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Abstract

Studies of the neural basis of human pain processing present many challenges because of

the subjective and variable nature of pain, and the inaccessibility of the central nervous sys-

tem. Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), have

provided the ability to investigate these neural processes, and yet commonly used analysis

methods may not be optimally adapted for studies of pain. Here we present a comparison of

model-driven and data-driven analysis methods, specifically for the study of human pain

processing. Methods are tested using data from healthy control participants in two previous

studies, with separate data sets spanning the brain, and the brainstem and spinal cord. Data

are analyzed by fitting time-series responses to predicted BOLD responses in order to iden-

tify significantly responding regions (model-driven), as well as with connectivity analyses

(data-driven) based on temporal correlations between responses in spatially separated

regions, and with connectivity analyses based on structural equation modeling, allowing for

multiple source regions to explain the signal variations in each target region. The results are

assessed in terms of the amount of signal variance that can be explained in each region,

and in terms of the regions and connections that are identified as having BOLD responses

of interest. The characteristics of BOLD responses in identified regions are also investi-

gated. The results demonstrate that data-driven approaches are more effective than model-

driven approaches for fMRI studies of pain.

Introduction

Pain is complex and highly subjective, being an emotional and cognitive response to nocicep-

tive signaling, and varying with a person’s environment and mental state [1, 2]. Pain serves an

important purpose of motivating us to protect ourselves from injury, and to protect an injury

while it heals. However, it can have devastating effects when it is maladaptive and occurs in the
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absence of noxious input, or is disproportionate to noxious or sensory stimuli. As a result,

pain presents challenges for clinical and basic research. In spite of its impact, our understand-

ing of the neural processes underlying pain is still quite limited [3].

In the 1960s major advances were realized as a result of electrophysiological studies in the

brainstem (BS) and spinal cord (SC) [1, 4, 5]. These studies identified the importance of

descending regulation of nociceptive responses in the SC, and their influence on the pain a

person experiences. Pain research has been further advanced by the development of functional

neuroimaging, such as functional magnetic resonance imaging (fMRI), but the focus of pain

research with fMRI shifted to the cortex due to the technical challenges of imaging the BS and

SC. While these studies have added substantially to our understanding of pain (for example

[6–9]), it has become clear that cortical areas identified as being involved with pain processing

are involved with many functions, such as salience, and are not specific to pain [8, 10]. Func-

tional MRI methods have been adapted for the BS and SC and the studies to date have identi-

fied regions that are involved with pain processes. These studies have added to our

understanding of descending regulation of the SC, and have shown that it is a dynamic process

that is influenced by cognitive and emotional factors (placebo, nocebo, mood, music), and that

blood oxygenation-level dependent (BOLD) signal variations can be detected in a resting-

state, and in advance of noxious stimuli [11–33]. The latter were observed to be correlated

with individual pain ratings to the stimuli which followed, and suggest the influence of pain

anticipation in these regions [30, 31, 33, 34].

These studies also demonstrate the challenge for functional MRI analysis; how can we iden-

tify regions with BOLD responses to noxious stimuli, when we cannot predict the resulting

BOLD responses in each person, and each situation? It is the differences in BOLD responses

between individuals, or study groups, that are of interest for pain research, and these differ-

ences are not limited to the magnitude of the BOLD response with a fixed temporal pattern.

The differences can include dynamic variations related to the myriad effects described above.

It is possible that the limitations of using conventional model-based fMRI analysis methods

(i.e. fitting time-series data to a predicted response) has resulted in important aspects of

human pain responses going undetected. We therefore proposed to adapt data-driven fMRI

analysis methods for pain studies, in order to detect the temporal patterns of BOLD responses.

The objective of this study was to compare model-driven and data-driven fMRI analysis meth-

ods, using fMRI data from healthy participants in order to investigate the use of such methods,

and identify their strengths and limitations. The data sets used span both the brain, and the BS

and SC, in separate data sets, acquired with methods that were optimized for each region, and

duplicate data sets are used in order to verify the performance of the methods that are

compared.

Materials and methods

Functional MRI analysis approaches

Although the fMRI analysis methods to be compared are well-established and have been

described in detail previously, we briefly describe the methods here in order to provide back-

ground for non-experts in fMRI theory, and to explain the approach and rationale for the pres-

ent study.

Model-driven analysis (fit to a predicted model). One of the first fMRI analysis methods

[35, 36], and still likely the most widely-used for task-based fMRI studies, consists of predicting

BOLD response patterns of interest, and identifying which voxels have time-series responses

that sufficiently match this predicted pattern. The concept is that we impose a model of the

BOLD pattern we are looking for, and determine the anatomical locations where it occurs. In
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the simplest model, a single predicted BOLD response, PBOLD (which is a function of time),

can be modelled as the expected variation in signal over time, with an average value of zero,

and a peak-to-peak amplitude of 1 (for simplicity). The measured time-series MRI signal from

a voxel, S, (also a function of time) can then be modelled as S = β1 PBOLD+β0+err. Expressed in

this form, β1 represents the magnitude of the fit BOLD response, and β0 is the average value of

S. The “err” term is the residual signal variation that is not accounted for by the model. Calcu-

lating the fit of the measured data to the model determines the values of β1 and β0, and the

standard errors of these values. The larger the values in the “err” term, the greater the standard

errors of the β values (i.e. the worse the fit). The “null hypothesis” is that β1 = 0, and if the prob-

ability of this being true is low enough, then the alternative hypothesis is inferred to be true,

and S is concluded to have a significant component that corresponds with the predicted BOLD

response. That is, the voxel response is significant, and β1 is the magnitude of the predicted

BOLD response. It is not necessary for the measured data to describe every detail of the pre-

dicted BOLD response pattern, but it is necessary to measure data at times with different pre-

dicted values (such as high and low values).

Data-driven analysis (connectivity analysis). The alternative to modeling the BOLD

response and identifying regions where it occurs, is to identify MRI signal variations in time

which are related across spatially separated anatomical regions, and are therefore inferred to

be physiologically relevant. In the context of fMRI data, these signal variations are assumed to

be BOLD if they occur consistently, and in relevant anatomical regions. Even though the

BOLD pattern(s) may be unknown or unpredictable, they can be identified based on the rela-

tionships between regions and anatomical information. While these methods are most often

used to analyze resting-state fMRI data, they can also be applied to task-based data. Relation-

ships between pain processing and BOLD responses or dynamic variations in connectivity can

be identified with retrospective analysis of how they relate to the timing of noxious stimuli in a

task-based study. While there are a number of data-driven analysis methods available [37], for

the present comparison we focus on functional connectivity analyses. Connectivity analyses

are based on the concept that BOLD signal variations are related to changes in metabolic

demand, which is driven by pre-synaptic input signaling to a region [38]. If two regions have

temporally related input signaling, then their BOLD responses are similarly related.

The simplest form of connectivity analysis is to calculate the temporal correlation between

all pairs of voxels in an fMRI data set [39, 40]. This produces a large number of results, which

must be assessed in relation to the anatomical locations of significantly connected voxels. This

approach can be simplified by first identifying clusters of voxels which are spatially contiguous

and have similar MRI time-series responses (and therefore similar function). Correlations can

then be computed between all pairs of clusters. Similarly, the analysis can be limited to ana-

tomical regions of interest, and can be applied on a voxel-by-voxel or cluster-by-cluster level.

However, this method imposes the assumption that a significant portion of the variance in

a voxel/cluster time-series response can be explained by the time-series response in a single

other region. In order to allow more flexibility, the time-series response in a region may be

explained by the responses in two, or more, other regions. For example, if region A has a time-

series response, SA, and we want to test if this response can be explained by two other regions,

B and C, then we can use the model SA = βBASB+βCASC+err. This method is a form of Struc-

tural Equation Modeling (SEM) [41, 42] and requires some a priori knowledge (described

below) of the anatomical regions that we want to model as the “target” regions and the

“source” regions. The resulting fit provides the values of βBA and βCA, which reflect the con-

nectivity to A, from B and C, respectively. Fitting BOLD responses in a target region to BOLD

responses in multiple sources, guided by the known neuroanatomy, enables the direction of

the connectivity to be inferred. For example, the value of βBA with A as the target and B as one
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of the sources, is generally expected to be different than the value of βAB, with B as the target

and A as one of the sources. However, the calculated connection strengths are estimates, as

they are influenced by whether or not the time-series responses SB and SC are independent, or

are themselves correlated. The added flexibility of the method also adds to the possible com-

plexity of the results, with the potential for more information being obtained.

Comparisons of analysis approaches

In the present study, model-driven and data-driven analysis methods were compared for the

purpose of detecting pain processing in fMRI data from healthy human participants, in data

sets from two prior studies which each spanned the brain and the BS/SC. However, the com-

parisons were limited to a selected set of analysis parameters for practical purposes. It is not

possible to test every permutation of all methods. Functional MRI data from healthy partici-

pants were pre-processed to remove noise and confounds as much as possible. Clusters of vox-

els were identified within selected regions of interest based on the entire data set. Once the

clusters were defined, cluster data were extracted for each participant/condition. The fMRI

data acquisition, pre-processing, and clustering methods, are detailed below. All of the analysis

methods being compared were applied to the same cluster data. The methods include 1)

Model-driven fit to a predicted BOLD response, 2) Data-driven correlation between clusters,

3) Data-driven SEM with one source region, and 4) Data-driven SEM with two source regions.

The significance of results was assessed in terms of the whether or not group-level fit parame-

ters were significantly different than zero, whether connectivity accounted for a significant

amount of variance in each region, and whether fit parameters were significantly correlated

with pain ratings. The methods were compared using the amount of signal variance that could

be explained in each region, and the numbers of regions that were identified as having BOLD

responses.

Data sets from prior studies
Data for this comparison of analysis methods were anonymized data obtained from the healthy

control groups in two previous fMRI studies by our lab. These studies were reviewed and

approved by the Health Sciences Research Ethics board at Queen’s University. All participants

provided informed written consent, prior to participating.

The data from each participant, in both studies, were obtained spanning the entire brain in

one imaging session, and spanning the BS and cervical SC in another session. Some partici-

pants either did not return for two sessions or technical difficulties resulted in data being col-

lected from only one region (brain or BS/SC). Although these studies shared common features

with respect to their aims and study designs, there are some differences as detailed below. The

datasets were not combined, but rather were used as duplicate independent analyses to con-

firm our findings. In order to differentiate the two datasets, the first study, which was con-

ducted between 2013–2014, will be referred to as ‘Study 1’, and the second study, conducted

between 2018–2019, will be referred to as ‘Study 2’. Full details of the methods used for Study 1

have been previously published [11].

Participant recruitment

Study 1. Healthy women were recruited from the local community and completed the

study as a control group. All participants were free of previous neurological injury or disease,

and were free of any contraindications for MRI. The study group consisted of 15 women (age

range = 21–55, average 39.1 ± 10.2 years (mean ± std)).
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Study 2. Healthy women were again recruited from the local community, and completed

the study as a control group, and were again free of any previous neurological injury or disease,

or any contraindications for MRI. This group consists of 18 women (age range = 21–59, aver-

age 36 ± 11.3 years).

Participant characteristics and study preparation

Participants in both studies were characterized by completing questionnaires to assess anxiety,

depression, pain catastrophizing, social desirability, and health-related factors, but these data

are not used for the present analysis. Prior to fMRI data collection, each participant underwent

a 1-hour training session, during which they were introduced to the experimental pain stimu-

lus and study design, and were trained how to rate their pain using a standardized numerical

pain intensity scale (NPS). The scale ranges from 0 to 100 in increments of 5, with verbal

descriptors at increments of 10 [11, 43]. In both studies, the stimulus consisted of heat applied

briefly to the skin overlying the thenar eminence (base of the thumb) on the right hand. The

stimulus devices, temperatures, and timings, were different for the two studies, as detailed

below. A series of calibration tests with varying stimulus temperatures (between 40˚C and

52˚C) were conducted so that participants could become accustomed to the thermal stimula-

tion, and study procedures. The stimulus temperature was calibrated in order to elicit a rating

of 50 ± 10 NPS units for the participant. The goal was to have every participant subjectively

feel a similar intensity of pain. Participants also underwent a practice fMRI run in a mockup of

our MRI system in order to add to their familiarity with the procedures and environment, and

reduce potential anxiety. The pain ratings reported by participants consistently varied between

the training and imaging portions of the study, and varied across fMRI acquisitions, resulting

in a range of pain ratings in spite of the training and calibration efforts.

FMRI paradigm

Study 1. Heat stimuli were applied to the hand by means of an MRI-compatible Peltier

thermode (Medoc1, Ramat Yishai, Israel), which was attached to the participant’s right hand,

overlying the thenar eminence. During heat stimulation, the temperature was rapidly

increased and decreased under computer control. Imaging runs were separated into two study

conditions: temporal summation of second pain (TSSP) and TSSP-Control (TSSP-C). Only

the data from the TSSP condition are used for the present comparison of methods. Repeated

imaging runs for each condition were implemented in a randomized order, and a minimum of

2 minutes of rest was given between each run. For the TSSP condition, 11 heat spikes with the

previously calibrated temperature to elicit a rating of 50 ± 10 NPS units were applied every 3

seconds. The TSSP condition’s stimulation period was preceded by a 52 second rest period

and followed by a 65 second rest period (Fig 1). Similar to the training session, participants

viewed instructions on a rear-projection screen which notified them when a new scan was

about to begin, when the application of the heat stimulus would begin, and when to report

their ratings for the first and last heat contacts (Fig 1).

Study 2. Heat stimuli were applied to the participant’s right hand overlying the thenar

eminence, by means of an MRI-compatible Robotic Contact-Heat Thermal Heat Stimulator

(RTS-2; SpinalMap Inc., Kingston, Ontario). This device pneumatically raises and lowers a

heated aluminum thermode to make contact with the participants’ skin, and is precisely con-

trolled using software written in MATLAB (Mathworks Inc., Natick, MA). A ‘threat/safety’

paradigm was employed, in which participants were unaware at the beginning of each run

whether or not a painful stimulus would be applied. The imaging runs were separated into two

study conditions: ‘Stimulation’ and ‘No-Stimulation’. Repeated imaging runs for each
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condition were obtained in a randomized order, and a minimum of 2 minutes was given

between stimulation periods in successive runs. A rear-projection screen was used to inform

the participants when the next imaging run would begin (Fig 1). After 60 seconds of baseline

scanning, participants were informed whether that run would involve the thermal heat stimu-

lation (Stimulation) or not (No-Stimulation). If it was a Stimulation run, the participants were

informed when the stimulation was to begin at the 120 second mark, and then 10 heat contacts

at the calibrated temperature were administered over 30 seconds. This 30 second stimulation

period was followed by a 120 second rest period, for a total time of 4 minutes and 30 seconds

(Fig 1). At the end of the Stimulation runs, the participants were prompted to provide their

pain ratings for the first and last heat contacts, via an intercom. Only the data from the Stimu-

lation condition was used for the analyses in the present study.

FMRI data acquisition

All image data were acquired using a 3 tesla whole-body MRI system (Siemens Magnetom

Trio; Siemens, Erlangen, Germany). For all studies, participants were positioned supine and

were supported by foam padding as needed to ensure comfort and minimize bulk body move-

ment. Imaging methods were optimized for each region (brain, or BS/SC), due to the different

imaging challenges, and were acquired with T2
�-weighted imaging in the brain, and T2-

Fig 1. FMRI paradigms for Study 1 and Study 2. Functional imaging runs in Study 1 were 150 seconds long, and the

heat pain was administered as 11 consecutive heat spikes over a span of 33 seconds. Functional imaging runs in Study 2

were 270 seconds long, and the heat pain was administered as 10 brief heat contacts over a span of 30 seconds. Letters

indicate different prompts being delivered to participants over the rear-projection screen. A = “you will feel heat.” B =

“the pain stimulus will begin in 3. . .2. . .1. . .” C = “please provide your first and last pain ratings.” The predicted BOLD

response based on the stimulation paradigm is also shown. However, the data sets from each participant consist of

between 4 and 6 repeated runs with this stimulation paradigm.

https://doi.org/10.1371/journal.pone.0243723.g001
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weighted imaging in the BS and SC, in order to provide an optimal balance of image quality

and BOLD sensitivity in both regions [31, 44, 45]. Although T2-weighted imaging for BOLD

sensitivity was demonstrated in some of the earliest fMRI studies [46, 47] it is rarely used for

brain fMRI, but it is well-established for BS/SC fMRI [44]. Initial localizer images were

acquired in three planes as a reference for slice positioning for subsequent fMRI studies.

Study 1 brain fMRI. Functional images were acquired in 49 contiguous axial slices ori-

ented parallel to the anterior commissure-posterior commissure (AC-PC) line using a T2
�-

weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR = 3 s, TE = 30 ms, Flip

Angle = 90˚, FOV = 192 mm x 192 mm, Matrix = 64 x 64, Resolution = 3 x 3 x 3 mm3). A

12-channel head coil was used for detection of the MRI signal, with a body coil for transmis-

sion of RF pulses. A total of 50 volumes were acquired for each imaging run. Five runs of the

same type were combined for each fMRI data set.

Study 2 brain fMRI. Functional images were acquired in 66 contiguous axial slices using

a T2
�-weighted GE-EPI sequence (TR = 2 s, TE = 30 ms, Flip Angle = 84˚, Multiband = 3, 7/8

Partial Fourier, FOV = 180 mm x 180 mm, Matrix = 90 x 90, Resolution = 2 x 2 x 2 mm3). A

32-channel head coil was used for detection of the MR signal, with a body coil for transmission

of RF pulses. A total of 135 volumes were acquired for each imaging run. Three to five runs of

the same type were combined for each fMRI data set.

Study 1 and Study 2, brainstem and spinal cord fMRI. Functional MRI data were

acquired with a T2-weighted half-fourier single-shot fast spin-echo (HASTE) sequence. Data

were acquired in 9 contiguous sagittal slices with a repetition time (TR) of 0.75 sec/slice, an

echo time of 76 msec to optimize the T2-weighted BOLD sensitivity, and a 28 × 21 cm field-of-

view with 1.5 × 1.5 × 2 mm3 resolution [45]. The imaging volume spanned from the T1 verte-

bra to above the thalamus, and spanned the entire cervical SC and BS left-to-right. Data were

acquired using the upper elements of a spine receiver-array coil, a posterior neck coil, and the

posterior half of a 12-channel head coil. The receiver elements were adjusted based on the par-

ticipant’s size, as needed. A body coil was used for transmitting radio-frequency (RF) excita-

tion pulses. In Study 1, a total of 138 volumes were acquired for each condition (over 6

repeated runs). In Study 2, a total of 200 volumes were acquired for each condition (over 5

repeated runs). The image quality was enhanced by means of spatial suppression pulses ante-

rior to the spine to reduce motion artefacts caused by breathing, swallowing, etc, and motion

compensating gradients in the head-foot direction.

FMRI data preprocessing

Brain fMRI data. Data from both studies were preprocessed using SPM12 software (Well-

come Institute of Cognitive Neurology, London, UK). Data from both studies were prepro-

cessed using SPM12 software (Wellcome Institute of Cognitive Neurology, London, UK). The

data were converted from DICOM to NIfTI format, and were then co-registered to the third

volume in the time-series to correct for motion, and motion parameters were retained for later

noise modeling. We considered motion exceeding one voxel width or 5 degrees of rotation to

be excessive, and no data sets were discarded because of excess motion. Slice-timing correction

was applied by interpolating to the middle of each volume acquisition period. Spatial normali-

zation was then applied to the data from each participant by first normalizing the fMRI data to

the anatomical images from the same participant, to make use of the better data quality of the

anatomical images, and then normalizing the anatomical images to the MNI template. The

complete transformation needed to map the fMRI data to the MNI template (Montreal Neuro-

logical Institute, Montreal, Quebec) was thus determined. The first two volumes of each run

were discarded to avoid periods without consistent T1-weighting, and the remaining time-
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series responses for each voxel were converted to a percent signal change from the time-series

average.

BS/SC fMRI data. Functional images were preprocessed using our freely-shared software

“SpinalFMRI9”, written in MATLAB (The Mathworks Inc., Natick, MA) that has been used

extensively in prior SC and BS fMRI studies [11, 48–50]. Pre-processing steps included conver-

sion to NIfTI format, co-registration using the Medical Image Registration Toolbox (MIRT)

[51], interpolation to 1 mm3 resolution, and spatial normalization to a pre-defined anatomical

template based on 300 healthy participants, as described below, using normalization methods

described previously [30, 33, 34, 44, 52]. Physiological noise was modeled, and then removed

from the data, based on peripheral pulse recordings, bulk motion, and global signal variations

in white matter. Our methods of removing physiological noise are highly effective and have

been validated by quantifying the contribution from each source of noise, and making com-

parisons with data from cadavers [31, 45]. Finally, the first two volumes of each run were dis-

carded to avoid periods without consistent T1-weighting, and the remaining time-series

responses for each voxel were converted to a percent signal change from the time-series

average.

Anatomical templates and region maps

We have combined region maps and anatomical reference images (templates) across the brain

and SC regions (the entire CNS) as described by De Leener et al. [53]. An anatomical reference

template was thus created by combining the PAM50 template [53] of the SC, and the MNI152

template of the BS/brain. The resulting map was interpolated to 0.5 mm cubic voxels, and can

be scaled to lower resolution as needed. For our purposes, an anatomical reference image of

the cervical SC and BS region (spanning where the two existing templates join) was also cre-

ated. This was done by spatially normalizing fMRI data from 1440 fMRI data sets in 300

healthy participants to the combined template, and averaging the normalized images to create

a single template.

Corresponding anatomical region-of-interest maps (0.5 mm isotropic resolution) were also

defined across the entire CNS by combining probabilistic regions maps from multiple sources,

and region maps based on anatomical atlases and published descriptions. Brain regions were

identified primarily with the region maps provided in the CONN15e software package [1, 54,

55]. SC gray matter and white matter maps were obtained from PAM50 template in “The Spi-

nal Cord Toolbox” [56]. In addition, the SC was divided into segments, with positions based

on the anatomical study done by Lang and Bartram [57], and segments were divided into

right/left and anterior/posterior quadrants. BS regions not included in the CONN15e region

map were added based on examples and anatomical descriptions [1, 58–62], freely shared

atlases as described by Pauli et al. [63] (https://identifiers.org/neurovault.collection:3145),

Keren et al. [64], and Harvard atlases [65]. The resulting region maps are thus probabilistic,

and indicate the likely location of anatomical regions of interest within each data set, after it

has been spatially normalized.

Definition of clusters

The anatomical regions to be used for the SEM analysis were identified in spatially normalized

data using the pre-defined anatomical reference described above. As it is not expected that

entire anatomical regions are uniformly involved in pain responses, regions were first divided

into 7 clusters based on the fMRI data. That is, the clustering was based on BOLD responses as

opposed to assumed anatomical sub-divisions. Voxels within each region were first identified,

and clustering was carried out using a k-means method. This was applied to data from each
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study separately, which was concatenated across all runs in all participants. The cluster defini-

tions are thus based on similarity of the measured time-series responses across the entire study

group. This procedure was repeated for each region of interest, and the same cluster defini-

tions were used for analyzing data from Study 1 and Study 2, but different clusters were used

for brain data, and BS/SC data, because of the different imaging parameters and anatomical

regions. The choice of 7 clusters for each region was based on previous studies which showed

that this number provided a suitable balance of resulting cluster sizes and flexibility in the sep-

aration of anatomical sub-regions. The regions used are displayed in Fig 2 by generating a 3D

plot in MATLAB, rendering the region surfaces using the MATLAB functions “isosurface”,

“patch”, and “isonormals”, and assigning each region a different colour. The 2D figures were

then captured in PDF format from the 3D plots and paste into Adobe Illustrator for adding

text annotations and colour bars. For brain fMRI data the regions include the anterior cingu-

late (AC), amygdala, frontal orbital region (FOrb), heschel’s gyrus (HG), the hippocampus

(Hipp), hypothalamus (Hyp), insular cortex (IC), periaqueductal gray region (PAG), posterior

cingulate (PC), thalamus, and nucleus accumbens (Accumb.). For BS/SC fMRI data the

regions include the right dorsal region of the 6th cervical SC segment (C6RD), the dorsal retic-

ular nucleus of the medulla (DRt), the hypothalamus, locus coeruleus (LC), nucleus gigantocel-

lularis (NGc), nucleus raphe magnus (NRM), nucleus tractus solitarius (NTS), the PAG,

parabrachial nuclei (PBN, medial and lateral divisions), thalamus, and ventral tegmental area

(VTA).

Application of the data analysis methods and comparison of results

Following pre-processing steps described above, clusters were defined for selected regions of

interest which are known/suspected of being involved with aspects of pain. Voxel data were

then extracted and average time-series responses were computed for each cluster, in each run,

from each participant. The following analyses were then applied:

1. Data were fit to predicted BOLD response (Fig 1) using a general linear model (GLM), and

the significance of β-values were determined (i.e. must be significantly different than zero,

which requires that the fit accounts for a significant amount of variance). The predicted

response was determined by convolving the canonical hemodynamic response function

Fig 2. Anatomical regions included in brain (left), and BS and SC (right), data analysis.

https://doi.org/10.1371/journal.pone.0243723.g002
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with the timing of the stimulation paradigm [66]. Analyses were applied to data from each

participant concatenated into one large data set, to data from all participants averaged, and

also to data from each participant individually, with repeated runs concatenated. The num-

ber of time points used for each calculation are listed in Table 1.

2. Connectivity was computed based on the correlation between all possible pairs of clusters

from different regions, and significance was based on Z-values (the correlation must

account for a significant amount of the variance). Data from all participants were

concatenated for selected time periods, and were also analyzed for each participant individ-

ually, with repeated runs concatenated. Dynamic connectivity was calculated using a sliding

window spanning 30 second epochs for brain data (10 or 15 volumes, Study1 and Study 2

respectively), and 45 second epochs for BS/SC data, or 7 volumes. The number of time

points used for each calculation are listed in Table 1.

3. Connectivity was computed using SEM with 1 or 2 source regions in separate analyses, with

significance based on the amount of variance explained in the target region (expressed as Z

values), and on the significance of β-values. Data from all participants were concatenated

for selected time periods, and were also analyzed for each participant individually, with

repeated runs concatenated. Significance was inferred if the fit explained a significant

amount of variance in the target region, and all connectivity weighting factors (β-values)

were significantly different than zero, and also the F-test for each connection was significant

(all connections contributed significantly to the fit). Again, the number of time points used

for each calculation, for each target or source region, are listed in Table 1. The SEM models

that were used, are shown in S1 Fig.

4. β-values determined from GLM fits, and SEM fits, were tested for correlation with pain rat-

ings in each participant (connectivity correlation, R, values were not included because these

values are not linearly related to strength of the connection).

5. The performance of analysis methods was compared based on the average amount of vari-

ance explained in each cluster.

6. Results were assessed by investigating the characteristics of the BOLD responses in regions

identified by the previous analyses, and comparing the temporal pattern of BOLD responses

across regions, data sets, and to the stimulation paradigms.

Statistical thresholds

Statistical thresholds used to infer significance were corrected for multiple comparisons, in

every case. In order to confirm that suitable thresholds were used, all analysis methods were

applied to replicated data sets consisting of random values, to create “null” data sets in which

Table 1. The number of imaging volumes (i.e. time points) used for each calculation with each analysis method, at the group and individual levels.

GLM fit to Model Dynamic Connectivity (both correlation and SEM methods)

Group Individual (average/person) Group Individual (average/person)

Study 1 Brain 3600 240 750 50

Study 2 Brain 8316 462 945 53

Study 1 BS/SC 1848 123 616 41

Study 2 BS/SC 2622 146 483 27

Calculations were repeated at multiple time points for dynamic analyses. The same number of volumes were used for each target and source region for SEM analyses.

https://doi.org/10.1371/journal.pone.0243723.t001
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no significant values should be detected. Statistical distributions were thus determined, and

statistical thresholds were identified to ensure that there was less than a 5% chance of a single

false-positive (Type I) result occurring in any analysis (i.e. family-wise-error corrected

p< 0.05).

Results

Each analysis method identified significant BOLD responses in regions, or as connectivity

between regions, across the two sets of study data, in both brain and BS/SC regions. The results

of the analyses are summarized in Figs 3 and 4. These figures were generated using the meth-

ods described above for Fig 2, with the addition of significant connections between regions

indicated with lines plotted in MATLAB. A larger number of regions/clusters were identified

Fig 3. Anatomical regions identified with the analysis methods tested in brain regions. Regions are shown for the GLM fit, connections are shown for

correlation results, and both regions and connections are shown for SEM results.

https://doi.org/10.1371/journal.pone.0243723.g003

Fig 4. Anatomical regions identified with the analysis methods tested in BS and SC regions. Regions are shown for the GLM fit, connections are shown for

correlation results, and both regions and connections are shown for SEM results. “GLM fit to Model” refers to the model-driven analysis, “Correlation”

indicates connectivity analysis based on temporal correlation, SEM 1 and SEM 2 refer to structural equation modeling with 1 and 2 source regions,

respectively, and “Corr. with Pain” indicates SEM results (β-values) which are significantly correlated with pain ratings from each participant.

https://doi.org/10.1371/journal.pone.0243723.g004
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in all data sets by means of data-driven approaches, including correlations between time-series

responses, and structural equation modeling (SEM), than with the model-driven GLM fit to a

predicted response. A number of regions were also observed to have connectivity weighting

values, measured with SEM, that are significantly correlated with individual pain ratings, also

as shown in Figs 3 and 4. The regions identified with each method are summarized in Table 2,

for brevity. Details of the regions and connections identified with each analysis method are

listed in S1 through S10 Tables. The average amount of variance explained per cluster, with

each analysis method, is plotted in Fig 5.

Time-series responses were extracted from selected regions, based on the analysis results, in

order to examine their physiological relevance and relationships with the stimulation para-

digms. Examples of responses across brain and BS regions in Study 1 are shown in Fig 6, for

the anterior cingulate (AC), insula (IC), and nucleus raphe magnus (NRM). A larger set of

time-series responses are shown in S2 Fig, from all 4 data sets, for selected regions including

the AC, IC, hypothalamus, thalamus, PAG, NGc, and NRM. Examples of dynamic variations

in connectivity detected with SEM are shown in Fig 7, for the selected connection of

PAG!Hypothalamus. This connection was chosen because it occurs in all of the data sets that

were analyzed. Clusters shown were selected from BS/SC data, and similar source and target

clusters were selected for comparison with brain fMRI data. Because the cluster definitions are

different for the two data sets, and the different acquisition parameters such as spatial resolu-

tion, the exact same clusters are not shown, but have centers that are within 11.2 mm for the

sources, and within 8.7 mm for the targets.

Discussion

BOLD responses were identified in regions across the brain, BS and SC, with each of the analy-

sis methods. The regions identified by fitting the data to a predicted response (model-driven)

were consistently also identified by the data-driven approaches, which showed additional

regions as well. The conclusion that the regions identified have signal variations that are

BOLD and are physiologically relevant, as opposed to being the result of bulk motion or

Table 2. Summary of the regions identified with each of the analysis methods.

Brain fMRI BS/SC fMRI

Study 1 Study 2 Study 1 Study 2

GLM fit to predicted response AC, PC, IC, Thalamus,

Accumbens, HG, Hypothalamus,

PAG

AC, IC, Thalamus,

Accumbens, FOrb

- NRM, C6RD

Connectivity based on

Correlation

All 11 regions All 11 regions Thalamus, Hypothalamus, PAG,

NTS, PBN, LC, NGC

Thalamus, Hypothalamus

Connectivity with SEM, 1

source

All 11 regions All 11 regions Thalamus, Hypothalamus, PAG,

NTS, PBN, LC, NRM, NGc, DRt,

C6RD

Thalamus, Hypothalamus, PAG,

PBN, LC

Connectivity with SEM, 2

sources

All 11 regions All 11 regions Thalamus, Hypothalamus, PAG,

NTS, PBN, LC, NGc, C6RD

-

Correlation between pain

ratings and SEM connectivity

values

All 11 regions 10 regions, only HG

was not identified

Hypothalamus, PAG, LC, NRM,

NGC, C6RD

Hypothalamus, PAG, NTS, PBN,

LC, NRM, NGC, DRt, C6RD

For each data type (brain, or BS/SC) 11 regions were included, and each region was separated into 7 clusters, as described in the Methods. The regions included for

brain data were: AC, PC, IC, Thalamus, Accumbens, HG, Hypothalamus, PAG, FOrb, Hippocampus, and Amygdala. The regions included for BS/SC data were:

Thalamus, Hypothalamus, VTA, PAG, NTS, PBN, LC, NRM, NGc, DRt, and C6RD. No regions were identified as having fit parameters (β-values) or connectivity

values, that were correlated with pain ratings, and so they are not included in the table.

https://doi.org/10.1371/journal.pone.0243723.t002
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physiological noise, is supported by the fact that the responses are consistent across repeated

fMRI acquisitions in each participant, within each group of 15–18 participants, and either

match predicted responses or are significantly coordinated across spatially distinct regions.

This conclusion is further supported by the consistency of results across independent data sets,

and across different acquisition methods in regions of overlap between the brain and BS/SC

studies (illustrated in Figs 3, 4 and 6). Dynamic variations in connectivity between regions

were also observed to be relatively consistent across studies, such as the PAG!Hypothalamus

connection in Fig 7. Although some degree of variation is to be expected with the different

methods and study conditions that were employed, the conclusions that can be drawn from

these results are quite robust, in terms of the regions involved, and how signaling is coordi-

nated between regions.

The amount of signal variance that could be explained in each region varied across the anal-

ysis methods used for this comparison, but showed a consistent trend across the 4 sets of data

(Fig 5). The amount of explained variance was consistently higher with data-driven methods,

than with the model-driven fit to a predicted BOLD response. The greatest amount of variance

was explained, in most cases, with connectivity based on correlation between regions. The

exception was the SEM method with 2 source regions, which explained the most variance in

brain regions. The ability to explain the signal variance, and thus identify BOLD time-series

responses, demonstrates the effectiveness of each analysis approach for the selected fMRI data

sets which involved noxious stimulation. The results consistently indicate that data-driven

approaches are more effective than model-driven approaches, and further indicate that detect-

ing connectivity based on temporal correlations may be more effective than SEM. However,

the incorporation of anatomical information into the SEM method of connectivity analysis

Fig 5. Plots of the average amount of variance explained in each region included in the analysis, for each of the

analysis methods being compared. Abbreviations: GLM; general linear model fit of the data to a predicted BOLD

response, Corr.; connectivity calculated by means of temporal correlation, SEM1 and SEM2; structural equation

modeling with 1 or 2 source regions, respectively. Variations are indicated as follows: “cat”; concatenated data across

the group, “avg”; data averaged across the group, “ind.”; analysis applied to data from each individual participant.

https://doi.org/10.1371/journal.pone.0243723.g005
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Fig 6. Details of BOLD responses in selected regions from Study 1. The three plots are offset vertically for clarity.

The vertical axis indicates the relative scale for each of the 3 plots. The horizontal axis indicates time, with the origin at

onset of stimulation. The vertical line indicates when participants were informed of which type of stimulation to expect

in Study 2. Lines plotted in red are from brain fMRI data, and the line plotted in orange is from BS/SC data. The fit

model paradigm to each time-series response is also shown in black on each plot.

https://doi.org/10.1371/journal.pone.0243723.g006

Fig 7. Examples of dynamic variations in the PAG!Hypothalamus connection, as identified with SEM analysis with 2 sources. Results are shown for data obtained

in the brain, and in the BS/SC for Study 1 (red) and Study 2 (blue). The yellow band indicates the stimulation period. The error bars indicate the standard error of the β-

values. Similar source and target clusters were selected for the two regions spanned by the data, and the results were within 11.2 mm for the sources, and with 8.7 mm for

the targets.

https://doi.org/10.1371/journal.pone.0243723.g007
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provides the advantage of greater detail in the results that can be obtained. By modeling the

possible sources of input to each region, the directionality of connectivity can be inferred.

Whereas correlation does not show any information about the direction of influence, the linear

fit between a source and a target will typically result in different weighting factors (i.e. connec-

tivity strengths) if the assignment of source and target are reversed. Including more than two

source regions could potentially explain even more of the variance in each target region. Con-

versely, the need to assume an anatomical model for SEM may be a disadvantage for studies

with the aim of identifying regions involved, as opposed to investigating the characteristics of

BOLD responses in predetermined regions-of-interest.

An important aspect of the data-driven methods for studies of pain responses is that they

can demonstrate dynamic variations in coordinated signaling between regions. This allows

more degrees of freedom, which contributed to the greater amount of variance that could be

explained. Similarly, including multiple source regions to explain the signal variance in a target

region, allows more degrees of freedom with the SEM method. This flexibility is important in

the context of pain research, given that neural signaling between regions is expected to vary

between periods of anticipating pain, experiencing pain, knowing the pain has passed, etc [32,

33]. Moreover, the known neuroanatomy of regions involved with pain processing is a com-

plex network, and each region receives input from multiple sources (1). The flexibility of the

data-driven approach thus enables more accurate modeling of the expected neurophysiology,

and neuroanatomy, of pain networks.

Investigations of the BOLD response characteristics (Fig 6 for a summary, S2 Fig for more

details) demonstrate why the predicted BOLD response, based on the peripheral stimulation

paradigm, is not an accurate model. The typical modeled BOLD response would be expected to

have increased signal during stimulation periods, and “baseline” signal otherwise (Fig 1). While

consistent BOLD responses were observed across runs/participants/groups, some regions such

as the insula, had increased signal during the stimulation period, whereas other regions had

strong peaks at the onset and offset of stimulation, such as the anterior cingulate cortex. Regions

of the BS receive input signaling from number of sources, both ascending and descending, and

form a complex feed-back network to regulate pain responses depending on a person’s situation

[1]. This results in complicated BOLD response patterns as the total input signaling (and thus

metabolic demand) in each region varies throughout the stimulation paradigm. Nonetheless,

regions such as the SC dorsal horn, NRM, NGc, etc. were identified by connectivity analyses.

Although the BOLD responses in these regions are complex, the relationships between signal

variations and periods of the stimulation paradigm can be seen in retrospect.

Consistent with prior studies [12, 32, 33], this comparison of methods also demonstrated

important contributions from individual differences in pain responses. SEM connectivity

weighting factors between a number of regions were observed to be significantly correlated

with pain ratings (Figs 3 and 4). This demonstrates that results from individual participants

are sufficiently accurate for this correlation to be detected. Given that pain responses can vary

with emotional and cognitive factors, the ability to identify changes in neural signaling in rela-

tion to differences between participants, and even between repeated fMRI acquisitions in the

same participant, is important for pain research. The BOLD time-series responses shown in S2

Fig further demonstrate this point, with examples of differences in BOLD responses between

participants with higher-, or lower-than-average, pain ratings. The ability to detect variations

in BOLD responses which are related to behavioral measures further demonstrates the sensi-

tivity of the data-driven analysis methods that were used for this comparison. This comparison

of methods included data from females only, with average ages of 39 years and 36 years for the

two study groups, and we did not investigate the effects of sex-differences on pain, or the

effects of age, which could introduce even greater variability across participants.
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Lastly, an important feature demonstrated by the results of this study is the consistency of

responses in regions common to data sets spanning the brain and BS/SC. Results in the thala-

mus, hypothalamus, and PAG, were obtained from all of the data sets, and are shown in the

middle row of S2 Fig. Although the study conditions are not identical, similarities can be

observed between the BOLD responses detected with T2
�-weighted GE-EPI in brain fMRI

studies, and with T2-weighted HASTE in BS/SC fMRI studies, and in the connectivity values

listed in S2–S5 and S7–S9 Tables. Moreover, similar dynamic variations in

PAG!Hypothalamus connectivity values are demonstrated in Fig 7. The results obtained

with the two acquisition methods are thus equivalent in terms of the conclusions that can be

drawn about the regions involved, characteristics of the BOLD responses, and the coordina-

tion of signaling between regions.

The results of this comparison show that the model-driven fMRI analysis approach of pre-

dicting a BOLD response, and detecting the voxels/clusters with a significant component

matching this prediction, has limited effectiveness for pain research studies. Data-driven

methods based on connectivity analyses are shown to explain more of the observed signal vari-

ations in pain-related regions. These methods are also shown to be better suited to pain

research because they allow for dynamic analyses, and accommodate unanticipated variations

in responses across conditions or participants. This conclusion is supported by consistent find-

ings across duplicate studies, and across different data acquisition methods. FMRI data

acquired with methods optimized for the brain (T2
�-weighted GE-EPI) and for the BS/SC (T2-

weighted HASTE) are shown to provide equivalent results. The conclusions that can be drawn

from these data sets in terms of the regions involved, the neural signaling between regions, and

how signaling varies over the course of the stimulation paradigm, are shown to be consistent.

The results indicate that the most sensitive method of fMRI data analysis for pain research

may be connectivity based on temporal correlation between time-series responses. However,

SEM analysis results provide more information about networks of coordinated regions. Corre-

lation-based and SEM-based connectivity analysis methods are suited to testing different

hypotheses, with the former demonstrating which anatomical regions are likely to be involved,

and the latter demonstrating the nature of coordinated signaling within a network of predeter-

mined anatomical regions.

The temporal patterns of BOLD responses that were observed with this analysis demon-

strate why model responses based on the stimulation paradigm are ineffective for pain

research. The observed BOLD responses demonstrate a number of consistent features that are

not modeled, including transient responses at the onset and offset of stimulation, which may

reflect salience or novelty, and variations leading up to the stimulation period, which may

reflect anticipation. Data-driven approaches were able to identify coordinated regions, and the

BOLD responses within these regions could then be investigated to show these different

aspects of pain responses, and the results also demonstrated individual differences and how

responses varied in relation to pain ratings. Data-driven analysis methods are thus better

adapted to the variability of neural responses involved with pain processing, and are thus more

effective.

Supporting information

S1 Fig. Anatomical networks used for structural equation modeling (SEM) in the brain

(left) and brainstem and spinal cord (right). Abbreviations: AC: anterior cingulate cortex;

Accum: nucleus accumbens; Amyg: amygdala; C6RD: right dorsal region of the 6th cervical

spinal cord segment; DRt: dorsal reticular nucleus of the medulla; Forb: frontal orbital region;

HG: heschel’s gyrus; Hipp: hippocampus; Hyp: hypothalamus; IC: insular cortex; LC: locus
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coeruleus; NGc: nucleus gigantocellularis; NRM: nucleus raphe magnus; NTS: nucleus tractus

solitarius; PAG: periaqueductal gray region; PBN: parabrachial nucleus; PC: posterior cingu-

late cortex; Thal: thalamus.

(TIF)

S2 Fig. Details of BOLD responses in regions identified by means of the analysis methods,

compared across the two sets of study data, for brain and brainstem regions. BOLD

responses shown are averaged across all runs/participants in each study group, except where

shown for pain ratings separated between above and below average values. The plots in each

frame are offset vertically for clarity. The vertical axis indicates the relative scale for each

frame. The horizontal axis indicates time, and plots are shown with the onset of stimulation

aligned for each study. The vertical line indicates when participants were informed of which

type of stimulation to expect in Study 2. The fit model paradigm to each time-series response

is also shown in black on each plot.

(TIF)

S1 Table. Significant BOLD responses detected by fitting a predicted response to data

from brain regions in Studies 1 and 2, by means of a general linear model. Abbreviations

are listed in the caption for S1 Fig.

(DOCX)

S2 Table. Significant connectivity between regions, based on temporal correlations

between BOLD responses, for data from brain regions in Studies 1 and 2. The values shown

are for the epoch spanning the stimulation period. Abbreviations are listed in the caption for

S1 Fig.

(DOCX)

S3 Table. Significant connectivity between regions, based on structural equation modeling,

with 1 source for each target (i.e. linear fit between regions), for data from brain regions in

Studies 1 and 2. The values shown are for the epoch spanning the stimulation period. Abbre-

viations are listed in the caption for S1 Fig.

(DOCX)

S4 Table. Significant connectivity between regions, based on structural equation modeling,

with 2 source regions for each target, for data from brain regions in Studies 1 and 2. The

values shown are for the epoch spanning the stimulation period. Abbreviations are listed in

the caption for S1 Fig.

(DOCX)

S5 Table. Significant connectivity between regions, based on structural equation modeling,

with 2 source regions for each target, where at least one connection has connectivity

weighting factors that are significantly correlated with pain ratings across participants.

Data are from brain regions in Study 1. Values are listed for the epoch spanning the stimula-

tion period. Abbreviations are listed in the caption for S1 Fig.

(DOCX)

S6 Table. Significant BOLD responses detected by fitting a predicted response to data

from brainstem and spinal cord regions in Studies 1 and 2, by means of a general linear

model. Abbreviations are listed in the caption for S1 Fig.

(DOCX)

S7 Table. Significant connectivity between regions, based on temporal correlations

between BOLD responses, for data from brainstem and spinal cord regions in Studies 1
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and 2. Values are listed for the epoch spanning the stimulation period. Abbreviations are listed

in the caption for S1 Fig.

(DOCX)

S8 Table. Significant connectivity between regions, based on structural equation modeling,

with 1 source for each target (i.e. linear fit between regions), for data from brainstem and

spinal cord regions in Studies 1 and 2. Values are listed for the epoch spanning the stimula-

tion period. Abbreviations are listed in the caption for S1 Fig.

(DOCX)

S9 Table. Significant connectivity between regions, based on structural equation modeling,

with 2 source regions for each target, for data from brainstem and spinal cord regions in

Studies 1 and 2. Abbreviations are listed in the caption for S1 Fig.

(DOCX)

S10 Table. Significant connectivity between regions, based on structural equation model-

ing, with 2 source regions for each target, where at least one connection has connectivity

weighting factors that are significantly correlated with pain ratings across participants.

Data are from brainstem and spinal cord regions in Studies 1 and 2. The Z-score is computed

from the correlation, R, value, and reflects the significance of the correlation. Only significant

values are shown (corrected for multiple comparisons, etc, etc). Values are listed for the epoch

spanning the stimulation period. Abbreviations are listed in the caption for S1 Fig.

(DOCX)
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