0.909 ± 0.021c
All QTL of all traits 1420 0.909 ± 0.023c
BM QTL of all traits 1208 0.907 ± 0.023c

- All SNPs 17,277 0.889 ± 0.028d
SS QTL of all traits 133 0.845 ± 0.042e
SS QTL of OIL 10 0.762 ± 0.058f

IOD SS+SM QTL of IOD 72 0.835 ± 0.041a
All QTL of IOD 283 0.824 ± 0.046a
All QTL for IOD + LIO + LIN 468 0.825 ± 0.051a

SS+SM QTL of all traits 427 0.801 ± 0.055b
BM QTL of IOD 190 0.752 ± 0.066c
SS QTL of IOD 71 0.746 ± 0.065c
All QTL of all traits 1420 0.745 ± 0.066c
BM QTL of all traits 1208 0.717 ± 0.072d
SS QTL of all traits 133 0.717 ± 0.072d
- All SNPs 17,277 0.639 ± 0.073e

LIO All QTL for IOD + LIO + LIN 468 0.836 ± 0.043a
SS+SM QTL of LIO 87 0.835 ± 0.039a

All QTL of LIO 254 0.834 ± 0.048a
SS+SM QTL of all traits 427 0.817 ± 0.049b

BM QTL of LIO 152 0.812 ± 0.049b
All QTL of all traits 1420 0.770 ± 0.055c
SS QTL of LIO 68 0.765 ± 0.056c

BM QTL of all traits 1208 0.744 ± 0.058d
SS QTL of all traits 133 0.736 ± 0.066d
- All SNPs 17,277 0.672 ± 0.063e

LIN SS+SM QTL of LIN 67 0.837 ± 0.041a
All QTL of LIN 256 0.833 ± 0.051a
All QTL for IOD + LIO + LIN 468 0.830 ± 0.047a

SS+SM QTL of all traits 427 0.809 ± 0.053b
BM QTL of LIN 170 0.792 ± 0.062c
SS QTL of LIN 70 0.756 ± 0.062d
All QTL of all traits 1420 0.755 ± 0.061d
BM QTL of all traits 1208 0.727 ± 0.066e
SS QTL of all traits 133 0.725 ± 0.070e
- All SNPs 17,277 0.649 ± 0.069f

Letters indicate significant difference at α= 0.05 level. Tukey’s multiple range test was used. The highest prediction
accuracy of each trait is highlighted in bold font. SS, SNP-based single-locus model; SM, SNP-based multi-locus
model; BM, block-based model; All, SS+SM+BM; seed yield; DTM, days to maturity; PRO, protein content; OIL, oil
content; IOD, iodine value; LIO, linoleic acid content; LIN, linolenic acid content.
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Table 5. Genomic prediction accuracy (r ± s) of seven traits affected by different locations.

Trait
Overall Saskatoon, Saskatchewan Morden, Manitoba

17,277 SNPs All-Trait QTL Single-Trait QTL 17,277 SNPs All-Trait QTL Single-Trait QTL 17,277 SNPs All-Trait QTL Single-Trait QTL

YLD 0.84 ± 0.03 ij 0.86 ±0.03 h 0.89 ± 0.02 efg 0.88 ± 0.02 g 0.89 ± 0.02 defg 0.91 ± 0.02 cde 0.79 ± 0.04 n 0.82 ± 0.04 lm 0.85 ± 0.04 hij
DTM 0.45 ± 0.10 x 0.60 ± 0.09 v 0.73 ± 0.06 q 0.51 ± 0.09 w 0.61 ± 0.08 v 0.70 ± 0.07 r 0.32 ± 0.12 y 0.52 ± 0.11 w 0.67 ± 0.07 s
PRO 0.82 ± 0.03 klm 0.86 ± 0.03 hi 0.89 ± 0.02 defg 0.81 ± 0.04 mn 0.84 ± 0.03 ijk 0.89 ± 0.02 fg 0.88 ± 0.02 fg 0.90 ± 0.02 cdef 0.91 ± 0.02 bcd
OIL 0.89 ± 0.03 fg 0.91 ± 0.02 cd 0.93 ± 0.02 a 0.89 ± 0.03 defg 0.91 ± 0.02 bcd 0.93 ± 0.02 ab 0.88 ± 0.03 g 0.90 ± 0.02 cdef 0.92 ± 0.02 abc
IOD 0.64 ± 0.07 tu 0.75 ± 0.07 p 0.82 ± 0.05 klm 0.63 ± 0.07 u 0.74 ± 0.06 pq 0.82 ± 0.05 lm 0.66 ± 0.07 st 0.75 ± 0.06 op 0.83 ± 0.04 jklm
LIO 0.67 ± 0.06 s 0.77 ± 0.05 o 0.83 ± 0.05 jkl 0.67 ± 0.06 s 0.77 ± 0.05 o 0.83 ± 0.05 jklm 0.67 ± 0.06 s 0.77 ± 0.05 o 0.83 ± 0.05 jkl
LIN 0.65 ± 0.07 tu 0.75 ± 0.06 op 0.83 ± 0.05 jkl 0.65 ± 0.07 tu 0.75 ± 0.06 op 0.82 ± 0.05 klm 0.65 ± 0.07 stu 0.76 ± 0.06 op 0.84 ± 0.05 jkl

The highest prediction accuracy among different marker types is highlighted in bold font. Single-trait QTL, quantitative trait loci (QTL) identified using all models for a specific trait, i.e., a
different marker set for each trait; All-trait QTL, all unique QTL identified using all models from all seven traits, i.e., the same marker set for all seven trait; Overall, phenotype BLUEs over
four years and two locations, Morden, Manitoba and Saskatoon, Saskatchewan; YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO,
linoleic acid content; LIN, linolenic acid content; SNP, single nucleotide polymorphism. The letters after r ± s values represent statistical significance of r values among 63 combinations of
seven traits, three marker sets, and three location levels (two locations plus overall BLUEs over two locations).
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3. Discussion

A good training population in GS has a strong relationship with the test populations in breeding
and may include germplasm genotypes for parent selection or breeding lines for offspring selection. In
the present study, all lines used for GS evaluation were derived from three bi-parental crosses [30,31].
The two parents of the first cross were Canadian high-yielding conventional linseed cultivars with high
LIN of 55–57% (CDC Bethune and Macbeth). The second population resulted from a cross between a
low LIN breeding line (E1747) and a European fiber flax cultivar with ~55% LIN (Viking). The third
cross had two parents of a yellow-seeded and low LIN (2–3%) cultivar (SolinTM SP2047) and a high
LIN breeding line with 63–66% LIN (UGG5-5). Therefore, this genetic panel exhibited diversity in
genetic variation in major breeding selection traits [30,31]. Although these breeding lines were derived
from a few parents, they are close to breeding populations. Therefore the results obtained herein apply
to practical breeding.

Given a training population in practical breeding, markers will be a critical factor for improving
prediction accuracy since GS predicts breeding values of selection traits using a set of markers [2].
Prediction accuracy directly assesses the efficiency of a marker set in GS. Here, using prediction
accuracy, we consistently demonstrated that QTL markers outperformed genome-wide random SNPs
for GS of any traits, further confirming and validating the results observed for pasmo resistance using
a flax core germplasm collection of 370 accessions [5]. The use of QTL identified by GWAS models
significantly increased prediction accuracy for all seven traits, from 4% for OIL (from 0.89 to 0.93) to
29% for DTM (from 0.45 to 0.73) compared to genome-wide random SNPs (Table 4). The reasons that
QTL outperformed genome-wide random SNPs are likely a reduction in background noises or as a
consequence of reduced multi-collinearity due to the removal of unrelated markers.

Many statistical models of GWAS have been proposed to identify QTL. In this study, we
investigated three types of models, including two SS, seven SM, and one BM, totaling ten different
models. However, it seemed that different models generated varying sets of QTL in which only a small
portion of QTL was shared by two or more models (Figures 4 and 5, Table S4). Similar results were
also obtained in the previous study of QTL identification for pasmo resistance in flax, where the same
SS and SM models were used [10]. The two SS methods (GLM and MLM) identified only 133 QTL for
all seven traits, accounting for 9% of 1420 QTL, whereas the seven SM methods identified 355 QTL,
accounting for 25% of the total QTL. One haplotype block-based model, RTM-GWAS, identified a total
of 1208 QTL alone (85%), three times the total QTL identified by the nine SNP-based models (SS+SM).
A haplotype-block-based GWAS is expected to increase power relative to SNP-based approaches,
resulting in a higher number of QTL identified. First, the block-based approach reduces the dimension
of association testing when a single global test for a block is used and thus preserves power and helps
maintain reasonable false-positive rates. Second, a haplotype method also captures associations of
nearby SNPs that would have been otherwise missed with an SNP-by-SNP approach [32]. Because
different algorithms and assumptions are adopted in different models, their QTL results may be
complementary in GS.

We evaluated the performance of different sets of QTL markers identified by different models
via prediction accuracy. The results indicated that two SS models did not identify sufficient QTL for
YLD, DTM, PRO, and OIL, resulting in low prediction accuracy as compared with all SNPs, whereas
SS+SM+BM or SS+SM identified sufficient QTL to yield the highest prediction accuracies for all seven
traits, strongly suggesting that the advantages of different statistical models are complementary and
the combined results from different models improve prediction accuracy. In terms of the number
of QTL identified and prediction accuracy, the combined use of SNP-based models (SS+SM) was
superior to other models or their combinations since only a small number of QTL were identified by
SS+SM compared to BM, but similar or better prediction accuracies were obtained for most traits. The
QTL identified by BM was three times greater than those identified by SS+SM, but BM significantly
outperformed SS+SM only for YLD and PRO. While BM and SS+SM had similar prediction accuracies
for DTM, SS+SM was significantly superior to BM for the remaining four traits: OIL, IOD, LIO, and
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LIN (Table 4). These results implied that the combined use of different GWAS models facilitates the
identification of a potentially complete set of QTL associated with the traits, but some of them may be
redundant or possibly false positives. Therefore, further investigations to design a methodology to
identify and remove the redundant or false-positive QTL that would maximize prediction accuracy
and minimize the number of QTL markers in GS are warranted.

The heritability of a trait is an important factor that affects the efficiency of genomic selection over
traditional phenotypic selection. Generally, high prediction accuracies are more easily achieved with
high heritability traits [8]. Conversely, genomic selection is likely more beneficial for traits with low
heritability [33,34]. In this study, the broad-sense heritability (H2), representing the extent with which
the performance of a trait is affected by the environment, was estimated for the seven traits (Table 6).
Compared to the maximum prediction accuracy (r) of each trait, the H2 of the traits did not exhibit
a consistent relationship with prediction accuracy. OIL with a moderate estimate (0.69) produced
the highest prediction accuracy (0.93). The three fatty acid composition related traits, LIO, LIN, and
IOD, had a relatively high H2 values (0.81–0.83) and a similarly high prediction accuracy. Albeit with
low heritability, YLD (0.44) and PRO (0.20) generated the second-highest prediction accuracy (0.89).
However, considering the relative efficiency of genomic prediction over phenotypic selection (RE),
which is defined as r/ H2 [35], the traits with a low H2 had a high RE, exhibiting a strong negative
correlation (Table 6). Especially YLD with H2 of 0.2 generated as high as 4.45 times selection efficiency
over phenotypic selection, demonstrating more benefits of GS for low heritability traits. Based on RE,
GS for YLD, DTM, PRO and OIL outperformed phenotypic selection, whereas GS for IOD, LIO and
LIN were equivalent to or slightly better than phenotypic selection. A similar trend for YLD, OIL,
IOD, LIO and LIN was also observed when a limited number of microsatellite markers were used [30].
Compared to H2, the prediction accuracy of a trait was more dependent on genomic heritability that
represents a proportion of additive genetic variation explained by the markers (Table 6). In other
words, prediction accuracy mostly depends on whether the marker set contains sufficient QTL to
contribute to the total variation of the phenotypes, or whether all related QTL have been identified
from the marker set if QTL markers are used in GS models.

Table 6. Broad-sense and genomic heritability of seven traits.

Trait
Broad-Sense
Heritability

(H2)

Genomic
Heritability

Based on Single
Trait QTL (h2)

Genomic
Heritability Based
on 1420 QTL of 7

Traits (h2)

Genomic
Heritability

Based on 17,277
SNPs (h2)

Maximum
Perdition

Accuracy (r)

Relative
Efficiency

(r/H2)

YLD 0.20 ± 0.02 0.68 ± 0.06 0.62 ± 0.08 0.62 ± 0.09 0.89 ± 0.02 4.45
DTM 0.49 ± 0.03 0.58 ± 0.08 0.59 ± 0.09 0.46 ± 0.11 0.73 ± 0.06 1.49
PRO 0.44 ± 0.04 0.71 ± 0.08 0.62 ± 0.08 0.62 ± 0.09 0.89 ± 0.02 2.02
OIL 0.69 ± 0.03 0.66 ± 0.06 0.72 ± 0.07 0.73 ± 0.07 0.93 ± 0.02 1.35
IOD 0.81 ± 0.02 0.73 ± 0.05 0.73 ± 0.07 0.72 ± 0.07 0.84 ± 0.04 1.04
LIO 0.84 ± 0.02 0.73 ± 0.05 0.74 ± 0.07 0.74 ± 0.07 0.84 ± 0.04 1.00
LIN 0.83 ± 0.02 0.76 ± 0.05 0.73 ± 0.07 0.73 ± 0.07 0.84 ± 0.04 1.01

YLD, seed yield; DTM, days to maturity; PRO, protein content; OIL, oil content; IOD, iodine value; LIO, linoleic acid
content; LIN, linolenic acid content; SNP, single nucleotide polymorphism; QTL, quantitative trait loci.

Pleiotropy of genes has been thought to be the molecular basis of trait genetic correlation. We
have identified highly significant correlations between YLD and DTM, between PRO and OIL, and
among IOD, LIO, and LIN (Table S7) [30,31]. Correspondingly, we also identified many pleiotropic
QTL between these traits in the present (Table S2 and Table 3, Figure 5) and previous studies [31],
suggesting that different traits may be genetically controlled by the same or tightly linked genes/QTL.
Our hypothesis is that if some QTL are pleiotropic to two or more traits, all the QTL identified from
genetically-related traits could be used as markers in GS to improve prediction accuracy. Therefore, we
evaluated GS accuracy of different marker sets, including QTL of single traits, QTL of all seven traits,
and QTL of some combinations of related traits (YLD+DTM, PRO+OIL, IOD+LIO+LIN). Our results
rejected the hypothesis, indicating that QTL from pleiotropic traits did not improve GS accuracy for
any of the seven traits. However, this does not necessarily signify that the pleiotropic QTL do not have
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a role in improving GS accuracy because QTL identified from each single trait already includes QTL
pleiotropic to other traits and additional unrelated QTL from other traits thereby reducing prediction
accuracy as a consequence of redundancy or background noise. Thus, our results strongly suggest
that QTL from single traits can not only significantly improve prediction accuracy but also reduce the
number of markers, which in turn would decrease genotyping cost in practical breeding programs
compared with the use of all SNPs or QTL of all traits or QTL of any trait combinations.

Significant genotype by environment (GXE) interactions (Table S1, Figure 1) hinted at the potential
need for separate GS models for different breeding target regions in order to maximize GS accuracy.
We constructed separate GS models for two locations: Saskatoon and Morden, using phenotypic data
observed from the two locations as well as GS models using BLUEs over years and locations. Only the
GS models for YLD at Saskatoon and PRO at Morden had higher GS accuracies than any of the other
models because these two traits had the largest GXE interaction, although significant GXE interactions
also existed for the other five traits (Table S1). This suggested that genomic selection based on BLUEs
over years and locations is suitable for traits with moderate or no GXE, but higher accuracies are
obtained if GS is performed using by location for traits with high GXE.

GS applied in practical breeding requires not only a high prediction accuracy but also an acceptable
cost. Although GBS is a most popular genotyping approach to obtain high density genome-wide
random SNPs, it is not an efficient genotyping approach for GS. It generates a large number of unused
SNPs. The cost is also a limiting factor for a GS scheme with a large genome, such as wheat. In addition,
it is prone to generate missing data in low-coverage sequencing. Recently, some new target-oriented
genotyping methods have been developed for breeding, such as genotyping by target sequencing
(GBTS) [36], and RAD capture (Rapture) [37]. These methods enable low-cost, high-read coverage
genotyping of target loci, and also allow previous training data based on non-captured GBS to be
fully compatible with new rapture data [38]. Using GBTS, for example, only USD 12.36 per sample
for 5000 target markers of the 2.3 Gb maize genome was needed [36], a much cheaper option than
GBS [4,39]. The Rapture assay consistently outperformed the GBS assay, and its cost per sample
was approximately 40% less than GBS in oat, a crop with a genome size of 12.5 GB [38]. Therefore,
QTL identification by single-locus and multi-locus GWAS models combined with new target-oriented
genotyping methods facilitate the implementation of a highly efficient genomic selection scheme in
modern plant molecular breeding.

4. Materials and Methods

4.1. Plant Materials, SNPs and Phenotypic Data

A total of 260 lines derived from three different bi-parental populations was used as a genotype
panel for the association study and genomic selection evaluation. These lines consisted of 97 F6-derived
recombinant inbred lines (RILs) generated by single seed descent from a cross between two Canadian
high-yielding conventional linseed cultivars CDC Bethune and Macbeth, 91 F6-derived RILs from a
cross between a low LIN breeding line E1747 and a French fiber flax cultivar Viking, and 72 F1-derived
doubled haploid (DH) lines obtained from a cross between two breeding lines SP2047 (low LIN, 2–3%)
and UGG5-5 (high LIN, 63–66%). The details have been previously described [30,31].

Reduced representation libraries from the 260 lines were re-sequenced by the Michael Smith
Genome Sciences Centre of the BC Cancer Agency, Genome British Columbia (Vancouver, BC, Canada)
using 100-bp paired-end reads on an Illumina HiSeq 2000 platform (Illumina Inc., San Diego, CA, USA)
as previously described [40]. The short reads were aligned to the flax scaffold sequences of cultivar CDC
Bethune [41], and SNPs were called and filtered using the revised AGSNP pipeline [40,42,43]. Final
SNPs with a MAF ≥ 0.01 and a genotyping rate ≥ 60% were used for further imputation using Beagle
v.4.2 [44] to estimate missing data. The coordinates of all SNPs based on scaffolds were converted to
the new chromosome-based flax pseudomolecules v2.0 [45].
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All lines were evaluated in field trials over four years (2009–2012) at two sites, Morden Research and
Development Centre, Manitoba (MD) and Kernen Crop Research Farm near Saskatoon, Saskatchewan
(SAS) in Canada. A type-2 modified augmented design (MAD) [46] was used for the field experiments
from which phenotypic data were collected. The detailed experimental design was previously
described [30,31,47]. Seven major breeding selection traits were evaluated, including YLD, DTM, PRO,
OIL, IOD, LIO, and LIN. The methods and criteria used for the evaluation of these traits are detailed
in [31]. All phenotypic data from the field experiments and laboratory measurements were adjusted
for soil heterogeneity, as previously described, based on the MAD pipeline [47]. The BLUE values over
multiple environmental phenotypes estimated using TASSEL [48] were used for further association
study analyses. The Shapiro–Wilk normality test was performed for all traits using the R function
“shapiro.test”. All seven traits followed approximately a normal or mixed normal distribution.

4.2. Identification of Haplotype Blocks

The software RTM-GWAS [26] was used in identifying haplotype blocks. RTM-GWAS provides
a function module to group sequential SNPs into linkage disequilibrium blocks (SNPBDBs), using
the block-partitioning approach with confidence interval based on genome-wide D’ pattern [49]. The
software requires SNP data in VCF format. The default values for all the other parameters were used,
including the minimum minor haplotype frequency (0.01), and the maximum length of blocks (100 kb).

4.3. QTL Identification

Three types of GWAS models were used to identify putative QTNs associated with the seven traits.
These models included two traditional SNP-based single-locus models (GLM [12] and MLM [13]),
seven SNP-based multi-locus models (pLARmEB, pKWmEB, FASTmrMLM, FASTmrEMMA, ISIS
EM-BLASSO, and mrMLM implemented in the R package mrMLM, https://cran.r-project.org/web/

packages/mrMLM/index.html, and FarmCPU [20] implemented in the R package MVP, https://github.
com/XiaoleiLiuBio/MVP), and one haplotype block-based model RTM-GWAS [26]. Kinship genetic
relationship matrix was estimated using the protocol suggested by each GWAS software package.
The population structure of the 260 lines was estimated using principal component analysis (PCA)
using TASSEL [48], and the first five principal components (PCs) accounting for 72.35% of the total
variation were chosen as covariates in all GWAS models. GWAS were conducted separately for each
phenotype data sets from the four individual years and two locations and the BLUE dataset over years
and locations for each trait to identify all stable or environment-specific QTL. Thus, all QTNs from
different phenotype data sets were merged for analyses.

For GLM, MLM, and FarmCPU, the threshold of significant marker-trait associations was
determined by a critical p-value (α = 0.05) subjected to Bonferroni correction, i.e., the corrected p-value
= 2.89 × 10−6 (0.05/17,277 SNPs). For the six models implemented in the mrMLM R package, a log
of odds (LOD) score of three was used to detect robust marker–trait association signals for these
six methods.

The identified QTNs were further grouped into QTN clusters or QTL based on the haplotype
blocks generated by RTM-GWAS. The SNPs within the same block were treated as a QTN cluster or a
QTL. The QTN with the largest R2 within a QTN cluster was selected as a tag QTN for that cluster
or QTL.

4.4. Genomic Selection (GS) Models and Evaluation

The statistical model Genomic BLUP (GBLUP) implemented in the R package BGLR [50] was
used to evaluate prediction accuracy for different marker sets. The computation procedures of GBLUP
have been described in detail [51,52]. When preparing QTL marker data for model construction, the
positive-effect allele of the tag QTN/SNP of a QTL was coded “1” and the alternative allele “−1”.
Similarly for the SNP marker set, the reference allele of an SNP was coded “1” and the alternative allele

https://cran.r-project.org/web/packages/mrMLM/index.html
https://cran.r-project.org/web/packages/mrMLM/index.html
https://github.com/XiaoleiLiuBio/MVP
https://github.com/XiaoleiLiuBio/MVP


Int. J. Mol. Sci. 2020, 21, 1577 17 of 21

“−1”. Missing data were coded “0”. The EM algorithm implemented in the R package rrBLUP [53] was
used to impute the missing marker data.

The five-fold random cross-validation was used to evaluate GS models. The 260 lines were
randomly partitioned into five subsets. For a given partition, each subset was, in turn, used as
test data, while the remaining four subsets were used as a training dataset. This partitioning was
repeated 50 times. The accuracy of the genomic predictions (r) was defined by the Pearson correlation
coefficient between the GBEV values predicted by GS and the observed phenotypic values. To compare
GS models constructed from different markers, a joint analysis of variance with Tukey’s multiple
pairwise-comparisons (HSD.test function) was performed to test the statistical significance of differences
in r values using the R package agricolae (https://cran.r-project.org/web/packages/agricolae/index.html).

4.5. Estimation of Broad-sense and Genomic Heritability

Broad-sense heritability of phenotypes for the traits was estimated using the inter-environment
correlation method [54]. Genomic heritability of the traits is a molecular marker based heritability
parameter that explains a portion of the additive genetic variance (σ2

A): h2 = σ2
A/(σ2

A+σ2
e ). It was

estimated using the R package sommer with the GBLUP model [55].

5. Conclusions

In this study, we adopted a set of genomic and phenotypic data, including 260 lines derived from
bi-parental populations, 17,277 genome-wide random SNPs, and phenotypes of seven major breeding
selection traits in flax, which were evaluated in four years and two locations, to find optimal markers
for maximizing prediction accuracy and minimizing cost of genotyping in breeding selection for these
important traits. Our results confirmed and validated that the use of QTL significantly increases
prediction accuracy compared to genome-wide random SNPs and cuts down the cost of genotyping of
test populations since the number of markers used in GS models have been dramatically reduced to a
magnitude of dozens to hundreds rather than a scale of thousands, even hundreds of thousands. In the
evaluation of GS models, we compared QTL identified by different types of GWAS models and also
QTL from a single trait or QTL from all traits. The results indicated that the highest prediction accuracy
of individual traits was obtained by using QTL of respective traits identified by SS+SM+BM or SS+SM,
rather than using all genome-wide random markers or QTL of all seven traits. In terms of the number
of QTL identified and prediction accuracy, SS+SM outperformed other models or their combinations
for most traits. Our work demonstrates that the combined use of single- and multi-locus GWAS
models can identify sufficient QTL of traits and significantly improve prediction accuracy, but some
redundancy or false-positives may exist in QTL identified by some GWAS models, especially in those
by BM. Therefore, further investigation of detection and removal of the redundant or false-positive
QTL to maximize prediction accuracy and minimize the number of QTL markers in GS is warranted.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1577/
s1. Table S1. Results of analysis of variance (ANOVA) for the seven traits; Table S2. Quantitative trait nucleotides
(QTNs)/quantitative trait loci (QTL) identified for the seven traits; Table S3. Average allele effects of quantitative
trait loci (QTL) identified by different statistical models for all the seven traits; Table S4. Summary statistics of
quantitative trait loci (QTL) identified by seven multi-locus models for the seven traits; Table S5. Analysis of
variance for genomic prediction accuracy (r) of genomic selection models constructed by different traits, statistical
models and marker sets; Table S6. Analysis of variance (ANOVA) for genomic prediction accuracy (r) in terms of
locations (Morden and Saskatoon, Canada, average of two locations), traits (YLD, DTM, PRO, OIL, IOD, LIO
and LIN), and marker types (all SNPs, QTL of single traits and QTL of all traits); Table S7. Pearson correlation
coefficients of phenotypes among the seven traits.
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Abbreviations

DTM days to maturity
GBS genotype by sequencing
GEBV genomic estimate of breeding value
GWAS genome-wide association study
IOD iodine value
LD linkage disequilibrium
LIN linolenic acid
LIO linoleic acid
MAF minor allele frequency
OIL oil content
QTN quantitative trait nucleotide
QTL quantitative trait locus/loci
SNP single nucleotide polymorphism
YLD seed yield
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