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Abstract

Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and
Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with
unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the
overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images,
we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative
measurements of structural dimension and molecule density made from those images. We found that structural dimension
and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but
accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in
cellular structures, require the application of a clustering algorithm to group localizations that originate from the same
molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the
accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an
empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image
reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy
to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method
is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and
positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This
feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows
a variety of quantitative measurements tailored to specific needs of different biological systems.
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Introduction

Localization-based superresolution methods such as Photoacti-

vated Localization Microscopy (PALM), Stochastic Optical Re-

construction Microscopy (STORM), and direct STORM

(dSTORM) utilize the stochastic switching of fluorophores

between dark and bright emission states to visualize fluorophore-

labeled single molecules sequentially from the ensemble pool [1–

3]. The position of each molecule is localized with nanometer

precision by fitting its spot intensity profile to a two-dimensional

Gaussian function that approximates its point spread function

(PSF) [4]. A superresolution image is then generated by overlaying

the detected molecule positions. From the superresolution image

or the original list of molecule positions, one can quantitatively

measure the dimensions and molecule density (number of

molecules per unit area) of nanometer-scale cellular structures.

Previously, we and other groups employed superresolution

imaging to characterize the cytokinetic ‘‘Z-ring’’ formed by the

tubulin homolog FtsZ in bacterial cells [5–7]. At the onset of

bacterial cell division, a subpopulation of cytoplasmic FtsZ

molecules localizes to the midcell membrane, and forms a ring-

like structure to initiate the assembly of the division complex [8].

Understanding the structure of the Z-ring will provide important

insight into the constriction force generation mechanism of

bacterial cell division. Toward this goal, we used PALM data to

measure the in-vivo dimensions and molecule density of the Z-ring

to deduce the arrangement of FtsZ protofilaments inside the ring

[7]. Such quantitative structural information is difficult or

impossible to obtain using conventional light microscopy, espe-

cially in small bacterial cells.

Other PALM and (d)STORM studies have resolved the

dimensions of structures such as the ParA bundles that segregate

Caulobacter crescentus chromosomes [9], microtubule filaments

[3,10], actin filaments [3], clathrin pits [11], budding HIV-1

virions [12,13], clusters of bacterial histone-like proteins [14], and

membrane receptor clusters [15,16]. Furthermore, molecule

density measurements have allowed investigation of the matura-

tion [17] and mechanical load [18] of focal adhesions, the

assembly of microclusters following T cell activation [15,16,19],

assembly of bacterial chemotaxis clusters [20], and the re-

organization of membrane protein clusters upon cholesterol

addition or depletion [21]. The growing body of examples
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highlights the great potential of obtaining quantitative information

such as structural dimensions, stoichiometry, and molecule density

from localization-based superresolution studies. However, care

must be taken to ensure the reliability of superresolution data.

Many factors influence the resulting superresolution images,

including the method of image reconstruction [22], acquisition

conditions [23,24], and movement of the structure of interest. In

this work, we focus on one issue that significantly affects the

accuracy of quantitative density measurements in PALM imaging

– fluorophore blinking.

Many photoactivatable fluorescent proteins have recently been

shown to fluoresce intermittently, or ‘‘blink’’, once activated [25–

27]. In Figure 1A we show a simplified reaction scheme of the

intermittent fluorescing behavior of a generic photoactivatable

fluorescent protein. An activated fluorophore can reversibly transit

between a nonfluorescent state (white) and a fluorescent state (red),

or can be irreversibly photobleached (black) from the fluorescent

state. Intermittent fluorophore blinking leads to overcounting

artifacts where single molecules are represented multiple times,

resulting in images that are often characterized by a punctate

quality [21,25,26,28].

To illustrate this point, we show in Figure 1B a superresolution

image of an Escherichia coli cell expressing the FtsZ protein fused to

mEos2, a photoactivatable fluorescent protein and a popular

choice for PALM imaging [29]. In addition to the expected

midcell Z-ring formed by FtsZ, the image shows bright cytoplas-

mic clusters of FtsZ-mEos2. The time-coded insets show that some

of these clusters are comprised of spots that were detected very

closely in time, in contrast to a region inside the Z-ring where

multiple localizations were randomly detected in time. As the

activation rate of new fluorophores is usually kept very low in

superresolution imaging, these multiple localizations in the

cytoplasmic cluster likely come from the same mEos2 molecule

rather than multiple molecules.

In various attempts to account for photoblinking so that each

molecule in a superresolution image is represented only once,

several studies have employed a simple clustering algorithm to

group multiple localizations of a single molecule based on the

occurrence of these localizations within certain time and distance

thresholds (tThresh and dThresh) – if two localizations occur within

tThresh and dThresh, they likely come from the same molecule and

should be grouped together [20,21,26,30,31]. Each group is then

plotted only once in the superresolution image. This type of

clustering algorithm was employed in the original demonstrations

of STORM and PALM, where fluorescence spots detected within

one camera pixel (dThresh =167 nm for our system) and separated

by up to one or three frames, respectively, were grouped together

[1,10]. Generous values for both thresholds can ensure that

multiple molecule localizations are grouped together, but may

result in false grouping of separate molecules and underestimation

of molecule density. It was noted that these thresholds should be

optimized based on each fluorophore’s photophysical properties

[1,28], but a procedure to identify optimal tThresh and dThresh values

that accurately group localized spots has yet to be developed.

In this study, we analyzed experimental and simulated data to

determine how photoblinking kinetics and threshold selection

affect the dimension and molecule density measurements de-

scribed above. We performed these analyses on superresolution

images of fixed E. coli cells expressing FtsZ-mEos2, whose

heterogeneous distribution between midcell and cytoplasmic

populations presents a challenging, but ideal, test case for the

clustering algorithm. We explained and corroborated the observed

effects using datasets in which fluorophore blinking was simulated

according to the kinetic scheme shown in Figure 1A.

Our simulations confirmed that blinking-related overcounting

increases absolute density measurements, but measurements of

dimension and relative density are not affected. We also de-

termined that applying a clustering algorithm can result in

inaccurate measurements of both density and dimension measure-

ments unless proper threshold values are chosen and fluorophore

activation is slow enough to allow accurate grouping of molecule

localizations.

From the above analyses, we identified a simple method for

determining the maximum activation rate for a given sample and

for selecting optimal tThresh and dThresh values to generate reliable

superresolution images. We further confirmed the generality of

this method using simulations of circular clusters of various sizes,

which yielded similar results to the FtsZ simulations, suggesting

that these principles are applicable to the measurements of cellular

structures of different geometries.

Figure 1. Fluorophore blinking affects superresolution image quality. (A) Simplified kinetic scheme of a photoactivatable fluorophore such
as mEos2. The fluorophore is irreversibly photoactivated with rate constant k1, can transiently access a nonfluorescent state with rate constant k2,
return to the fluorescent state with rate constant k3, and irreversibly photobleach with rate constant k4. (B) Superresolution image of an E. coli cell
expressing FtsZ-mEos2 generated with conventional clustering thresholds: spots within 167 nm (1 camera pixel) and 50 ms (1 frame) of each other
were grouped together and plotted once. The cytoplasmic cluster (left inset) consists of spots detected very closely in time, suggesting that they
came from the same fluorophore, whereas a dense section inside the Z-ring (right inset) contains spots detected throughout the experiment. Scale
bar, 500 nm. Inset grid size, 30 nm.
doi:10.1371/journal.pone.0051725.g001
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In contrast to other recent methods that account for photo-

blinking [21,26], which summarize structural properties with

global parameters, our optimized clustering method provides the

full, corrected, superresolution image and list of molecule

positions, which can be quantified in various ways depending on

the unique properties of different biological structures. This

flexibility is especially useful for heterogeneous cellular structures

with regions of high and low molecule density or unusual

geometries. Lastly, because our method is a simple improvement

of existing PALM clustering algorithms, its implementation is

simple and straightforward.

Results

Dimension measurements are not affected by
fluorophore blinking, but can be affected by applying
a clustering algorithm
Structural dimensions are often measured from superresolution

images by fitting feature intensity (or density) profiles to Gaussian

distributions and extracting the full width at half maximum

(FWHM) [7,10,14]. Figure 2A shows an example of how the width

of the Z-ring is measured in this way. It is important to note that

the measured FWHM of a feature is a convolution of the actual

feature dimension with the achievable spatial resolution often

described as a Gaussian function, the standard deviation of which

is determined by the positional variation of multiple localizations

of the same molecule (see Text S1 for discussion of spatial

resolution). The observed FWHM can be further broadened by

the image construction method, which often entails plotting each

localized molecule as a Gaussian spot with standard deviation

equal to the localization precision [22]. Nevertheless, even with

these statistical broadening effects, the FWHM serves as a conve-

nient measurement for structural dimension comparison. Further-

more, with prior knowledge of the distribution of molecules within

a structure, the true dimension can be deconvolved [10]. For

simplicity, in the following analyses we quantify Z-ring width as

the apparent FWHM from a single Gaussian fit.

To determine the effect of threshold selection on dimension

measurement, we applied the clustering algorithm (see Methods

and Figure S1 for algorithm schematic) with varying tThresh and

dThresh values to both experimental and simulated data. Using

a single experimental dataset obtained with FtsZ-mEos2, we

generated a series of superresolution images using different

threshold pairs and then measured the Z-ring width in each

image (Figure 2B). Across the investigated threshold range (tThresh:

0–4 sec, dThresh: 0–450 nm), Z-ring width varied approximately

1.5-fold (60–90 nm) with larger threshold values resulting in

smaller width measurements. We observed the same trend with

measurements made from a simulated dataset (Figure 2C) where

molecules are allowed to blink according to the kinetic scheme in

Figure 1A (see Methods for simulation procedure and parameters).

To compare these measurements with the ‘‘true’’ Z-ring width, we

used the simulated dataset to generate a reference image in which

each molecule is only localized once. The Z-ring width measured

from this reference image (97 nm) represents the expected value

from an image with no photoblinking artifacts. Widths measured

from images generated with most small threshold pairs (tThresh ,1 s

and dThresh ,100 nm) were within the 95% confidence interval for

the fitted Z-ring width in the reference image (94 nm –100 nm),

while extremely high threshold values yielded much smaller Z-ring

width measurements.

The general decrease in Z-ring width measurement at large

thresholds is due to false grouping of localizations that originated

from multiple molecules, which affects dimension measurements

in two ways. First, because the convolved Z-ring profile is

described by a Gaussian distribution, groups that are comprised of

multiple molecules have centroid positions weighted toward the

center of the Z-ring. Plotting these centroid positions tightens the

spatial distribution of the Z-ring and results in smaller width

measurements. Second, very large thresholds can cause insufficient

sampling of the Z-ring, resulting in further reduced width

measurements.

We note that when no clustering is applied (tThresh and dThresh
values of 0), the Z-ring width measured from the simulated data

approximates that measured from the reference image. This can

be understood if multiple localizations of the same molecule result

in an increased amplitude but unchanged standard deviation of

the Z-ring Gaussian distribution. This observation is consistent

with previous studies where it was shown that multiple localiza-

tions of fluorophores improves the statistical sampling of un-

derlying structures and can increase the apparent spatial resolution

Figure 2. Effects of threshold selection on Z-ring width measurement. (A) Representative Z-ring width measurement of a simulated image
where each molecule is only represented once. The intensity along the short axis of the cell is projected onto one dimension (red circles), and then fit
to a Gaussian distribution (gray line). The FWHM (97 nm, blue dotted line) is calculated as 2.35*s, where s is the fitted Gaussian standard deviation.
(B) and (C) Z-ring width values (indicated by the heat map) calculated from images generated by applying different threshold pairs for an
experimental dataset (B) and a simulated dataset (C). The simulated dataset was generated using the following parameters: Ntotal = 2000 (50% in the
Z-ring), s=15 nm, ,nblink. = 2, ,toff. =1 frame, ,ton. =1 frame, ,t0act. = 5 frames (1 frame = 50 ms). The Z-ring width calculated from the
reference image (A), where each molecule is represented only once, is 97 nm, which is similar to the measurements made from images constructed
using low values of tThresh or dThresh.
doi:10.1371/journal.pone.0051725.g002
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of a superresolution image [24,32,33]. Therefore, reliable di-

mension measurements can be obtained from a superresolution

image that has not been processed using a clustering algorithm, as

long as the structure of interest is sampled sufficiently. It is also

evident that, if a clustering algorithm is applied, the thresholds

should be low enough to avoid underestimation due to false

clustering.

Effects of fluorophore blinking and clustering thresholds
on density measurements
Counting the number of fluorescent molecules detected within

a given structure provides information about the molecule density

of the protein of interest when labeling stoichiometry and the

fraction of fluorophores detected are taken into account. In

a PALM experiment, the fraction of detected fluorophores is

limited because not every fluorescent molecule can be activated

and visualized on a finite timescale, and because a substantial

fraction (up to 20%) may not be activatable due to misfolding or

incomplete fluorophore maturation [34,35]. However, even with

these limitations, molecule counting can still inform structural

models by providing a lower bound of molecule density, which can

suggest a minimum number of layers or subunits within a structure.

Fluorophore blinking results in erroneous amplification of

fluorophore density due to repeat localizations. Below we explore

how tThresh and dThresh selection affects three types of measurements:

mean density, relative density, and density distribution measure-

ments. Mean density is a bulk measurement of the average

number of molecules per unit area; relative density reports the

fraction of molecules confined to a particular region of the

structure; and the density distribution is described by the

histogram of number of molecules detected per unit area.

Fluorophore blinking amplifies both mean density and density

distributions, which are absolute measurements of molecule

counts, but relative density, which is the ratio between molecule

counts in different regions, should not be affected if all molecules

have the same ensemble blinking properties.

Mean density measurements are affected by fluorophore

blinking and by applying a clustering algorithm. Using the

same experimental and simulated datasets shown in the dimension

measurement analysis in Figure 2, we examined the effect of tThresh
and dThresh selection on mean density (molecules per unit area) by

analyzing how the total number of molecules (N) in the same cell

area varies with different tThresh and dThresh pairs. Both

experimental (Figure 3A) and simulated (Figure 3B) datasets

display the same trend: larger thresholds yield lower mean

densities (N/cell area) because more spots are grouped together.

For the simulated dataset, we determined the fractional difference

of N from the true value obtained from the reference image, |(N-

Nref)/Nref|, which is plotted in Figure 3C. We found that

reasonably accurate mean density measurements (,10% differ-

ence from Nref) can be achieved by multiple threshold pairs along

two valleys that intersect at tThresh < 0.4 s and dThresh < 60 nm.

Relative density measurements are not affected by

fluorophore blinking, but can be affected by applying

a clustering algorithm. Next, we examined the effect of

tThresh and dThresh selection on relative density measurements by

measuring fmidcell, the fraction of molecules detected in the Z-ring

relative to the whole cell. Increasing values of both tThresh and

dThresh resulted in smaller fmidcell values for both experimental

(Figure 3D) and simulated (Figure 3E) datasets. Comparison with

the fmidcell value calculated from the reference image (0.53)

revealed that images generated with smaller thresholds yielded

reasonably accurate relative density measurements (,10% differ-

ence for tThresh ,1 s and dThresh ,105 nm). This is because

molecules within and outside the structure of interest have the

same blinking properties, allowing the effect of multiple molecule

localizations to cancel out in a relative measurement. The

underestimation of fmidcell for larger threshold values is due to

the greater likelihood of falsely grouping molecules in denser

regions such as the Z-ring. These results confirm that, as with the

Z-ring width measurement, relative density can be accurately

measured from a superresolution image that has not been

processed using a clustering algorithm (tThresh and dThresh equal

to 0), as long as the structure of interest is sampled sufficiently.

Molecule density distributions are affected by

fluorophore blinking and by applying a clustering

algorithm. While mean and relative molecule densities describe

global structural properties, the molecule density distribution

provides additional information about the uniformity or hetero-

geneity of molecule positions within a structure. If molecules are

uniformly distributed throughout the structure, the molecule

density histogram should be well described by a Poisson distribu-

tion. Figure 4A shows the histogram of molecules detected per

superresolution pixel (15 nm 615 nm) within the Z-ring of the

simulated dataset before any clustering algorithm is applied. A

Pearson X2 goodness-of-fit test [36] shows that this distribution

deviates from a Poisson distribution significantly (pGOF = 0). This

seemingly heterogeneous distribution of molecules inside the Z-

ring, as judged by the significant deviation from Poisson

distribution, is actually caused by multiple localizations of single

molecules due to photoblinking. Figure 4B shows that the Z-ring

molecule density of the corresponding reference image where each

molecule is only localized once can be described by a Poisson

distribution adequately (pGOF = 0.74).

To identify the clustering thresholds that generate the correct

molecule density distributions, we compared the Z-ring molecule

density distributions generated with different tThresh and dThresh pairs

to the distribution from the reference image using the Kolmo-

gorov–Smirnov (KS) test [37]. As with mean density, density

distributions are similar to the reference distribution (pKS .0.05)

along two intersecting ridges (Figure 4C), indicating that the

thresholds in this region generate images that most faithfully

represent the true molecule distributions.

Multiple threshold pairs can result in accurate
measurements of both dimension and density
measurements
We have shown that the mean molecule density and density

histogram measurements are significantly affected by fluorophore

blinking, while dimension and relative density measurements are

not. However, all four measurements are affected by the selection

of tThresh and dThresh. We have also shown that each type of

measurement can be made within a reasonable range of the true

value if correct threshold values are chosen. To find the threshold

region that simultaneously represents all four measurements with

reasonable accuracy, we combined the relative errors obtained at

different threshold pairs for each measurement made from the

simulated images described in Figures 2, 3, 4. Figure 5A shows the

region (white squares) where Z-ring width, fmidcell, and N

measurements are within 10% of the reference values and density

distributions were not significantly different from the reference

distribution (pKS .0.05).

The Jaccard Index identifies images that are accurate on
both the ensemble and single-molecule level
The combined error analysis selected a limited threshold range

rather than a unique, optimal threshold pair. While this range of

Accurate Construction of PALM Images
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thresholds can satisfy all investigated quantitative measurements

simultaneously, some threshold pairs in this range may not

generate accurate superresolution images in which the molecule

counts and positions are correctly identified. This is because each

of the measurements described above quantifies an ensemble

structural property and may not be sensitive to errors at the

individual molecule level.

To find the optimal threshold pair that not only provides

reliable quantitative measurements, but also an accurate image at

the single-molecule level, we further assessed the clustering

accuracy of each threshold pair using the Jaccard index [38,39].

Figure 3. Effects of threshold selection on mean and relative molecule density. (A) and (B) Total number of molecules, N, in images
generated by applying different threshold pairs to an experimental dataset (A) and a simulated dataset (B). (C) Fractional difference |(N-Nref)/Nref|
between each reconstructed simulated image and the number of molecules in the reference simulated image (Nref = 1248). Images with small
fractional differences (dark areas) are generated from threshold pairs found along two intersecting valleys. (D) and (E) Fraction of molecules located at
the midplane (fmidcell) in images generated by applying different threshold pairs for an experimental dataset (D) and a simulated dataset (E). In the
reference image, fmidcell = 0.53, which is most similar to the values calculated from images generated using low values of both dThresh and tThresh.
Datasets analyzed are the same as those shown in Figure 2.
doi:10.1371/journal.pone.0051725.g003

Figure 4. Effects of threshold selection on molecule density distribution in the Z-ring. (A) Histogram (gray bars) of molecules per pixel
(15 nm615 nm) inside the Z-ring of a simulated image that was not processed with a clustering algorithm. (B) Histogram (gray bars) of molecules
per pixel of the corresponding reference image, where each molecule is represented only once. Poisson distributions simulated with the sample
means, 3.9 (A) and 1.2 (B) molecules per pixel, are shown in red. The ratio of mean values reflects the localization of each molecule approximately
three times due to the simulated photoblinking kinetics (,nblink. = 2,,toff. =1 frame,,ton. = 1 frame). Poisson goodness-of-fit tests resulted in
pGOF = 0 for distribution in (A), suggesting that blinking results in deviations from a Poisson density distribution (pGOF = 0.74 for the reference
distribution in (B)). Insets show the cropped Z-ring regions used to generate the histograms. (C) p-values from the KS-test when the molecule density
distribution of the Z-ring generated by the reference image (B) is compared with distributions in images generated with different threshold pairs.
Distributions that resulted in pKS .0.05 are not significantly different from the distribution in the reference image. Dataset analyzed is the same
simulated dataset shown in Figure 2–3.
doi:10.1371/journal.pone.0051725.g004
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The Jaccard index compares how frequently localizations of the

same molecule are correctly grouped together (true positives), how

frequently localizations of different molecules are incorrectly

grouped together (false positives), and how frequently localizations

from the same molecule are not grouped together (false negatives)

(see Methods for details). The Jaccard index, therefore, reflects

clustering accuracy at the individual molecule level; higher Jaccard

index values indicate more accurate grouping, and consequently

more accurate image reconstruction.

We calculated the Jaccard Index as a function of tThresh and

dThresh (Figure 5B) for the simulated dataset described above and

observed a clear peak at tThresh =0.4 s and dThresh =60 nm. This

peak position is within the optimal threshold region selected by the

combined measurement error plot (Figure 5A). This agreement,

illustrated by the overlay plot in Figure 5C, confirms that the tThresh
and dThresh pair that most correctly groups localizations (maximizes

Jaccard index) also generates an image that provides accurate

quantification of dimension and density.

Structural geometry does not affect the positions of the
optimum threshold pair and Jaccard index peak
To examine whether differences in structural geometry or

dimension can alter the observed effects of photoblinking or

threshold selection on quantitative measurements, we simulated

another type of cellular structure: circular clusters of various sizes

(see Methods for simulation details). Figure 6 shows the

quantitative analyses of one simulation that was generated with

the same photoblinking parameters as the FtsZ simulation

discussed in Figures 2, 3, 4, 5, but with molecules distributed

among several clusters (Figure 6A) rather than a single Z-ring.

Despite the structural difference, the cluster simulation showed

a similar trend when different threshold pairs are applied.

Figure 6B and Figure 6C reproduce the general trends that larger

threshold values result in smaller dimension measurements and

relative density measurements, respectively. The intersection of

valleys in the|(N-Nref)/Nref| plot (Figure 6D) and the Jaccard index

peak (Figure 6E) coincide with those observed for the Z-ring

simulation (Figure 3C and 5B, respectively). The shared peak

positions between simulations with different underlying structure

suggests that structural geometry does not affect the position of the

optimum thresholds (see Discussion).

Low measurement error is not sufficient to guarantee
high Jaccard index
To further illustrate the relationship between Jaccard index and

measurement error under a variety of conditions, we generated

simulated datasets with different structural geometries, molecule

densities, fluorophore blinking properties, and activation rates (see

Table S1 and S2 for parameter ranges). For each simulation, we

calculated the combined measurement error, eall (worst fractional
error among the three bulk measurements: N, fmidcell or fcluster, and

ring width or cluster diameter), resulting from each threshold pair.

Then, we identified the minimum-error threshold pair that yielded

the lowest eall. In Figure 7A, we plot the relationship between eall
generated by the minimum-error threshold pair and the

corresponding Jaccard Index achieved by that threshold pair.

Across a large range of fluorophore blinking properties and

activation rates examined, most Z-ring (blue) and cluster (red)

simulations could generate images with low measurement error

(,10%) using at least one threshold pair. However, not all of these

images achieved high accuracy at the single molecule level

(Jaccard index .0.8). This result suggests that achieving accurate

ensemble measurements is not sufficient to ensure that the

corresponding list of molecule positions is reliable.

Fluorophore blinking kinetics and activation rate
determine achievable accuracy in superresolution image
reconstruction
As shown by the region where the maximum Jaccard index is

,0.8 in Figure 7A, some simulations could not yield high Jaccard

indices regardless of threshold selection. This observation indicates

that some combinations of fluorophore blinking properties and

activation rates do not allow accurate image reconstruction using

the clustering algorithm. We reason that when the probability of

molecule activation within a diffraction-limited area

(2556255 nm2 for mEos2 in our imaging condition) becomes

comparable to the probability that a molecule blinks back on, it is

difficult for the clustering algorithm to discriminate a repeat

localization of an activated molecule from the first localization of

a new molecule, resulting in separate molecules falsely grouped as

single molecules more frequently.

To understand what combination of fluorophore blinking rate

and activation rate ensures a high achievable accuracy in

superresolution image reconstruction, we employ two experimen-

Figure 5. Accuracy of images generated with different threshold pairs. (A) Region of threshold space (white squares) that resulted in ,10%
difference from the reference measurements of Z-ring width, N, and fmidcell, and that yielded Z-ring density distributions not significantly different
from the reference distribution (pKS .0.05). (B) Jaccard index values at each threshold pair. Higher Jaccard index values indicate more accurate
single-molecule clustering. (C) The peak of the Jaccard index plot (B, white squares) is within the region where all four quantitative measurements are
within 10% of the reference measurements (A). Dataset analyzed is the same simulated dataset shown in Figure 2–4.
doi:10.1371/journal.pone.0051725.g005
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tally-measureable parameters, Dtmax and Dtrepeat. We define Dtmax as
the average time between subsequent localizations of all molecules

within the diffraction-limited region of highest molecule density in

a superresolution image. Dtmax can be easily calculated by dividing

the total imaging acquisition time by the number of localizations

detected in the maximum density region (see Methods). Dtmax
therefore increases when activation is slower given the same

fluorophore properties, and serves as a convenient measurement of

activation rate. We define Dtrepeat as the average time between

subsequent localizations of the same molecule, which is de-

termined by fluorophore blinking kinetics, and can be measured

from in vitro or in vivo experiments where single fluorophores are

clearly identifiable (Figure S2A).

To explore the relationship between these two parameters and

achievable Jaccard index, we calculated Dtmax and Dtrepeat for the

simulations analyzed in Figure 7A and plotted the maximum

Jaccard index achieved for each simulation against the ratio of

Dtmax/Dtrepeat (Figure 7B). Simulations of both FtsZ (blue) and

clusters (red) display a clear increase in maximum Jaccard index

with increasing Dtmax/Dtrepeat, such that accurate clustering (Jaccard

index .0.8) can be achieved when the ratio is kept above 40,

regardless of the underlying structure. This observation provides

a simple criterion for screening imaging conditions, specifically

activation rates, in order to reconstruct a highly accurate

superresolution image.

Identifying the optimal threshold pair from an
experimental dataset
We have shown that one can easily identify the optimal tThresh

and dThresh pair from the plot of Jaccard indices at various tThresh and

dThresh values (Figure 5B and 6E). However, the Jaccard Index

cannot be calculated for experimental data where the photoblink-

ing behavior of individual molecules is unknown. The overlap of

the intersection of valleys in the |(N-Nref)/Nref| plot (Figure 3C and

6D) with the Jaccard peak position (Figure 5B and 6E), however,

may allow the identification of the optimal thresholds using an

experimental observable.

To examine the correlation between the intersection of the

valleys in the |(N-Nref)/Nref| plot and the threshold pair that gives

rise to the peak Jaccard index value, we compared the maximum

Jaccard index of different simulations with the Jaccard index

achieved using the threshold pair at the intersection of valleys in

the |(N-Nref)/Nref| plot identified by eye (see Figure S3 for

examples of intersection identification). Figure 7C shows that the

maximal Jaccard index and the Jaccard index achieved at the

intersection are in excellent agreement when the maximal Jaccard

index is greater than 0.8. At these high values, the Jaccard index

peaks are in general broader, such that threshold pairs nearby the

peak provide similar clustering accuracy. At low maximum

Jaccard indices, the peak becomes sharper, leading to higher

variability in achieving the maximum value by visual inspection.

These results indicate that near-optimal threshold values can be

identified from the intersection of the valleys in the |(N-Nref)/Nref|

Figure 6. Quantitative measurements of a simulated cluster dataset. (A) Representative cluster diameter measurement for a reference image
with no repeat localizations. Each cluster is identified by eye, and then fit to a two-dimensional, symmetrical Gaussian distribution (blue mesh). The
cluster diameter is measured as the FWHM, calculated as 2.35*s, where s is the fitted Gaussian standard deviation. The average FWHM of these four
clusters is 7461 nm. (B) Cluster diameter values (average of four clusters) calculated from images generated by applying different threshold pairs to
the same simulated dataset. The measured diameters decrease with increasing threshold values, similarly to the Z-ring width measurement. (C) The
fraction of molecules located in clusters (fcluster) is most similar to that measured in the reference image (0.47) for low values of both dThresh and tThresh.
(D) As with the Z-ring simulation, fractional difference between each reconstructed image and the number of molecules in the reference image (Nref

= 1212) is lowest along two intersecting valleys. (E) The Jaccard index peak position for the cluster simulation is similar to that in the Z-ring simulation
where identical kinetic parameters were used (Figure 5B). This simulated dataset was generated using the following parameters: Ntotal = 2000 (50% in
clusters), ,molecules/cluster. =200, FWHMcluster = 50 nm, s = 15 nm, ,nblink. = 2, ,toff. =1 frame, ,ton. = 1 frame, ,t0act. =5 frames (1
frame =50 ms).
doi:10.1371/journal.pone.0051725.g006

Accurate Construction of PALM Images

PLOS ONE | www.plosone.org 7 December 2012 | Volume 7 | Issue 12 | e51725



plot under the ideal experimental conditions described above

(Dtmax/Dtrepeat .40, Jaccard index .0.8).

Generation of the |(N-Nref)/Nref| plot requires knowledge of the

true number of molecules, Nref. This number can be calculated by

dividing the total number of localized spots in the unprocessed

image (Nunprocessed) by the average number of localizations per

molecule (a) under a given imaging condition (illumination power,

exposure time) such that Nref = Nunprocessed/a [12,21,31]. An

alternative method developed by Annibale et al. extracts Nref from

fitting a semi-empirical equation to the dependence of N on tThresh
at a fixed dThresh [26].

The parameter a is a bulk fluorophore property that can be

obtained experimentally. We measured amEos2 by imaging sparsely

distributed, immobilized mEos2 molecules in vitro under the same

buffer and imaging conditions used for fixed cells. Individual

mEos2 molecules could be clearly distinguished as well-separated

clusters of localizations (Figure 8A). Figure 8B shows that the

distribution of localizations per molecule approximates an

exponential distribution with a fitted mean of 0.960.1. This fitted

mean includes the population of molecules that did not last long

enough to be detected in one frame, while a reflects the number of

localizations per molecule that lasted long enough to be detected

in at least one frame. Consequently, the value of a calculated by

dividing the total number of localizations by the number of

molecules is larger than the fitted mean. Under our imaging

condition, amEos2=2.462.8 (s.d., N= 515) for purified mEos2.

Furthermore, using fixed E. coli cells expressing low levels of

untagged mEos2 protein at extremely low activation level, we

obtained a similar value (amEos2=2.164.3, N= 1228) (Figure S4),

suggesting that the blinking properties of mEos2 are similar in vitro

and in fixed cells under the same buffer conditions. Therefore, we

combined the datasets to obtain amEos2=2.2 (Figure S4B), which is

within the range of values reported in previous studies under

different conditions (amEos2=1–3) [12,31].

Application of the optimal threshold pair to experimental
data
Using the experimentally-determined value of amEos2, we

calculated the true Nref for the experimental dataset described in

Figure 2, 3, which was collected under the same imaging condition

as the sparse mEos2 samples (Nref = Nunprocessed/amEos2=1204/

2.2 = 547). We then varied both tThresh and dThresh to generate the

plot of |(N-Nref)/Nref| (Figure 9A), which is qualitatively in-

distinguishable from that generated from simulated data

(Figure 3C). From this plot we identified the intersection of the

two valleys (tThresh =0.4 s and dThresh =60 nm) as the optimal

threshold pair, which we used to generate the optimal super-

resolution image (Figure 9B). The images generated using

unoptimized clustering thresholds (tThresh =0.05 s (1 frame) and

dThresh =167 nm) (Figure 1B) and without applying any clustering

algorithm (Figure 9C) exhibit several bright cytoplasmic clusters,

some of which are almost completely removed in the optimal

image (white arrows) while a few remain (green arrows). It was

previously suspected that FtsZ forms polymeric structures outside

the Z-ring [8], but because of the blinking-related artifacts

described above, it has been difficult to interpret the cytoplasmic

clusters observed in superresolution images. The optimal image

clearly shows selective removal of blinking-related clusters, in-

creasing our confidence in assigning the remaining cytoplasmic

clusters to oligomeric states of FtsZ-mEos2 molecules.

In addition to identifying real protein clusters in the optimal

superresolution image, we performed the four quantitative

measurements described above using the optimal superresolution

image. This dataset was acquired over 20 minutes, resulting in

Dtmax =87 frames. Using the mEos2 characterization data

described above, we measured Dtrepeat =2.163.3 frames (s.d.,

N= 2072) (Figure S2A), resulting in the ratio Dtmax/Dtrepeat =41,

which is similar to the criterion provided in Figure 7B (Dtmax/
Dtrepeat .40). Consequently, the Z-ring width, fmidcell, and mean

molecule density are within 15% of the expected values (Table 1).

We also analyzed the Z-ring density distribution from both images

using the Poisson goodness-of-fit test. In this case, both the original

Figure 7. Relationship between Jaccard index, measurement error, and activation rate across different simulated datasets. (A)
Minimum combined measurement error, eall, for each dataset plotted against and the corresponding Jaccard index value. eall was defined as the
worst fractional measurement error of the three bulk measurements: N, fmidcell, and ring width when compared to the reference image. Images with
low measurement error do not always correlate with high clustering accuracy (Jaccard index), and thus cannot ensure reliable lists of molecule counts
and positions. (B) Maximum Jaccard index plotted against the ratio of the average time between localizations in the 255 nm 6255 nm maximum
density region, Dtmax, and the average time between repeat localizations of the same molecules, Dtrepeat, calculated for each simulated dataset.
Simulations with higher ratios of Dtmax/Dtrepeat result in higher Jaccard index values. (C) Comparison of maximum Jaccard index with Jaccard index
identified at the intersection of the |(N-Nref)/Nref| plot for each simulated dataset. The two values agree well when the maximum Jaccard index is
greater than 0.8. Simulation parameters can be found in Table S1 and S2. In all plots, Z-ring simulations are shown in blue and cluster simulations are
shown in red.
doi:10.1371/journal.pone.0051725.g007
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and the optimal image were well-described by a Poisson distribu-

tion (pGOF =0.14 and 0.56, respectively). This result suggests that

the blinking behavior of mEos2 does not affect the molecule

density distribution of the Z-ring significantly at our level of

sampling (,molecules/pixel. =0.5 in the Z-ring).

Discussion

Selection of localization-based superresolution imaging
method
We have shown that reliable dimension and relative density

measurements can be made from superresolution images with

multiple fluorophore localizations due to photoblinking. For

(d)STORM imaging, it has been shown that multiple localizations

of single fluorophores can actually enhance image quality because

repetitive sampling of the same molecule averages out the

stochasticity in individual localizations, leading to convergence on

the true molecule position [24,32,33]. Therefore, if the goal of

a superresolution imaging experiment is to visualize overall

structural dimensions and obtain relative density measurements,

no clustering algorithm should be applied. In this regard, organic

dyes that can undergo hundreds of switching cycles, such as those

used in (d)STORM, are especially advantageous. The high photon

yields of these dyes also improves the accuracy in localizing single

molecules, hence enhancing the spatial resolution of the super-

resolution image (10–20 nm [10]).

If the goal of a superresolution experiment is to count the

number of molecules accurately in a cellular structure so that

stoichiometric information of molecular components can be

obtained, photoactivatable fluorophores that are irreversibly

activated and exhibit only a few localizations before permanent

photobleaching are desirable. Photoactivatable fluorescent pro-

teins such as mEos2 yield only a few localizations per molecule and

provide the benefit of stoichiometric labeling via genetic fusion to

a protein of interest, improving the accuracy of counting

molecules. We show that photoactivatable fluorescent proteins

can yield accurate density measurements if activation is kept

adequately slow and a clustering algorithm with carefully-selected

thresholds is applied. Because conditions and fluorophores for

(d)STORM are often optimized to yield long dark times between

Figure 8. In vitro characterization of mEos2. (A) A typical in vitro
image of purified mEos2 molecules sparsely distributed on a cover
glass, acquired using the same PALM imaging condition as the in vivo
cell sample. All localized positions are indicated by small, filled circles
that are colored by detection time. Localizations belonging to the same
molecule are enclosed in a larger, open circle, which is colored by the
mean detection time of all the enclosed localizations. The inset shows
details of a single cluster, which contains four localizations (filled circles
with black outlines). (B) Histogram of localizations per molecule from
515 molecules fitted with an exponential distribution (red line), which
yielded a mean of 0.960.1 localizations per molecule. The value of
a (2.462.8) represents the mean of observed molecules that lasted at
least one frame, and is consequently larger than the fitted mean.
doi:10.1371/journal.pone.0051725.g008

Figure 9. Determination and application of optimal threshold
pair to an experimental image. (A) |(N-Nref)/Nref| plot of the
experimental dataset used in Figure 1–3. The plot was generated using
the Nref number (547) calculated from the measured a value from
combined in vitro and in vivo characterizations of mEos2 (Figure 8 and
Figures S4). The optimal threshold pair was identified at 0.4 s and
60 nm (blue circle). (B) and (C) Images constructed using the optimal
threshold pair (B) and without any clustering algorithm (C). Clusters that
are reduced by the optimized clustering algorithm are indicated by
white arrows. Clusters that remain bright in the optimal image, which
may represent oligomeric states of FtsZ-mEos2, are indicated by green
arrows. Scale bars, 500 nm.
doi:10.1371/journal.pone.0051725.g009
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reversible switching events (large values of Dtrepeat) [24,33], these
experiments require prolonged imaging time if the goal is to

achieve accurate clustering (see below). Therefore, PALM

experiments employing photoactivatable fluorescent proteins such

as mEos2, mEos3, and PAmCherry are better suited for molecule-

counting than reversibly switchable dyes.

In a live-cell superresolution experiment, an additional consid-

eration for accurate molecule counting is the movement of single

molecules. These movements often occur on the millisecond

imaging timescale, resulting in single molecules localized at

multiple positions throughout a structure. In a similar manner to

reversibly switching dyes, this can be beneficial because it allows

for faster sampling of the entire structure with fewer fluorophores

[40]. However, molecule movement makes application of the

clustering algorithm described above difficult because the optimal

distance threshold will depend on the molecule’s diffusion rate.

Therefore, to obtain accurate molecule counting and absolute

density within a structure, fixed-cell PALM experiments with

carefully optimized fixation protocols that minimize structural

aberrations are most suitable. Below we discuss further considera-

tions and limitations in applying the clustering algorithm for fixed-

cell PALM experiments.

Achievable clustering accuracy is dependent on imaging
acquisition condition
We have described a method for selecting the optimal values of

tThresh and dThresh based on visual inspection of the |(N-Nref)/Nref|

plot. The optimal values of tThresh and dThresh ensure that most

repeat localizations are grouped together, minimizing false

identification of repeat localizations as separate molecules.

However, we have also shown that successful application of the

optimized clustering algorithm requires low activation rates, where

the probability that a new molecule will be photoactivated nearby

an activated molecule before it is photobleached is low. High

activation rates result in false grouping of separate molecules.

To minimize false molecule grouping, we have provided the

criterion that Dtmax needs to be more than 40-fold longer than

Dtrepeat (Figure 7B). For the mEos2 protein characterized in this

study, we observed that Dtrepeat =2.1 frames in our experimental

setup (Figure S2). Consequently, a minimum Dtmax of 84 frames

between localizations in the 2256225 nm2 square of highest

density is required. This criterion can be converted into

a maximum detection rate of 0.24 molecules/mm2 per frame in

the maximum density region (1/0.05 um2/84 frames), which also

satisfies the conditions previously reported to avoid detection of

overlapping fluorescent molecules (,0.5 molecules/mm2 per frame

on average [23]).

Physical meaning of optimal threshold values
Under an imaging condition that allows accurate superresolu-

tion reconstruction, the optimal values for tThresh and dThresh are

related to the mean off time of fluorophore blinking (,toff.) and

the spatial resolution, respectively. Longer ,toff. values require

larger values of tThresh to accommodate the longer dark times

between spots so that most repeat localizations of the same

molecule are grouped into the same cluster (Figure S5). Likewise,

the dThresh value increases with the value of spatial resolution

(Figure S6), which is defined as the FWHM of Gaussian-

distributed fluorophore localizations around the central molecule

position, and determines the average distance between repeat

molecule localizations (Text S1). The optimal dThresh value is

approximately twice the spatial resolution, which is large enough

to account for most repeat localizations of the same molecule

(Figure S7E). The values obtained for the experimental image

described above (tThresh =0.4 s, dThresh =60 nm) agree with the

,toff. timescale of mEos2 blinking kinetics observed in our study

(0.10 s, Figure S7B) and previous studies (0.1–0.4 s) [26], as well

as the typical spatial resolution of mEos2 molecules in our setup

(42 m; Figure S7D). Although this general correlation (Figure S5–

6) could also be used to estimate optimal threshold values,

substantial variations in corresponding optimal threshold values

exist due to other fluorophore photoproperties or structural

parameters. Generation of the |(N-Nref)/Nref| takes all of these

factors into account, while requiring similar effort in fluorophore

characterization.

Fluorophore characterization
Two fluorophore properties need to be determined to imple-

ment the method we have described. First, the average time

between repeat molecule localizations, Dtrepeat, should be compared

with the activation rate to identify imaging conditions that are

suitable for accurate superresolution image reconstruction as

described above. Second, the average number of observations per

molecule, a, is required to generate the |(N-Nref)/Nref| plot. Both of

these parameters should be determined using the same exposure

time and excitation intensity as those used for the superresolution

imaging. This can be done with either purified fluorophore or,

ideally, with a fixed biological sample of low labeling density that is

activated extremely slowly. It is also important to characterize

a fluorophore under the same buffer conditions used for super-

resolution imaging because blinking kinetics are highly dependent

on a fluorophore’s chemical environment [27]. The conditions

inside fixed cells should be equilibrated with external buffer

conditions, but this is not the case for live cells. Since movement

can complicate fluorophore characterization in live cells, we again

recommend fixed cells for the purposes of accurate molecule

counting and density measurements.

The kinetic scheme that we used to described the blinking

behavior of mEos2 is relatively simple (see Methods) and has been

previously shown to sufficiently describe mEos2 [26]. Although

more complex schemes, in which multiple pathways lead to the

observed dark or fluorescent states [28,41–44], may also be

Table1. Quantitative measurements made from the optimized experimental image.

Original image True value Optimal image % difference from true value

Ring width 84nm 84nm* 77nm 8%

fmidcell 35% 35%* 30% 14%

N 1204 547** 517 5%

*True values for ring width and fmidcell are those measured from the original image. **True value for N is the number of molecules in the original image divided by amEos2

(1204/2.2 = 547).
doi:10.1371/journal.pone.0051725.t001
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applicable to mEos2 and other photoactivable fluorophores, we

have verified experimentally that the distributions of ton, toff, and
nblink observed from individual mEos2 molecules can be approx-

imated well by the single exponential distributions used in our

simulation (Figure S7A, B, C).

Comparison with other superresolution processing
algorithms
A few recent methods have addressed some of the effects of

photoblinking on superresolution images. The method developed

by Annibale et al. identifies the correct number of molecules (Nref )

in a superresolution image by fitting the dependence of N on tThresh
to a semi-empirical function [26]. In addition to providing an

unambiguous way to determine the true Nref in a heterogeneous

image, our method provides optimal tThresh and dThresh values to

generate a reliable image that can be quantified in many different

ways, and identified a quantitative criterion (Dtmax/Dtrepeat .40)

under which optimal image reconstruction is possible.

Other studies have applied pair correlation analyses to images of

membrane clusters to extract mean density and cluster size

[21,45]. By analyzing correlation functions of distances between

detected spots, these studies have elegantly determined the relative

contribution of blinking and true molecular interactions to the

observed clusters in their superresolution images. Because the pair

correlation analysis does not require classification of each localized

spot, it can accommodate faster activation rates than the method

we have described. However, features of irregular shape and

heterogeneous density may not be sufficiently characterized by the

pair correlation analysis, which summarizes an entire image into

a few parameters.

The optimized clustering algorithm we described in this work

complements these methods by generating a full superresolution

image and accurate list of molecule positions that provide

additional qualitative and quantitative information that cannot

be described by one or a few global parameters. We have

described a few quantitative analyses that can be performed

(dimension, mean density, relative density, and density distribution

analysis), but each biological system may be characterized by

unique quantitative features that can be measured from the images

and list of positions our method provides. Additionally, because

our method is a simple modification to the superresolution image

analysis algorithm first developed for PALM [1], it can be

conveniently implemented in commonly used algorithms.

Experimental Methods and Simulations

Simulation of FtsZ structures
Based on our experimental PALM images [7], we simulated

FtsZ molecules in the cell as two populations: midplane and

cytoplasmic. Positions for cytoplasmic molecules were sampled

from a uniform distribution across the entire cell area (1 mm
63 mm rectangle). Positions for midplane molecules were sampled

from a uniform distribution in a 110 nm61 mm rectangle at the

midcell. Figure S8A shows a representative simulation of distrib-

uted midplane (red) and cytoplasmic (blue) molecules.

Simulations presented in this work were comprised of 1000,

2000, or 5000, total molecules that were distributed with 30%,

50%, or 75% in the midplane population (see Table S1).

Simulation of circular clusters
Each simulation of circular clusters required designation of the

following parameters: total number of molecules in a cell, fraction

of molecules within clusters, mean number of molecules per

cluster, and cluster FWHM (parameter ranges can be found in

Table S2). The positions of molecules that were not within clusters

(cytoplasmic molecules) were sampled in the same manner as

described for the cytoplasmic molecules in the FtsZ simulation.

The integer number of clusters in a given simulation was

calculated by dividing the total number of molecules in all clusters

by the mean number of molecules per cluster. Then, the number

of molecules in each cluster was sampled from an exponential

distribution. The molecules within each cluster were scattered

according to a symmetrical, two-dimensional Gaussian distribu-

tion with the designated FWHM, and the center of each cluster

was distributed uniformly throughout the cell. Figure S8C shows

a representative simulation of distributed clustered (red) and

cytoplasmic (blue) molecules.

Simulation of fluorophore blinking kinetics
We simulated the kinetics of fluorophore activation and blinking

by varying the following parameters:

1. Activation rate (k1): rate at which new molecules are activated;

inversely proportional to the number of unactivated molecules

remaining.

2. Blink off rate (k2): rate at which a molecule is reversibly

converted to the transient ‘off’ state.

3. Blink on rate (k3): rate at which a molecule is turned on from

the transient ‘off’ state.

4. Bleaching rate (k4): rate at which a molecule is irreversibly

turned off by photobleaching.

Figure 1A shows a diagram of this simple kinetic scheme.

Experimentally, k1 is controlled by the intensity of the activation

laser and k4 is controlled by the intensity of the excitation laser.

The kinetic parameters were simulated using MATLABH via

Monte-Carlo simulations of fluorophore dynamics where expo-

nential probability distributions were assigned for each of the

following parameters (expected values were designated at the

beginning of the simulations and can be found in Tables S1 and

S2):

1. Lag time between molecule activations (tact) was sampled from

an exponential probability distribution with expected value of

tact
0(Ninitial/Nremaining), which increases as the number of

remaining molecules (Nremaining) that have not been activated

decreases. tact
0 is the expected lag time at the initial number of

molecules (Ninitial).

2. The duration of each blink (ton).

3. The duration of dark times between blinks (toff).

4. Number of blinks per molecule (nblink).

The Ninitial values used in the simulation are listed in Tables S1

and S2. All times were rounded to the nearest integer number of

frames (presented figures plot time in seconds using a 50 ms

exposure time). Note that the kinetic parameters used in these

simulations reflect observed fluorescence time traces that are

highly dependent on experimental conditions such as excitation/

activation light intensity, pixel size, background noise, frame rate,

spot detection algorithm, and spot fitting algorithm. We validated

this scheme by verifying that the observed time traces of individual

mEos2 molecules under our experimental conditions can be well-

described by exponential distributions of ton, toff, and nblink
(Figure S7A, B, C).

Molecules were iteratively activated with lag times sampled

from the updated tact distribution. Once activated, the number of

blinks for a given molecule was sampled from the nblink distribution.

For each blink event, the on-time was sampled from the ton
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distribution and the time until the next blink was sampled from the

toff distribution. The lag time (tact) until the next molecule

activation was calculated from the start of the previously activated

molecule such that blinking events from multiple molecules could

overlap in time.

For low expected values, sampling from an exponential

distribution often resulted in values less than one frame. A value

of nblink ,0.5 (rounded to nblink =0) means that the molecule was

activated but never ‘observed’ in the simulation due to fast

photobleaching. This was also true for low values of mean on-time

(ton), which resulted in some blinks not being recorded. These

properties mimic experimental conditions and highlight the fact

that not every activated fluorophore or blinking event will be

visualized.

Once the blinking time trace was established for each molecule,

its multiple localizations were scattered around the original

molecule position according to a two-dimensional normal

distribution with a standard deviation, s, between 7–37 nm (see

Table S1 and S2). For the simulation described in Figures 2, 3, 4,

5, s=15 nm, which results in a FWHM spatial resolution of

35 nm. We validated that the position distributions generated by

the simulation were similar to those observed for experimental

mEos2 localizations by plotting the histograms of distances

between repeat localizations of the same molecule that result

from the simulation (Figure S7E) and from experimental data

(Figure S7D). The shape and peak position of both distributions

are similar, suggesting that the simulation with s=15 nm

approximates our experimental data.

Superresolution image reconstruction with localization-
based PSFs
Superresolution images of both simulated and experimental

data were generated in MATLABH with a pixel size of 15 nm.

Each localized spot was plotted as a symmetrical 2D Gaussian

distribution with total intensity equal to 1 and s equal to the

experimental or simulated localization precision. For simulated

data, the localization precision was equivalent to the standard

deviation, s, used to simulate the scatter of localizations around

the molecule position (see previous paragraph). For experimental

data, only molecules with localization precisions smaller than

20 nm were plotted. Superresolution images were pseudocolored

using the ‘Red Hot’ lookup table in ImageJ software (NIH).

Superresolution molecule density measurement
For density measurements, superresolution molecule density

images of both simulated and experimental data were generated in

MATLABH with a pixel size of 15 nm. The intensity of each pixel

in the density image represents the number of molecules detected

within the pixel’s boundaries, and hence represents a two-di-

mensional histogram of molecule counts. For experimental data,

only molecules with localization precisions smaller than 20 nm

were included.

Boundaries of the Z-ring or cluster regions of each density

image were identified as polygons by eye. Relative density within

the Z-ring (fmidcell) was calculated by dividing the summed intensity

within the Z-ring region by the total intensity of the density image

(total number of localized spots). Similarly, relative density within

clusters (fcluster) was calculated by dividing the summed intensity

within all clusters by the total intensity of the density image. Z-ring

density histograms were generated by binning pixels within the Z-

ring region by intensity.

Calculation of maximal activation rate
The average time between molecule activations, Dtmax, was

calculated from the time intervals between localizations within the

225 nm6225 nm square of maximum density, which was

identified by applying a mean filter to the superresolution density

image (see above) using the ‘nlfilter’ function in MATLAB with

a 17pixel617pixel sliding window (15 nm pixel size). The

maximum density square is centered at the maximum intensity

pixel in the filtered image. This calculation is identical for both

simulated and experimental data.

Clustering algorithm
Both simulated and experimental time traces were clustered in

MATLABH using two thresholds: any spot that occurred within

time, tThresh, and distance, dThresh, of a previous spot was grouped

into the same cluster as that previous spot (see Figure S1 for

flowchart). The resulting cluster was assigned a spatial position

equal to the centroid position of all the spots included in the

cluster.

Jaccard index of cluster accuracy
We calculated the Jaccard index [38,39] of clustering accuracy

for each clustering result as TP/(TP +FP + FN). TP is the number

of pairs of localizations that came from the same molecule, and

were grouped into the same cluster; FP is the number of pairs of

localizations that did not come from the same molecule, but were

grouped into the same cluster; and FN is the number of pairs of

localizations that came from the same molecule, but were grouped

into different clusters. The Jaccard index varies from 0 to 1, where

a value of 1 represents perfect clustering.

Preparation and purification of mEos2
The mEos2 gene was amplified using primers AATTGTCGA-

CAATGAGTGCGATTAAGCCAGACA and

TTAAGCGGCCGCTTATCGTCTGGCATTGTCAG. The

PCR product was restricted using SalI and NotI restriction

enzymes (New England Biolabs), and cloned into the same sites

of plasmid pT7HMT [15]. The inserted sequence was confirmed

via sequencing and the resulting plasmid was transformed into

BL21-Gold(DE3) cells (Stratagene). To purify his-mEos2, cells

were cultured overnight at 37uC in LB (Luria Broth) media. The

culture was then diluted 1:200 in 200 mL LB media, grown at

37uC to an OD600 of 0.8, then induced for 2 hours with 0.5 mM

IPTG (Isopropyl b-D-1-thiogalactopyranoside). Cells were collect-

ed at 4100 rpm for 20 min in a Sorvall Legend RT bench top

centrifuge at 4uC. Cells were lysed using sonication and repeated

freeze thaw cycles and subsequently purified on Ni-NTA beads

(Invitrogen) at 4uC according to the ProBondTM native protocol.

Protein was buffer-exchanged and concentrated from elution

buffer to pH 7.4 phosphate buffer saline using a Vivaspin 500

concentrator (GE Healthcare) with a 5,000 MW cutoff. Purified

his-mEos2 was checked for purity by running Mini-PROTEAN

TGX Gels (BIO-RAD), and concentration was determined in

a Nanodrop spectrophotometer using absorption coefficient of

5,600 M21cm21 at 280 nm [29]. His-tagged mEos2 was diluted

1:10,000 from a stock concentration of 13.5 mM, then frozen in an

ethanol dry-ice bath and stored at 280uC in 2 mL aliquots.

In vitro sample preparation
A 12% NiCl2 aqueous solution was prepared and filtered to

sterilize and remove aggregates. A coverslip was secured via

Scotch tape (3 M) to a Mini Mouse II (Denville scientific)

centrifuge with the 1.5 mL tube attachment. While spinning at
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6000 RPM, 50 mL of the NiCl2 solution was slowly pipetted to the

center of the spinning coverslip through a ,1 cm hole in the

plastic cover. The spin coating was visually inspected for evenness.

Next, 0.5 mL of purified his-mEos2 sample (1.35 nM) was pipetted

to the center of the NiCl2-coated coverslip without spinning.

Sample was allowed to dry, then topped with an agarose gel pad to

mimic the PALM image acquisition setup described previously [7].

E. coli sample preparation and fixation
E. coli B/rA cells containing plasmid pCA24N-FtsZ-mEos2 [7]

were grown in M9 media supplemented with glucose at 25uC to an

OD600 of 0.2, then induced with 20 mM IPTG for 2 hrs. Cells

were then collected via centrifugation, resuspended in fresh M9

media, grown at 25uC for 90 minutes, and fixed with 4%

formaldehyde at 25uC for 40 min. The fixed E. coli cells were

mixed with 50 nm gold fiducial beads (Microspheres-Nano-

spheres, Mahopac, NY), then sandwiched between an agarose

gel pad and a cleaned coverslip as described previously [7].

PALM Imaging conditions
Images were acquired using an Olympus IX-71 inverted

microscope, equipped with a 606, 1.45 NA TIRFM objective.

A 405 nm laser (CUBETM, Coherent, Santa Clara, CA) was used

to activate mEos2. The green and red fluorescence of mEos2 was

excited via epi-illumination with 488 nm and 561 nm solid state

lasers (Sapphire, Coherent, Santa Clara, CA) and emission was

collected on an EMCCD camera (iXon DU897E, Andor

Technology, Belfast, Northern Ireland) after passing through

a dual-band emission filter (510/19 and 620/20, Chroma

Technology, Rockingham, VT).

During the imaging sequence, the sample was illuminated

continuously with both 405 nm and 561 nm lasers. The exposure

time was 50 ms per frame (20 Hz) with a 100pixel 6100pixel

imaging area. The intensity of the 405 nm activation laser was

increased stepwise as the number of unactivated mEos2 molecules

decreased during data acquisition.

Molecule detection in experimental data
Molecules were detected and localized as described previously

[7]. Briefly, intensity and area thresholds were used to identify

potential fluorescence spots, which were fit to a symmetric, two-

dimensional Gaussian function using a nonlinear least squares

algorithm in MATLAB. Localization precision was calculated

from the photon counts according to the theoretical formula [4].

Sample drift was calibrated by applying the frame-to-frame

displacement of 50 nm gold beads, which were localized in the

same manner as single molecules of mEos2.

Supporting Information

Figure S1 Schematic of spot clustering algorithm. After
spot identification and localization, the set of spots is processed

iteratively such that any previous spot (‘‘forerunner spot’’) that

occurred within tThresh and dThresh of a given spot (‘‘spot i’’) are

grouped together. Each group is then plotted only once in the final

superresolution image at the calculated centroid position.

(TIF)

Figure S2 Characterization of Dtrepeat for mEos2. Histo-

gram of time (in frames) between sequential molecule localizations,

Dtrepeat, from 1743 molecules resulting in 3815 localized spots and

2072 intervals between sequential localizations of the same

molecules. Data from both in vitro samples and fixed cells

expressing low levels of mEos2 were combined to generate this

histogram. Most repeat localizations occur in consecutive frames

(first bin, Dtrepeat =1), but long dark intervals (.10 frames) are

sometimes observed. The sample mean is ,Dtrepeat. =2.163.3

frames (0.1160.17 seconds).

(TIF)

Figure S3 Examples of intersection identification in the
|(N – Nref)/Nref| plot. Among the 92 simulations in-

vestigated, three categories of plot shapes were observed:

symmetric (A), asymmetric (B), and diffuse (C). The optimal

threshold pair identified by eye for each example is shown as a blue

circle. For symmetric plots, the optimal threshold pair should be

selected in the center of the intersection point. For asymmetric

plots, the optimal threshold pair should be selected at the inflection

point with the longest tThresh value. The identification of the

intersection point in diffuse plots (C) may be difficult because the

intersection area is broad. However, these plots result from kinetic

parameters that yield very broad and high Jaccard peaks such that

a broad range of thresholds around the intersection points yield

almost equivalent and sufficient accuracy in resulting images.

These representative plots were generated from simulated datasets

with the following parameters (Ntotal-midplane %-,nblink.,,-

nblink.,,toff.,,ton.,,t0act.): 500–30%–1,4,1,1 (A), 1000–30%

22,8,1,1 (B), 500–50% –3,4,1,20 (C) – all t values are reported in

frames; 1 frame = 50 ms).

(TIF)

Figure S4 Characterization of mEos2 in fixed E. coli
cells. (A) Representative images from a single E. coli cell

expressing mEos2. The brightfield (top left) and green fluorescence

(bottom left) images are shown for comparison. The scatter plot

(right) shows single molecule localizations (small dots) colored by

detection time. Localizations that originated from the same

molecule are grouped together (large circles). The cell outline is

shown in white. (B) Histogram (gray) of localizations per mEos2

molecule (a) in fixed E. coli cells with the corresponding single-

exponential fit (red). The fitted mean is 0.560.1 localizations per

molecule. The ensemble average is 2.164.3 (std. dev., N=1228)

localizations per molecule. (C) Histogram (gray) and single-

exponential fit (red) calculated after combining in vitro (B) and in

vivo (Figure 8B) datasets, which yielded similar values. The fitted

mean is 0.660.1 localizations per molecule. The ensemble average

is 2.263.9 (std. dev., N=1743) localizations per molecule.

(TIF)

Figure S5 Optimal tThresh values are related to the
mean off time. Datasets from both Z-ring and cluster

simulations were grouped by simulated fluorophore off-time, toff,
then tThresh values at the Jaccard index peak of each simulation

were averaged (blue circles; error bars represent standard

deviation) and plotted against the fluorophore off-time. The two

parameters show a clear correlation, suggesting that the optimum

tThresh value is largely determined by the mean fluorophore off time

(linear fit: Y= 3.3X+0.14, R2= 0.99). However, the large variation

at some toff values suggest that other experimental factors affect the

optimal tThresh value. A list of simulations used in this analysis can

be found in Table S1 and S2.

(TIF)

Figure S6 Optimal dThresh values are related to the
spatial resolution. Datasets from Z-ring and cluster simulations

were grouped by simulated spatial resolution (FWHM), then the

dThresh values at the Jaccard index peak of each simulation were

averaged (blue circles; error bars represent standard deviation) and

plotted against the simulated spatial resolution. Spatial resolution

was calculated as 2.35s, where s is the Gaussian standard
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deviation used to scatter localizations around the central molecule

positions (see Methods and Text S1). The two parameters show

a clear correlation, indicating that larger spatial resolutions result

in larger values for optimum dThresh (linear fit: Y= 1.4X+10.2,
R2= 0.96). This plot was generated using the same datasets

analyzed in Figure S5 (see Table S1 and S2 for parameter list).

(TIF)

Figure S7 Validation of kinetic and spatial simulation
parameters. Combined datasets from both in vitro and in vivo

characterizations of mEos2 were used to generate histograms of

nblink (A), toff (B), and ton(C), which are all described well by single-

exponential distributions, validating the simple kinetic scheme

used to simulate fluorophore dynamics in this work. Red curves

indicate single-exponential fits that yielded mean values of:

,nblink. =0.4460.03 (A), ,toff. =2.060.2 frames (B), and

,ton. =0.5660.03 frames (C). (D–E) Histograms of the pair-wise

distances between repeat localizations of the same molecule for

experimental (D) and simulated (E) datasets. The histograms were

fit to Equation 2 from Text S1 (p(Dr) = (r/2s2)*exp(2r2/4s2);
red lines), yielding standard deviation, s, of 1861 nm (D) and

1561 nm (E), respectively. The experimental dataset is the same

combined dataset characterized in (A–C) above. The simulated

dataset had a nominal s of 15 nm, and is the same dataset

analyzed in Figures 2–5 (Ntotal =2000 (50% midplane), s=15 nm,

,nblink. =2, ,toff. =1 frame, ,ton. =1 frame, ,t0act. =5

frames (1 frame =50 ms)).

(TIF)

Figure S8 Representative simulations of superresolu-
tion images. (A) Representative simulation of FtsZ locations

within an E. coli cell. The total number of molecules, N, is 500.

Molecules are divided into 50% midplane (red) and 50%

cytoplasmic (blue). (B) Superresolution image generated from the

data in (A) after simulating the following kinetic parameters:

,nblink. =3, ,toff. =4 frames, ,ton. =1 frame, ,t0act. =7

frames, and applying the same clustering algorithm used to

generate Figure 1B: spots within 167 nm (1 camera pixel) and

50 ms (1 frame) of each other were grouped together and plotted

once. The simulated image reproduces the time-correlated clusters

observed in the experimental image (Figure 1B). (C) Representa-

tive simulation of clusters within an E. coli cell. The total number

of molecules, N, is 2000. Molecules are divided into 50% clustered

(red) and 50% cytoplasmic (blue) molecules, with the cluster

diameter designated as 50 nm FWHM. The number of molecules

per cluster was sampled from an exponential distribution with

,molecules/cluster. =200. (D) Superresolution image generated

from the data in (C) after simulating the following kinetic

parameters: ,nblink. =2, ,toff. =1 frames, ,ton. =1 frame,

,t0act. =5 frames, but plotting only the first localization of each

molecule. Scale bars, 500 nm. Grid size, 30 nm.

(TIF)

Table S1 Simulation parameters for Z-ring simula-
tions.

(XLSX)

Table S2 Simulation parameters for cluster simula-
tions.

(XLSX)

Text S1 Calculation of spatial resolution.

(DOCX)

Acknowledgments

We thank Mr. Jackson Buss for assistance with experiments and Dr. Zach

Hensel for helpful discussion.

Author Contributions

Conceived and designed the experiments: CC JX. Performed the

experiments: CC RK. Analyzed the data: CC RK. Contributed

reagents/materials/analysis tools: CC RK JX. Wrote the paper: CC JX.

References

1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, et al. (2006)

Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:

1642–1645.

2. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic

optical reconstruction microscopy (STORM). Nat Methods 3: 793–795.
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