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SUMMARY

Understanding the epigenomic evolution and specificity of disease subtypes from complex patient 

data remains a major biomedical problem. We here present DeCET (decomposition and 

classification of epigenomic tensors), an integrative computational approach for simultaneously 

analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue 

types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 
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uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating 

normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in 

distal enhancers and long-range histone modifications confined to chromatin contact domains that 

constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and 

advantage of DeCET on multiple publicly available epigenomic datasets representing different 

cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our 

understanding of disease states, cellular development, and differentiation, thereby facilitating 

future therapeutic, diagnostic, and prognostic strategies.

Graphical Abstract

In brief

Leistico et al. apply tensor decomposition and classification methods to integrate information from 

hierarchical heterogenous epigenomic datasets and identify histone modification patterns that 

discriminate disease conditions, tissue types, and differentiation states. Leiomyomas are shown to 

possess alterations in distal enhancers and large-scale regions confined to chromatin contact 

domains.

INTRODUCTION

Analyzing heterogeneous epigenomic data from multiple disease conditions and patients 

poses challenges partly attributable to technical biases in experiments and biological 
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variability among individuals. Most current analysis methods consider each histone 

modification per patient separately and then perform a meta-analysis by pooling information 

across epigenetic marks and patients; unfortunately, this approach suffers from loss of 

statistical power and requires arbitrary choices of parameters for combining individual 

results. We here present a powerful approach called DeCET (decomposition and 

classification of epigenomic tensors) that simultaneously analyzes hierarchical 

heterogeneous histone modification chromatin immunoprecipitation sequencing (ChIP-seq) 

datasets.

DeCET employs the higher-order singular value decomposition (HOSVD) of a data tensor to 

integrate the information of all patients, conditions (healthy versus diseased), histone 

modifications, and genomic locations (De Lathauwer et al., 2000) (Figure 1A; STAR 

Methods). By using information from all experiments, the HOSVD captures epigenomic 

alterations robust to experimental biases and inter-patient variability. Moreover, as the data 

tensor directly uses normalized ChIP-seq signals rather than peak calls, DeCET is able to 

identify modulation in regulatory activity beyond simple binary gain or loss events. The 

HOSVD simultaneously decomposes the dataset into characteristic modes in the patient, 

condition, assay, and genomic location spaces while capturing the interactions between these 

spaces in a compressed version of the tensor. In particular, the spatial decomposition yields 

location vectors that encode independent epigenomic patterns exhibiting spatial covariation 

across samples (Figure 1A). The linear HOSVD provides a direct connection between the 

orthogonal location vectors and the eigenmodes in the condition, patient, and assay spaces, 

enabling sample characterization and biological discovery.

We demonstrate the clinical applicability of DeCET by analyzing the intact epigenomes of 

fresh human leiomyoma and matched myometrium tissues, unperturbed by artificial in vitro 
cell culture conditions. Uterine leiomyomas (fibroids) are benign tumors of uterine smooth 

muscle cells characterized by deposition of excessive, disorganized extracellular matrix 

(ECM) (Al-Hendy et al., 2017; Commandeur et al., 2015; Doherty et al., 2014; Stewart et 

al., 2016). Studies have shown four major mutually exclusive clonal genetic mutations in 

leiomyomas: ~70% of cases harbor MED12 mutations, either missense or small in-frame 

insertions or deletion in exon 2 (Je et al., 2012; Mäkinen et al., 2011; McGuire et al., 2012; 

Mehine et al., 2014), while high mobility group AT-hook 1 and 2 (HMGA1 and HMGA2) 

rearrangements occur in another 15% (Ferrero, 2019; Meloni et al., 1992; Nibert and Heim, 

1990; Rein et al., 1991). Biallelic inactivation of fumarate hydratase (FH) (Tomlinson et al., 

2002) and collagen type IV alpha 5 and collagen type IV alpha 6 (COL4A5-COL4A6) 

deletions are also found in some cases (Mehine et al., 2016). Recent studies have observed 

characteristic changes in RNA expression (Mehine et al., 2016), DNA methylation (George 

et al., 2019), and H3K27ac (Moyo et al., 2020) for leiomyomas harboring distinct driver 

mutations, but interrogating how aberrant epigenomic structure contributes to transcriptomic 

alterations and leiomyoma pathology remains a difficult problem. DeCET identified 

informative epigenetic features that accurately distinguished myometrium and leiomyoma 

samples with mutational subtypes. When applied to other epigenomic datasets, DeCET also 

discriminated among tissue types, differentiation states, prostate cancer subtypes, and breast 

cancer subtypes, demonstrating its power and generalizability.
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Moreover, a supervised support tensor machine (STM) classifier (Cai et al., 2006) using the 

epigenomic features identified by DeCET yield a robust predictor of the disease condition 

and subtype of unseen leiomyoma samples. The STM integrates information from all histone 

modifications, reducing the number of model parameters and thereby avoiding overfitting 

compared to other approaches that treat the modifications separately.

RESULTS

DeCET uncovers distinct epigenetic patterns specific to myometrium and leiomyoma 
subtypes

We profiled active histone modifications (H3K27ac, H3K4me3, and H3K4me1) (ENCODE 

Project Consortium, 2012; Kundaje et al., 2015) in matched myometrium and leiomyoma 

tissues from 21 patients. Histone modifications for 6 leiomyoma samples from 5 additional 

patients and a second tumor from 1 of the 21 matched patients were also profiled to be used 

as test data for prediction (Table S1).

Applying the HOSVD to the tensor of 21 patient-matched datasets showed that the first three 

genomic location vectors specified histone modification patterns highly conserved across 

conditions and patients, while the remaining vectors specified heterogeneities in the samples 

(Figure 1B; STAR Methods). To test whether the top location vectors could separate the 

tissues into conditions, we clustered the samples using the HOSVD projections of histone 

modifications onto these vectors. The clustering correctly partitioned the samples by disease 

condition and also revealed additional substructure within the leiomyomas (Figure 1C; 

STAR Methods). We investigated whether this substructure corresponded to known driver 

mutations (Mehine et al., 2014, 2016). We first verified the status of MED12 exon 2 

mutations, HMGA2 overexpression, and biallelic inactivation of FH for 20 of the 21 patient-

matched leiomyoma samples using RNA sequencing (RNA-seq), Sanger sequencing, or 

qRT-PCR (Figures S1 and S2; STAR Methods). Of these samples, all but three possessed 

one of the three driver mutations (12 MED12 mutation, 3 HMGA2 overexpression, and 2 

biallelic loss of FH), and none possessed multiple alterations (Table S1). For the one patient 

without RNA-seq data, we confirmed by Sanger sequencing that this patient possessed a 

mutation in exon 2 of MED12 but were unable to check for loss of FH or HMGA2 
overexpression. The clustering substructure clearly reflected the mutation-based subtypes, 

demonstrating that DeCET successfully uncovered clinically relevant epigenomic 

aberrations (Figure 1C). The three samples without any of the three driver mutations 

clustered together, potentially attributable to shared epigenomic alterations. We did not 

observe any tight clustering or consistent changes for leiomyomas treated with the 

gonadotrophin-releasing hormone agonist leuprorelin, suggesting its heterogeneous or weak 

effect on histone modifications.

The clustering of leiomyoma epigenomes by distinct driver mutations supported that 

leiomyoma genesis involves epigenetic reprogramming specific to each driver mutation. An 

analogous clustering using RNA-seq data from the 20 matched samples showed that these 

mutations were also associated with distinct transcriptomic states (Figure S3A), agreeing 

with a recent report (Mehine et al., 2016). Together, these results implied that mutation-
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specific distal and local epigenomic alterations might mediate distinct transcriptional 

alterations in leiomyoma.

We next sought to identify the specific genomic locations separating the healthy versus 

disease conditions and leiomyoma subtypes. Once the location space was decomposed into 

singular vectors, the information distinguishing leiomyoma from myometrium was encoded 

in the compressed core tensor and the orthogonal decompositions in the condition, patient 

and assay spaces (STAR Methods). To identify the discriminatory location vectors, we thus 

summed over the decompositions of the condition, patient and assay spaces to represent each 

ChIP-seq data as a collection of projections onto the location vectors (Figure 1B; STAR 

Methods). For each histone modification, a one-way analysis of variance (ANOVA) of the 

projections onto each location vector identified vectors along which the tumor and healthy 

samples diverged. We also compared the within- and between-condition variances across all 

histone modifications to rank the separation of these projections between conditions (STAR 

Methods). Each histone modification individually, as well as the combination of all three 

together, showed clear separation between the healthy and leiomyoma conditions along the 

fourth location vector (Figures 1B, 1C, and S3B–S3E) (one-way ANOVA F = 183.5, 90.2, 

145.8, p values = 1.1 × 10−16, 8.4 ×10−12, and 6.4 × 10−15 for H3K27ac, H3K4me3, and 

H3K4me1, respectively; STAR Methods).

Non-zero entries in this fourth vector represented genomic regions with aberrant histone 

modification recurrent among patients. To identify robust alterations, we used the empirical 

distribution of all HOSVD location vector entries to set a significance threshold (Figure S3F; 

STAR Methods). We thereby identified 1,818 regions (2-kb bins) with higher levels and 

1,306 regions (2-kb bins) with lower levels of activating histone modifications in leiomyoma 

relative to matched myometrium. Plotting the heatmap of ChIP-seq signals in the significant 

locations clearly showed qualitative differences between healthy and disease conditions 

(Figures S4A–S4C), confirming the discriminatory role of these regions. Visual inspection 

of the identified regions further confirmed the presence of differential modifications with 

expected expression changes of nearby genes (Figure 2A).

A similar analysis identified the seventh location vector as strongly separating the tumors by 

MED12 exon 2 mutation status (one-way ANOVA F = 67.3, 45.9, 59.1, p values = 1.1 × 

10−7, 1.8 × 10−6, and 3.0 × 10−7 for H3K27ac, H3K4me3, and H3K4me1, respectively; 

STAR Methods). The variance of the projection along this vector among myometrium 

samples was much less than that among the leiomyoma samples (Levene’s test W = 44.0, 

47.9, 35.3, p values = 6.1 × 10−8, 2.4 × 10−8, and 5.7 × 10−7 for H3K27ac, H3K4me3, 

H3K4me1, respectively; STAR Methods), indicating that this vector encoded leiomyoma 

subtype-specific differences not present among the myometrium samples. Using the same 

significance threshold (Figure S3F; STAR Methods), we found 1,662 and 1,576 2-kb regions 

with higher activating histone modifications in MED12 mutant (MED12-mut) and MED12-

wild-type (MED12-WT) leiomyomas, respectively (Figures S4D–S4F and S5A). Qualitative 

differences between leiomyoma subtypes were again visible in the heatmaps. Most of these 

regions (81%) were distinct from those identified as separating leiomyomas from 

myometrium, indicating that they predominantly embodied new mutation-specific 

alterations.

Leistico et al. Page 5

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DeCET yields a robust epigenomic predictor of healthy and disease conditions

The informative unsupervised clustering (Figure 1C) suggested that a supervised classifier 

using histone modifications may robustly predict the disease conditions. We used the 

HOSVD result to perform dimensionality reduction and represent each tissue sample as a 3 

× 10 matrix, consisting of the projections of the three histone modification profiles onto the 

first 10 location vectors. Using this representation, a STM classifier (Cai et al., 2006), 

trained on the 21 matched samples and tested on the additional 7 leiomyoma samples 

(Figure 2B; STAR Methods), had 100% training and test accuracies (Figure 2C).

To evaluate the robustness of DeCET, we applied leave-one-out cross-validation (CV) 

(STAR Methods). For each of the 21 patients with matched leiomyoma and myometrium 

data, we removed the selected patient and performed the HOSVD of the reduced data tensor; 

a new STM classifier was then trained on the 20 patients and tested on the left-out patient 

and 7 additional tumor samples (STAR Methods). The training and test accuracies were 

100% for each of the 21 CV steps, demonstrating that the discriminatory epigenomic 

features were generalizable across patients.

We next investigated whether a single histone modification was sufficient to classify healthy 

versus disease conditions by training a support vector machine (SVM) classifier on each row 

of the 3 × 10 matrix representations (STAR Methods). This approach still integrated 

information from the HOSVD dimensionality reduction of the full set of histone 

modifications but used the resulting compression of only a single histone modification to 

classify samples. Additionally, we performed leave-one-out CV to evaluate the robustness of 

each classifier. The classifier using the projections for H3K27ac correctly classified the 21 

matched training samples and 7 leiomyoma test samples, suggesting it may serve as an 

epigenomic leiomyoma biomarker. The classifier using H3K4me1 misclassified one of the 

leiomyoma training samples, while the classifier using H3K4me3 misclassified two of the 

leiomyoma training samples and one of the additional test samples. The misclassified 

samples for the respective classifiers using the full training set were also consistently 

misclassified during CV. In addition, the classifier using H3K4me3 frequently misclassified 

an additional matched leiomyoma sample, while the classifier using H3K27ac misclassified 

the same additional test sample in two CV steps. These results showed that the disease 

condition of most samples could be accurately inferred from the HOSVD compression of a 

single histone modification profile.

Epigenomic alterations accurately classify leiomyoma subtypes

Leiomyomas harboring MED12 mutations may exhibit distinct alterations in DNA 

methylation (George et al., 2019) and transcription (Mehine et al., 2016). A recent study also 

showed differential H3K27ac modifications between myometrium and MED12-mut 

leiomyomas (Moyo et al., 2020) but did not compare these to MED12-WT leiomyomas. 

Given the separation of MED12-mut from MED12-WT leiomyomas (Figure 1C) and the 

subtype differences detected by the seventh location vector (Figures S4D–S4F and S5A), we 

applied the DeCET prediction method to classify leiomyoma subtypes.
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As before, an STM classifier was trained on the HOSVD projections of leiomyoma samples 

to predict the presence of MED12 mutations. We trained the classifier on the 21 leiomyoma 

samples (13 MED12-mut) with matched myometrium using the full set of histone 

modifications and tested it on the 7 additional leiomyoma samples (4 MED12-mut). This 

classifier correctly classified the MED12 mutation status of all 21 training and 7 test 

leiomyoma samples (Figure S5B). We also evaluated the robustness of this classifier using 

leave-one-out CV (STAR Methods). For 20 of the CV steps, the classifier correctly predicted 

the MED12 mutation status of the 20 training, 1 left-out validation, and 7 additional test 

samples; for one CV step, only one test sample was misclassified.

We next examined the classification ability of a single histone modification projected onto 

the HOSVD location vectors obtained from the full data tensor (STAR Methods). When the 

full set of 21 training samples was used, the classifier for each histone modification correctly 

predicted the MED12 mutation status of the 21 training and 7 test samples. The robustness 

of each classifier was assessed using leave-one-out CV. For the classification using 

H3K4me1 or H3K4me3, each CV step yielded correct classification of all training and test 

samples. For the classification using H3K27ac, one additional test sample was misclassified 

in two CV steps and a second additional test sample was misclassified in a single CV step; 

one of the matched leiomyoma samples was also misclassified as a test sample in the CV.

Widespread alterations in distal enhancer activity and long-range spatial correlation of 
epigenetic perturbations define uterine leiomyoma

To characterize the regulatory function of the regions identified by the fourth location vector, 

we projected the differential regions onto the condition and assay singular vectors (Figure 

1A; STAR Methods). The condition space was decomposed into two orthogonal vectors 

representing features shared and different between the two conditions, respectively; to study 

aberrant alterations in leiomyoma, we fixed the condition index of the core tensor on the 

vector separating the conditions. Similarly, the orthogonal singular vectors of the assay 

space specified three independent covariation patterns of histone modifications. The second 

assay vector specified a tradeoff between mono- and trimethylation of H3K4, characterizing 

differential enhancers and promoters, respectively. We thus used the sign of the mean 

projection across patients onto the second assay vector to classify the regulatory function of 

the identified regions as enhancers or promoters (STAR Methods). This classification was 

supported by the roughly bimodal distribution of the mean projections at the differential 

regions (Figure 3A) and the association of H3K4me1 versus H3K4me3 changes with our 

classification (Figure 3B). The putative promoter regions were preferentially found near 

gene transcription start sites (TSSs), while the putative enhancer regions were more distal 

(Figures 3C and 3D). The majority (70%) of regions with differential histone modification 

were enhancers. Roughly the same fraction of regions that increased and decreased in 

leiomyoma were enhancers (69% and 71%, respectively); however, the enhancers with 

increased activity in leiomyoma tended to be more distally located than those with decreased 

activity in leiomyoma (Mann-Whitney U = 784,770, n1 = 1,261, n2 = 930, p value = 7.3 × 

10−42; median nearest TSS distances of 43 kb and 13 kb, respectively).
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To characterize the length scale of the epigenomic alterations, we performed a 

multiresolution analysis of the differential location vector. The fourth location vector was 

first split into positive and negative components representing the decreased and increased 

histone modification changes in leiomyoma, respectively. A discrete wavelet transform 

(DWT) of each vector, binarized using the threshold for identifying significant alterations, 

yielded the magnitude of epigenetic fluctuations at a given length scale from 4 kb to 2,048 

kb (STAR Methods). While we found examples of both broad increases and decreases in 

histone modifications in leiomyoma, there was a greater occurrence of large-scale (~1 Mb) 

increases in activating histone marks, suggesting a long-range spatial correlation of 

chromatin alterations conducive to coordinated gene activation (Figure 4A). We further 

performed the same DWT analysis on the histone modification ChIP-seq signal at the 

identified differential regions for each condition, patient, and assay (STAR Methods). For 

each condition and assay, the genome-wide wavelet coefficients at a fixed length scale were 

averaged across patients, and the resulting values were compared between conditions. The 

comparison for H3K27ac again showed an increase in the large-scale (~1 Mb) coefficients 

for leiomyomas, demonstrating preponderant acquisition of long-range blocks of H3K27ac 

modification in leiomyoma compared to myometrium (Figure 4A). No clear trend was seen 

for H3K4me3 and H3K4me1.

Characterizing the regions with epigenetic alterations specific to leiomyomas with and 

without MED12 mutations (STAR Methods) showed that these alterations also fell into two 

classes representing changes in promoters and enhancers (Figure S6A). Alterations in 

enhancers comprised most of the differences between leiomyomas with and without MED12 
mutations, accounting for 70% of the identified differences. Enhancers comprised a similar 

percentage of the regions with higher activating histone marks in MED12-mut versus 

MED12-WT leiomyomas (71% and 69%, respectively). There was no significant difference 

in the spatial distribution of these elements around the nearest gene TSS (Mann-Whitney U 
= 627,845.5, n1 = 1,173, n2 = 1,083, p value = 0.64; median nearest TSS distances of 30 kb 

for enhancers higher in MED12-mut and MED12-WT leiomyomas, respectively) (Figures 

S6B and S6C). Quantification of the length scale of the mutation-specific alterations using 

DWT of the seventh location vector showed preferential large-scale changes in MED12-mut 

leiomyomas (Figure S6D; STAR Methods).

Chromatin contact domains confine epigenomic alterations during tumor evolution

Since the human genome is thought to be partitioned into distinct domains of contact 

interactions (Dixon et al., 2012; Lieberman-Aiden et al., 2009; Rao et al., 2014), we tested 

whether the blocks of long-range epigenomic alterations agreed with this domain structure. 

Hi-C data from nine different cell types revealed several histone modifications (including 

H3K4me3 and H3K4me1) to be much more correlated for loci within these contact domains 

than for loci located at a similar distance but separated by a boundary, suggesting the contact 

domains may compartmentalize the epigenome (Rao et al., 2014). Comparing the 

epigenomic alterations in leiomyoma with the annotated contact domains in HeLa cells (Rao 

et al., 2014) showed that transitions in the differential HOSVD location vector often 

occurred at domain boundaries (Figure 4B; STAR Methods). To quantify this phenomenon, 

for each contact domain, we extracted the differential vector signal at loci within the domain 
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and at loci flanking the domain within the domain length in each direction; we then binned 

each of the three segments into five bins. Computing the pairwise correlation of differential 

vector signals at these bins across all contact domains showed a pronounced within-domain 

coupling of epigenomic alterations and minimal leakage across domain boundaries (Figure 

4C). This trend was lost when either the positions of the contact domains (Figure 4D) or the 

differential vector components (Figure 4E; STAR Methods) were randomized. The MED12-

mutation-specific epigenetic alterations were also predominantly confined within individual 

contact domains (Figures S6E–S6G). These results thus demonstrated that contact domains 

may confine epigenomic alterations during tumor evolution.

To identify contact domains with significant changes in chromatin state, we summed the 

significant differential vector signal across contact domains (STAR Methods) and observed a 

rapid decline and increase in the sorted net change, corresponding to 33 and 19 most altered 

contact domains with broadly increased and decreased activating histone marks in 

leiomyoma, respectively (Figure 4F; STAR Methods). The majority of these domains 

contained at least one differentially expressed gene changing in the expected direction 

(23/33 and 17/19).

Epigenomic alterations elevate collagenous ECM production in leiomyoma and 
dysregulate homeotic genes

To study the functions of target genes dysregulated by the identified epigenomic alterations, 

we analyzed matched RNA-seq data from 20 of the patients used in the HOSVD (Table S2; 

STAR Methods). Putative target genes were obtained using a distance criterion of 10 kb 

from the altered regions (Table S3; STAR Methods). To reduce false positives, the resulting 

list was limited to the genes that were also differentially expressed in the corresponding 

direction (Table S3; STAR Methods). The genes both elevated in leiomyoma and nearby a 

region with higher activating histone modifications in leiomyoma were significantly 

enriched for Gene Ontology (GO) terms (Huang et al., 2009a, 2009b) related to 

glycoproteins, collagen, and ECM (Table S3; STAR Methods), in line with the fact that 

excessive deposition of ECM composed primarily of collagen is a hallmark of uterine 

leiomyoma (Bulun, 2013; Moyo et al., 2020). Genes that were suppressed and nearby a 

region with lower activating histone modifications in leiomyoma were significantly enriched 

for terms related to homeobox genes, specifically the HOX genes (Table S3). The HOX 

genes are transcription factors (TFs) with diverse roles in development and cellular 

differentiation, and are dysregulated in several tumors (Cillo et al., 2001). Our data thus 

suggested that epigenetic alterations might dysregulate HOX genes in leiomyoma.

A similar approach identified the biological functions of target genes dysregulated by the 

mutation-specific alterations (STAR Methods). We performed differential expression 

analysis separately for leiomyomas with or without MED12 mutations relative to 

corresponding myometrium (Table S2). Two gene lists were obtained for GO analysis 

(Huang et al., 2009a, 2009b): genes nearby regions with increased activating histone marks 

and elevated expression in MED12-mut leiomyomas, and genes near regions with increased 

activating histone marks and elevated expression in MED12-WT leiomyomas (Table S3). 

The genes elevated in MED12-mut leiomyomas were strongly enriched for terms related to 
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ECM, collagen, and focal adhesion (Table S3), known hallmarks of these tumors (Bulun, 

2013; Moyo et al., 2020). The genes elevated in MED12-WT leiomyomas were not strongly 

enriched for any terms (Table S3), perhaps as a result of the heterogeneity of MED12-WT 

tumors and the smaller sample size.

Altered regions are enriched for TF binding motifs

To identify TFs associated with altered regulatory regions, we performed assay for 

transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in eight of 

the matched leiomyoma and myometrium samples (Table S1; STAR Methods). We 

intersected the full set of ATAC-seq peaks with the regulatory regions having increased or 

decreased histone marks in leiomyoma, yielding two refined sets of epigenetically altered 

open chromatin sites. Changes in ATAC-seq signal at these regions were consistent with the 

expected changes in accessibility based on histone modifications (Figures S7A and S7B). A 

discriminatory motif analysis using known human TF DNA binding motifs (Kulakovskiy et 

al., 2018) on the two sets of altered open chromatin regions identified differentially enriched 

TFs (STAR Methods). For the regions with increased activating histone marks in 

leiomyoma, serum response factor (SRF), HOXA9, and HOXA10 were some of the most 

enriched motifs (Table S4). Interestingly, SRF is known to confer phenotypic plasticity to 

vascular smooth muscle cells through competitive cofactor binding (Pipes et al., 2006; Wang 

et al., 2004), and changes in the post-translational modification of SRF have been found in 

FH-deficient uterine leiomyomas (Raimundo et al., 2009). The enrichment of HOXA9 and 

HOXA10 motifs was also notable, considering the epigenetic and transcriptomic 

dysregulation detected across the HOXA cluster (Figure 2A) and the essential role of these 

TFs in female reproductive tract development and function (Du and Taylor, 2015). The 

motifs enriched in the regions with reduced activating histone marks in leiomyoma included 

several ETS family TFs as well as glucocorticoid receptor (NR3C1) (Table S5). Consistent 

with this observation, NR3C1 (Yin et al., 2013) and the ETS family members ETS1, ETS2, 

ERG, FLI1, ELF1, and ELF3 showed reduced expression in leiomyoma.

To assess the function of these motifs, we built a logistic regression classifier with lasso 

regularization to predict whether an epigenetically altered region would have increased or 

decreased activating histone modifications in leiomyoma given the motif content of the 

region (STAR Methods). The classifier obtained 61% test and 67% training mean accuracy 

over 500 iterations of Monte Carlo CV with 20% of the data left out for testing at each 

iteration. As we were not considering differential accessibility but rather accessible sites (as 

measured by ATAC-seq peaks) with altered histone modifications, it is plausible that some 

accessible sites might have been unrelated to the observed alterations. While the prediction 

accuracy was moderate, it did show that the presence or absence of certain TF motifs was 

informative of the observed epigenetic alterations. We found SRF and HOX motifs to be the 

most informative predictors of increased histone modifications in leiomyoma (Table S4), 

while progesterone receptor (PGR) and ETS family sites were some of the most informative 

predictors of decreased histone modifications (Table S5).
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HOXA13 is dysregulated and modifies the expression of genes related to leiomyoma 
pathogenesis

The epigenetic and transcriptional dysregulation at the HOXA cluster and the enrichment of 

posterior HOXA DNA binding motifs in epigenetically altered regions suggested a potential 

tumorigenic role of posterior HOXA genes in leiomyomas. HOXA13 was the posterior 

HOXA gene exhibiting the greatest transcriptional dysregulation (log2FC = 2.61 higher in 

leiomyoma) (Figure 2A). A recent study also implicated dysregulation of HOXA13 and the 

HOXA cluster in uterine leiomyoma (George et al., 2019). The aberrant protein expression 

of HOXA13 in leiomyoma was confirmed by immunohistochemical staining (Figure 5A, 

left), with mean QH score of 120.9 compared to 31.3 in myometrial tissue (Figure 5A, 

right). To determine the biological significance of overexpressed HOXA13, we knocked 

down HOXA13 using small hairpin RNA (shRNA) in primary leiomyoma cells. The shRNA 

targeting HOXA13, but not the control shRNA, decreased HOXA13 protein and mRNA 

levels similar to those of primary myometrial cells (Figures S7C and S7D). We performed 

RNA-seq on matched HOXA13 knockdown and control leiomyoma primary cells from two 

patients (pt20 and ptC; STAR Methods). HOXA13 knockdown affected the expression of 

several genes dysregulated in leiomyoma (Tables S2 and S6): genes with higher expression 

in fibroids and downregulated upon knockdown of HOXA13 included COL6A3, THSD4, 

and ADAMTS2, which either code for components of the ECM or the proteins that 

modulate its organization (Table S6); genes that were upregulated after HOXA13 

knockdown and had lower expression in leiomyoma were mostly enriched for transcription 

regulation and response to hypoxia (Table S7).

To validate the RNA-seq results, we selected a subset of genes differentially expressed both 

in leiomyoma compared to myometrium and upon HOXA13 knockdown and performed 

qRT-PCR in primary leiomyoma cells (STAR Methods). MEDAG and PDK4 are involved in 

cell differentiation and glucose metabolism, respectively, showing highly reduced expression 

in leiomyoma; LIMK1 and SDC1 play important roles in cytoskeletal organization and are 

elevated in leiomyoma. We observed consistent mRNA changes upon HOXA13 knockdown, 

with MEDAG and PDK4 showing a significant increase and LIMK1 and SDC1 showing a 

significant decrease (Figure 5B).

To further investigate the role of HOXA13, we overexpressed HOXA13 and performed 

RNA-seq in primary myometrium cells from three patients (Figure S7E; STAR Methods). 

Increased protein levels of HOXA13 in myometrial cells led to dysregulation of 1,092 genes 

(Figure 5C; Table S6; STAR Methods) enriched for GO terms related to ECM (Figure 5D; 

Table S6). These results corroborated the findings from the knockdown analysis and further 

indicated a function of HOXA13 in leiomyoma via regulation of ECM-related genes. 

Furthermore, genes involved in the transforming growth factor β (TGFβ) signaling pathway 

(ID1, BMP2, and SMAD7) were upregulated in leiomyoma primary cells when HOXA13 
was knocked down and repressed when HOXA13 was overexpressed in myometrial primary 

cells (Tables S2 and S6). These genes were also downregulated in leiomyoma tissues. 

Aberrant concentration of TGFβ family proteins or expression of genes involved in the 

TGFβ pathway has been observed in leiomyomas (Ciebiera et al., 2017; McWilliams and 

Chennathukuzhi, 2017). The consistent alterations in the expression of ID1, BMP2, and 
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SMAD7 in the HOXA13 knockdown and overexpression analyses suggested HOXA13 

functions to repress TGFβ pathway genes in leiomyoma.

DeCET identifies epigenomic signatures discriminating distinct tissues types, 
differentiation states, and disease subtypes

We further demonstrated DeCET’s power and generalizability on Roadmap Epigenomics 

Mapping Consortium (REMC) histone modification data from 34 adult tissues representing 

a range of phenotypically and functionally distinct subgroups (Kundaje et al., 2015). 

Hierarchical clustering using the projections onto the first 13 DeCET location vectors 

grouped biologically related samples together even when related samples were from 

different labs (Figure 6A). Moreover, the location vectors encoded interpretable biological 

features associated with each cluster, and the pattern of projections across tissues clearly 

reflected the corresponding tissue-specific functional annotation of the vectors. For example, 

the regions with the most positive components of the fourth vector were enriched for genes 

related to lymphocyte activation and immune response, while those with the most negative 

components of the seventh vector were enriched for glial cell differentiation and myelination 

(Table S8; STAR Methods). Similarly, the regions with the most negative components of the 

twelfth vector were enriched for striated muscle cell development genes (Table S8).

As a more targeted application, we applied DeCET to the 10 REMC adult muscle tissue 

samples. Clustering using the projections onto the first 10 location vectors stratified the 

samples by muscle type, with smooth muscle clustering separately from striated muscle, and 

striated muscle being further stratified into cardiac and skeletal subtypes (Figure 6B). 

Notably, aorta (E065) clustered with smooth and not cardiac muscle, consistent with its 

smooth muscle composition. The projections onto the sixth location vector differed between 

the smooth and striated muscles samples, while those onto the seventh vector distinguished 

skeletal and cardiac muscles. In line with these discriminatory roles, genomic regions with 

the most positive components of the sixth vector were enriched for blood vessel and muscle 

structure development genes, while regions with the most positive and negative components 

of the seventh vector were enriched for skeletal muscle and heart development, respectively 

(Table S8).

We next tested DeCET’s ability to extract epigenomic signatures of immune cell activation 

and differentiation from eight REMC primary T cell samples (Figure 6C). This dataset 

represented three differentiation states, with three samples selected for naive markers, three 

for memory markers, and two activated by phorbol myristate acetate (PMA)-ionomycin 

(PMA-I) treatment. Hierarchical clustering grouped the samples by differentiation state. The 

PMA-I-stimulated T cells had the most negative projections of active histone modifications 

onto the seventh location vector, the most negative components of which encoded regions 

enriched for lymphocyte activation and immune response genes (Table S8). Similarly, naive 

cells had the most positive projections onto the eighth location vector, the most positive 

values of which signified regions enriched for genes related to lymphocyte differentiation 

(Table S8) and near genes downregulated during T cell differentiation from naive to effector/

memory states, including LEF1 and TCF7 (Danilo et al., 2018; Willinger et al., 2006).
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We further applied DeCET to data from 11 breast cancer and 2 immortalized mammary 

tissue cell lines (Xi et al., 2018). For breast cancer samples, two replicates showed high 

reproducibility in the DeCET projections for each assay, and we used a tensor-based 

consensus profile for each pair (STAR Methods). Hierarchical clustering of the consensus 

profiles stratified the samples into luminal and basal subtypes, with further sub-stratification 

capturing estrogen receptor (ER) status in the luminal subtype and claudin-low and 

immortalized subgroups in the basal subtype (Figure 7A). The clustering reflected the 

corresponding expression pattern of known marker genes for the subtypes (Dai et al., 2017) 

(Figure 7B). The third DeCET location vector distinguished the luminal from basal 

subtypes, with the most positive components (corresponding to higher histone modifications 

in the basal subtypes) encoding regions enriched for genes related to ECM organization, 

positive regulation of locomotion, and negative regulation of cell death (Table S8). By 

contrast, the regions with the most negative components (corresponding to higher 

modifications in the luminal subtypes) were enriched for genes related to mammary gland 

development and epithelial cell differentiation (Table S8). These annotations were consistent 

with the more aggressive and invasive phenotype of basal breast cancers compared to the 

more differentiated luminal breast cancers (Dai et al., 2017). The fifth location vector further 

separated the luminal cell lines by ER status; the regions with the most positive components 

of this vector (corresponding to higher modifications in the ER- HER2+ luminal subtype) 

were enriched for placenta development and vasculo-genesis genes (Table S8), while those 

with the most negative components (corresponding to higher modifications in the ER+ 

luminal subtype) were enriched for negative regulation of cell cycle and mammary gland 

alveolus development (Table S8). These annotations were consistent with the more 

aggressive nature of HER2-enriched cell lines between ER+ luminal and basal subtypes (Dai 

et al., 2017).

Interestingly, MCF7, a commonly used model of luminal A subtype supposed to express ER 

and progesterone receptor (PR) (Dai et al., 2017; Xi et al., 2018), clustered with the claudin-

low and immortalized subtypes. This MCF7 cell line also exhibited a more basal-like 

expression profile with lost expression of many luminal markers and gained expression of 

several basal markers (Figure 7B). In particular, it had low expression of PR and no 

detectable histone marks near the PGR promoter, contrary to the other PR+ luminal A and B 

cell lines. PGR loss in MCF7 cell lines through copy number deletion has been previously 

reported and may lead to the acquisition of a more aggressive phenotype (Mohammed et al., 

2015).

We also applied DeCET to identify prostate cancer subtypes in a patient cohort with 

H3K27ac, H3K27me3, and androgen receptor (AR) ChIP-seq data (Stelloo et al., 2018). The 

samples were taken from primary prostate cancer tissues and labeled according to the status 

of a biochemical recurrence (case) within 5 years of diagnosis or no biochemical recurrence 

(control) within 10 years of diagnosis. Hierarchical clustering revealed three clusters of 

patients (Figure 7C; STAR Methods). Consistent with the original finding (Stelloo et al., 

2018), we did not observe preponderant epigenetic differences between case and control 

groups. Two of the clusters were characterized by low and high ERG expression (STAR 

Methods), consistent with the previous report (Stelloo et al., 2018). The third cluster (low-

metabolically active (low-MA]) showed widespread downregulation of genes related to 
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mitochondria and metabolism. A dormant-like, metabolically inactive state of prostate 

cancer cells may arise following induced epithelial-to-mesenchymal transition (Stylianou et 

al., 2019). In our analysis, this subgroup showed a trend of increased biochemical recurrence 

(one-sided Fisher’s exact test odds ratio [OR] = 3.9, p value = 0.05). DeCET can thus 

successfully analyze diseases showing high patient variability in mutational landscape 

within and between subtypes.

DeCET outperforms peak-based clustering in stratifying distinct tissues types, 
differentiation states, and disease subtypes

To demonstrate the relative advantages of DeCET, we compared the above clustering results 

to those based on the Jaccard index of peak calls (STAR Methods). For comparing the 

distinct tissue groups from REMC, Jaccard index clustering was sufficient to stratify tissues 

into functionally similar types, although the clustering was not as clean as the DeCET result 

(Figure S8A; cf. Figure 6A). The Jaccard index approach, however, failed to stratify more 

functionally related tissue subtypes such as distinct muscle types (Figure S8B; cf. Figure 

6B) and different immune cell subsets (Figure S8C; cf. Figure 6C). It also could not stratify 

breast cancer cell lines into relevant subgroups (Figure S8D; cf. Figures 7A and 7B) or 

leiomyoma and myometrium by disease condition and subtype (Figure S8E; cf. Figure 1C).

In addition to the improved clustering, the DeCET projections provided a low-dimensional 

representation of the heterogenous epigenetic data that could be used for biological 

interpretation, supervised learning, and classification tasks. By contrast, the Jaccard index 

approach only provided a notion of similarity between samples and required a separate 

meta-analysis to build a classifier or to identify differential regions. Plotting the difference in 

the number of myometrium and leiomyoma samples with a peak across the HOXA cluster 

(Figure S8F) demonstrated some difficulties in performing a meta-analysis of peak calls to 

identify differential regions. While the difference in the number of samples with a called 

peak qualitatively reflected the differences in histone modifications (Figure 2A), there was 

significant variability in the peaks called for the different samples and histone modifications 

within each biological condition. In addition, comparing peak calls could not directly 

account for modulations, which might not affect peak calling, but nevertheless reflect a 

change in mRNA regulatory activity. This phenomenon was observed downstream of 

HOXA13 (Figure S8F).

DISCUSSION

DeCET overcomes drawbacks of current analysis methods, such as arbitrary choices of 

meta-analysis parameters and inter-sample variability in peak calls. As the epigenome 

carries essential instructions for specifying cellular identity, epigenomic assays may offer a 

robust diagnostic marker for a wide range of diseases. For example, the pattern of DNA 

methylation can classify primary and secondary central nervous system tumors, as well as 

identify the cell type of cancer origin (Capper et al., 2018; Moran et al., 2016; Orozco et al., 

2018). Histone modifications provide complementary information about regulatory function 

and chromatin state (ENCODE Project Consortium, 2012; Kundaje et al., 2015). The 

challenges presented by heterogeneous datasets and the additional resources required for 
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multiple profiles, however, have made histone modifications less attractive for diagnostic 

applications to date. By contrast, we have shown that after an initial tensor decomposition of 

heterogeneous data even from a small patient cohort, new patient samples can be accurately 

classified by measuring only the most predictive histone modification and compressing the 

data along the precomputed HOSVD location features. The DeCET framework, combined 

with technologies requiring few input cells, such as cleavage under targets and release using 

nuclease (CUT&RUN) (Skene and Henikoff, 2017) or chromatin integration labeling 

followed by sequencing (ChIL-seq) (Harada et al., 2019), could offer an efficient diagnostic 

or prognostic tool for diseases, including cancers.

DeCET has identified epigenomic features capable of accurately distinguishing tissue types 

and disease conditions. Alterations in metabolic activity may have profound influence on 

chromatin structure in cancers (Wallace, 2012). Our analysis of prostate cancer epigenomes 

provides evidence for a metabolically inactive state with distinct epigenomic signatures and 

AR binding. These results together demonstrate the broad utility and power of DeCET in 

identifying clinically relevant disease subtypes and consolidating information from complex 

hierarchical datasets.

Interestingly, the majority of epigenomic alterations in leiomyoma occur in distal enhancers, 

with several alterations being large scale (0.1–1Mb). This length scale reminds of super-

enhancers that may control cell identity and are highly sensitive to changes in TF 

concentration and bromodomain inhibitors (Hnisz et al., 2013; Lovén et al., 2013; Whyte et 

al., 2013). Calling super-enhancers in our H3K27ac data (Lovén et al., 2013; Whyte et al., 

2013) shows that the regions with increased activating histone marks in leiomyoma are 

enriched for putative super-enhancers and that putative super-enhancers are more likely to be 

altered than typical enhancers (permutation test p values < 10−3) (STAR Methods). We have 

also shown that epigenomic alterations in leiomyomas are largely confined within contact 

domains (Figure 4C), suggesting that the aberrant changes predominantly result from 

activation or silencing of chromatin compartments already established in the uterus.

Our analysis has identified HOXA13 as a potential tumorigenic factor (Gu et al., 2009; Li et 

al., 2015; Quagliata et al., 2018) affecting ECM-related genes in leiomyoma. Previous 

studies have shown that the nearby long non-coding RNA HOTTIP may drive the expression 

of 5′ HOXA genes through chromatin domain organization and recruiting the WDR5/

mixed-lineage leukemia (MLL) complex to establish an active chromatin state (Luo et al., 

2019; Wang et al., 2011). Our study shows that leiomyomas exhibit recurrent epigenetic 

alterations consistent with this activation mechanism (Figure 2A) (H3K4me3 not shown), 

with a ~1.8-fold increase in HOTTIP expression.

In summary, we have presented a powerful computational framework for integrating 

heterogeneous epigenomic data and demonstrated how this method can facilitate the 

discovery of rich biological knowledge. In particular, we envision that our approach can be 

extended to cells isolated from bodily fluids or biopsies to identify disease states and 

subtypes, thereby improving diagnosis and treatment.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Debabrata Chakravarti 

(debu@northwestern.edu).

Materials availability—The plasmid created in this study will be submitted to Addgene 

once manuscript is published.

Data and code availability—The datasets generated in this study are available at the 

Gene Expression Omnibus (GEO) database (GEO: GSE142332). The code used for this 

study can be found at https://github.com/jssong-lab/DeCET (https://doi.org/10.5281/

zenodo.4540815).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples—Human tissues were collected upon approval by Institutional Review 

Board of Northwestern University (Study number STU00018080, renewal approved on 

Dec17, 2018). Premenopausal women (age ranging from 41–52 years with average age of 48 

years) undergoing hysterectomy or myomectomy at Northwestern University Prentice 

Women’s Hospital were consented and leiomyoma and/or matched myometrium tissues 

were obtained from them (Table S1).

Primary cells—Leiomyoma and myometrial tissues obtained from the patients were 

digested and primary cells were plated and grown at 37°C in a humidified cell culture 

incubator containing 5% CO2.These cells were cultured in Smooth Muscle Cell complete 

growth media SmGM™- 2 (Lonza, CC-3182).

Cell lines—HEK293T/17 cells (ATCC, CRL-11268) were used to produce virus particles 

containing shRNA sequence. The HEK293T/17 cells were grown in DMEM media 

(ThermoFisher, 11965092) with 10% FBS (Fisher Scientific, 10437028) at 37°C in a 

humidified cell culture incubator containing 5% CO2.

METHOD DETAILS

Tissue collection—Matched tissues from 21 patients and leiomyoma from 5 patients with 

diverse ethnicity (comprising 8 African-Americans, 10 Caucasian, 1 Hispanic/Latino and 8 

with unknown status) were dissected, snap-frozen in liquid nitrogen and immediately stored 

at −80°C in small aliquots (about 1g) until further processing for RNA and ChIP-

sequencing. 7 of these 26 patients were on hormonal treatment before surgery. RNA from 

leiomyoma of one patient (pt16) was of poor quality and was not included in the RNA-seq 

study (20 matched, 5 leiomyoma-only tissues). ATAC-sequencing was performed on 

matched tissues from eight patients (Table S1).

Tissue preparation for ChIP—About 1g of frozen tissues for each case were pulverized 

in a Covaris CP02 cryoPREP dry pulverizer (setting 5, 4 strikes) making sure to rechill the 
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tissue in liquid nitrogen between strikes. Further, tissue was finely powdered with mortar-

pestle in liquid nitrogen, followed by fixation with 1% paraformaldehyde for 15 minutes at 

room temperature. To stop cross-linking 1X glycine (Cell Signaling Technology, 9003) was 

added for 5 minutes. Cross-linked tissues were either stored at −80°C or used immediately 

for ChIP.

Tissue digestion and primary cell culture—Tissues were rinsed twice with HBSS 

and then cut into ~2mm3 pieces in a sterile cell culture plate, discarding tissue with blood 

traces. Afterward, tissue pieces were transferred to 50ml tubes and freshly prepared 

digestion buffer [1.5mg/ml Collagenase type I (Sigma-Aldrich, C0130), 3mM CaCl2, 

20ug/ml DNase I (Sigma-Aldrich, D5025) in Hank’s Balanced Salt Solution (ThermoFisher, 

14025)] was added at a ratio of 1 part (w/v) of tissue to 5 parts of buffer. Tissue was digested 

in 37°C shaker at 100rpm for 4–5hrs. Digested tissue was filtered through 12-ply, 4×4 in. 

sterile gauze sponges, spun at 0.4 × g for 5 minutes to harvest primary cells, followed by 

resuspension of cells in PBS and filtration through 70μm cell strainer. Cells were centrifuged 

at 0.4 × g for 5 minutes and subsequently resuspended in Smooth Muscle Cell complete 

growth media SmGM™- 2 (Lonza, CC-3182). Primary cells were plated and grown at 37°C 

in a humidified cell culture incubator containing 5% CO2. Cells were used in experiment 

after two passages as leiomyoma cells become senescent if cultured longer. Leiomyoma 

tissues were processed from four patients (pt20, ptA, ptB and ptC) for silencing HOXA13. 

After HOXA13 knockdown, primary cells from pt20 and ptC were used for RNA-seq, while 

those from ptA, ptB and ptC were used for qRT-PCR validation of target genes. Primary 

myometrial cells were processed from three patients for overexpression of HOXA13.

ChIP-seq—The cross-linked tissues were processed for ChIP using the SimpleChIP Kit 

(Cell Signaling Technology, 9003). Briefly, tissue pellet was lysed and homogenized in 10 

mL of 1X Buffer A by 15–20 strokes in Dounce homogenizer, then rotated for 20 minutes at 

4°C for end-to-end mixing. For chromatin fragmentation, lysed tissue was resuspended in 4 

mL 1X Buffer B, transferred to 1.5ml Eppendorf tubes and incubated with 2000–4000 gel 

units of MNase/ml. Tubes were kept in thermomixer at 37°C for about 20 minutes or until 

approximately 75% mono-nucleosomal profile of purified digested DNA was observable on 

agarose gel. Digested chromatin was retrieved by 2–3 sonication pulses of 15 s on and 45 s 

off (Misonix, setting 5) in 500μl of 1X ChIP buffer per tube followed by centrifugation at 

16000 × g for 20 minutes to remove cell debris and ECM proteins. For ChIP, 5μg (DNA) of 

the solubilized chromatin was incubated overnight at 4°C while rotating with 5μg antibodies 

for the histone marks. Antibodies used for ChIP: anti-H3K27ac (Active motif, 39133), anti-

H3K4me3 (Diagenode, C15410003), anti-H3K4me1 (Diagenode, C15410194). Afterward, 

protein G Dynabeads were added and incubation continued for another 2 hours. To obtain 

ChIP products, beads were washed and DNA eluted. Chromatin supernatant was reverse 

cross-linked overnight, and DNA was purified using PCR purification kit (QIAGEN, 28006). 

Library preparation of the purified DNA from ChIP was performed by following the Kapa 

hyper prep protocol (Kapa Biosystems, KK8502). 1–5ng of the DNA was end-repaired and 

A-tailed according to the kit instructions. Adapters were ligated at 20°C for 15 minutes with 

post-ligation cleanup and libraries were size selected for 250–450 bp fragments using 0.6X–

0.8X ratio of AMPure beads (Beckman Coulter, A63881). The size selected libraries were 
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amplified and checked for size by Agilent Bioanalyzer for high sensitivity DNA (Agilent 

technologies, 5067). Libraries were diluted to 2nM, pooled and quantified with Kapa 

quantification kit (Kapa biosystems, KK4835) before single end sequencing with Nextseq 

500/550 high output kit (v2, 75 cycles).

RNA isolation and next generation sequencing—RNA was isolated from 

approximately 30mg of the frozen tissue using RNeasy Fibrous tissue kit (QIAGEN, 74704). 

Frozen tissue was finely grounded in mortar-pestle in liquid nitrogen. Tissue lysate prepared 

by addition of Buffer RLT (along with 10μl β-mercaptoethanol/ml of RLT buffer) was 

homogenized by spinning down through QIAshredder (QIAGEN, 79656). Following the 

manufacturer’s instructions, RNA was isolated from the homogenized tissue lysates. RNA 

obtained was analyzed on Bioanalyzer eukaryote total RNA 6000 nano assay (Agilent 

technologies, 5067) for RNA Integrity. Samples with RNA Integrity Number (RIN) values 8 

or above were processed further for next generation sequencing. TruSeq stranded mRNA kit 

(Illumina, 20020594) was used for the preparation of libraries for RNA-seq. From 1ug of the 

total RNA, mRNA was purified and fragmented using the reagents provided with the kit. 

Blunt ends of cDNA were adenylated at 3′ end, adapters ligated, and library amplified. 2nM 

libraries were pooled, quantified and sequenced as paired-end with 42 cycles using Nextseq 

500/550 high output kit (v2, 75 cycles).

ATAC-seq—Tissues were pulverized in a Covaris CP02 cryoPREP dry pulverizer. About 

30mg of powdered frozen tissue was transferred to 1.5ml tubes and resuspended in ice cold 

Nuclei Lysis Buffer (NIB) (20mM Tris-HCl, 50mM EDTA, 5mM spermidine, 0.15mM 

spermine, 0.1% mercaptoethanol, 40% glycerol, pH 7.5). Samples were agitated for 5 

minutes on ice, filtered through Miracloth (EMD Millipore Corp), and then centrifuged at 

1,100 × g for 10 minutes at 4°C. The resulting nuclear pellet was then subjected to 

transposition as per (Buenrostro et al., 2015), with no modifications. Briefly, the pellet was 

resuspended in the transposase reaction mix (25 μL 2x TD buffer (Illumina, 15027865), 2.5 

μL Transposase (Illumina, 15027865) and 22.5 μL of nuclease free water). The transposition 

reaction was performed at 37°C for 30 minutes. Following transposition, the samples were 

purified using a QIAGEN MinElute kit (QIAGEN, 28006). After transposition, the library 

fragments were amplified for 10–12 cycles. Traces were then analyzed on Bioanalyzer and 

42 cycles of paired-end sequencing were performed on an Illumina Nextseq 500/550.

Mutation analysis—1ug of the RNA isolated from normal myometrium and leiomyoma 

tissues was reverse transcribed with qScript™ cDNA super mix (QuantaBio, VWR, 101414–

102) as per the manual. To check mutation status, sequences from RNA-seq were visualized 

with Integrated genome viewer (Robinson et al., 2011) and noted for the MED12 exon 2 

mutations, HMGA2 overexpression, and loss of FH. For further validation, MED12 primers 

were used to amplify exon 2 and sequenced by Sanger sequencing. Sequences were analyzed 

manually using BioEdit software (Hall, 1999). For HMGA2 overexpression analysis, qRT-

PCR was performed using primers mentioned below and chromatin prepared as above was 

used for HMGA2 (Genetex, GTX629478) protein detection by Western Blot. Anti-Histone 3 

(Abcam, ab1791) antibody was used as a loading control.
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Genomic DNA isolation—For isolation of genomic DNA from tissues, DNeasy blood 

and tissue kit (QIAGEN, 69504) was used. About 25mg of frozen tissue was finely grounded 

in mortar-pestle in liquid nitrogen, followed by addition of buffer ATL and proteinase K (to 

a final concentration of 2mg/ml). Powdered tissue was incubated at 56°C for about 20–30 

minutes so the tissue is completely lysed. Buffer AL and 33% ethanol were added to the 

samples with thorough mixing by vortexing and DNA was purified using spin columns 

provided with the kit. For validation of MED12 mutation, MED12 primers for genomic 

DNA were used to amplify exon 2 and sequenced by Sanger sequencing. Sequences were 

analyzed using Indigo (https://www.gear-genomics.com/).

shRNA-mediated knockdown in primary cells—HEK293T/17 cells (ATCC, 

CRL-11268) were used to produce virus particles containing shRNA sequence. The 

HEK293T/17 cells were grown in DMEM media (Thermo Fisher, 11965092) with 10% FBS 

(Fisher Scientific, 10437028) were transfected with lentiviral pLKO.1 plasmid construct 

with shRNA against human HOXA13 (Sigma, TRCN0000015406) along with pMD2.G and 

psPAX2 plasmids. Transfection was performed using Lipofectamine 2000 reagent 

(ThermoFisher, 11668019) according to manufacturer’s instructions. Media was changed 

after overnight incubation. Virus particles were collected 24 hours later by spinning down 

the supernatant and stored at −80°C in small aliquots when not used immediately. 2 × 105 

primary leiomyoma cells (Passage 2 or 3) were transduced in a 6-well plate with either 

control or HOXA13 gene silencing lentiviral particles in the presence of 6ug/ml polybrene 

for 18 hours. Fresh SmGM complete media was added and then after 24 hours, cells were 

selected in 2ug/ml puromycin for 3 days. Cells were then harvested for RNA using RNeasy 

mini kit (QIAGEN, 74104) and for protein with modified RIPA lysis buffer (20 mM Tris-

HCl [pH 7.6], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% IGEPAL CA-630, 1% sodium 

deoxycholate, 0.25% SDS). Whole-cell extracts prepared using modified 

radioimmunoprecipitation assay (RIPA) buffer were processed as described previously 

(Parker et al., 2012). Extracts were clarified by centrifugation at 20,000 × g for 15 min at 

4°C, and protein concentrations determined by bicinchoninic acid (BCA) assay (Thermo 

Fisher Scientific, 23225). About 30μg of protein lysate was loaded on precast 8 to 16% 

polyacrylamide gels (Thermo Fisher Scientific, XP08162BOX). Following transfer to 

nitrocellulose membrane, western blot was performed to detect HOXA13 (Abcam, 

ab106503). Anti- GAPDH (Sigma-Aldrich, G9545) antibody was used as a loading control. 

About 100ng of RNA was used for library preparation using TruSeq stranded mRNA kit 

(Illumina, 20020594) and paired-end sequenced on Illumina Nextseq 500/550 as described 

above.

In Figure S7C and S7D, protein and RNA were extracted from the primary leiomyoma cells 

5 days after being transduced with lentivirus containing negative control (shControl) or 

HOXA13 (shHOXA13) shRNA construct.

HOXA13 overexpression in primary cells—HOXA13 cDNA was amplified from pLV 

expression plasmid (Vector builder, VB180306–1076naw) with Platinum Superfi DNA 

polymerase (Thermo Fisher Scientific, 12359010) using primers with attB sequence. 

Amplified product was cloned into pLEX_306 plasmid (Addgene, 41391) containing V5-
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epitope tag at 3′end of insertion site using a Gateway reaction (Thermo Fisher Scientific, 

11-789-020 and 11-791-020). Empty and HOXA13 inserted pLEX_306 plasmids were 

packaged into lentiviral particles following transfection in HEK293T cells as described 

above for shRNA constructs. Sanger sequencing was performed to ascertain integrity of the 

insert. Similar to knockdown studies, primary myometrial cells were transduced with 

lentivirus and selected in 2ug/ml puromycin for five days. Cells were then harvested for 

RNA using RNeasy mini kit (QIAGEN, 74104) and for protein with modified RIPA lysis 

buffer (20 mM Tris-HCl [pH 7.6], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% IGEPAL 

CA-630, 1% sodium deoxycholate, 0.25% SDS). To confirm overexpression of V5-tagged 

HOXA13, western blot was performed using anti- HOXA13 (Abcam, ab106503), or anti 

V5-epitope specific antibodies (Thermo Fisher Scientific, R96025). Anti- GAPDH (Sigma-

Aldrich, G9545) antibody was used to detect a loading control protein (GAPDH) (Figure 

S7E). About 100ng of RNA was used for library preparation using TruSeq stranded mRNA 

kit (Illumina, 20020594) and paired-end sequenced on Illumina Nextseq 500/550 as 

described above.

Immunohistochemistry (IHC) staining of HOXA13—Tissue microarray (TMA) was 

prepared from randomly selected leiomyoma (57 tumors) and matched myometrium (57 

cases) and additional myometrium without leiomyoma (13 cases). TMA block was sectioned 

in 4μm and IHC staining was performed at Pathology core facility, Northwestern University. 

Briefly, tissue sections were de-paraffinized, rehydrated and processed for antigen retrieval 

at pH 9.0. Afterward, sections were subjected to immunohistochemical staining at Bond™ 

Polymer Refine detection system (Leica, DS9800). Primary antibody against HOXA13 

(Abcam, ab106503) at a dilution of 1:400 was used for the staining. Sections were mounted 

with aqueous media and imaged with Nanozoomer 2.0 HT (Olympus). Immunoreactivity of 

the cores was graded semiquantitatively with visual inspection based on intensity of 0 

(negative), 0.5 (faint), 1 (weak), 2 (moderate) and 3 (strong). Quantitative H score (QH) was 

determined for nuclear HOXA13 as follows: QH = Pi (where, i is intensity 0–4, P is the 

percentage of positive cells for each given i) (Wei et al., 2005), and p value was calculated 

using the two-tailed t test.

Oligonucleotides—MED12 exon 2 cDNA sequencing primers:

Forward Primer: 5′- CTTCGGGATCTTGAGCTACG- 3′

Reverse Primer: 5′- GTTGGAACTGATCTTGGCAGG- 3′

MED12 exon 2 genomic DNA sequencing primers:

Forward Primer: 5′- GCC CTT TCA CCT TGT TCC TT- 3′

Reverse Primer: 5′- TGTCCCTATAAGTCTTCCCAACC- 3′

HOXA13 cDNA PCR primers:

attB1_HOXA13_Forward Primer:
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5′- 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGACAGCCTCCGTGCTCCTC

C- 3′

attB2_HOXA13_Reverse Primer:

5′- GGGGACCACTTTGTACAAGAAAGCTGGGTGACTAGTGGTTTTCAGTTTGTTG- 

3′

qRT-PCR primers:

HMGA2:

Forward Primer: 5′- AGCAGCAGCAAGAACCAACC- 3′

Reverse Primer: 5′- CTTGGCCGTTTTTCTCCAGTG- 3′

HOXA13:

Forward Primer: 5′- ACTCTGCCCGACGTGGT- 3′

Reverse Primer: 5′- CCGCTCAGAGAGATTCGTCG- 3′

MEDAG:

Forward Primer: 5′- TCAAGAGGTATGTGGAACTGACC- 3′

Reverse Primer: 5′- TGACCATGTCCATCCCTTGC- 3′

PDK4:

Forward Primer: 5′- CAGACAGGAAACCCAAGCCA- 3′

Reverse Primer: 5′- TTGCCCGCATTGCATTCTTA- 3′

LIMK1:

Forward Primer: 5′- ATCAGGGATGGCCTACCTCC- 3′

Reverse Primer: 5′- CAGGCTGAGTCTTCTCGTCC- 3′

SDC1:

Forward Primer: 5′- GGAAGGGCCTGTGGGTTTA- 3′

Reverse Primer: 5′- CGCTCTCTACTGCCGGATTC- 3′

GAPDH:

Forward Primer: 5′- TGCACCACCAACTGCTTAGC- 3′

Reverse Primer: 5′- GGCATGGACTGTGGTCATGAG- 3′
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shRNA sequences:

HOXA13 (TRCN0000015406):

5′- 
CCGGGTTCCAGAACAGGAGGGTTAACTCGAGTTAACCCTCCTGTTCTGGAACTTT

TT- 3′

Constructing the data tensor

The histone modification ChIP-seq dataset generated in this study fits naturally into an order 

four tensor (Figure 1A). The four indices of the tensor are the condition (healthy or tumor), 

patient ID, ChIP-seq assay type (H3K27ac, H3K4me3, H3K4me1) and genomic location. 

The values stored in the tensor correspond to a measure of the corresponding ChIP-seq 

signal:

Xiconditionipatientiassayilocation  = Strengtℎ of CℎIP−seq signal for condition,
 patient and assay at genomic location .

For the location index, we binned the genome into non-overlapping 2000bp intervals. The 

width was chosen to ensure sufficient read coverage and reduce the effect of statistical 

fluctuations. To obtain the strength of the ChIP-seq signal in each bin, we first estimated the 

center of each read by shifting each aligned read by 100bp in the 3′ direction of the strand to 

which the read aligned. The strength of the ChIP-seq signal was then measured as the 

number of read centers assigned to each bin.

Data tensor processing and normalization

ChIP-seq assays are subjected to variability in library preparation, sequencing depth, 

immunoprecipitation (IP) enrichment, and antibody qualities; thus, normalizing the 

heterogenous data across experiments and patients is crucial for downstream analysis. We 

applied the following three data processing and normalization steps:

The first step in the data processing procedure accounted for potential biases in library 

preparation or other artifacts not corresponding to true IP enrichment signal. This step used a 

control file generated for each condition i for each patient j, controli,j, vectorized in the same 

way as the signal datasets. For each of the three histone modification ChIP-seq datasets, 

signali,j,k where k∈{H3K27ac, H3K4me3, H3K4me1}, we used the Signal Extraction 

Scaling method described in Diaz et al. (2012) to scale the corresponding control dataset to 

each signal dataset. The scaling factor, αi,j,k, was computed using the binned signal and 

control vectors. The control vector was then scaled using the obtained scaling factor and 

subtracted from the signal dataset with any resulting negative entries set to zero:

Xs1
ijkl = max 0, signali, j, k(l) − αi, j, k controli, j(l) .

The second data processing step scaled the data to account for differences in sequencing 

depth or differences in IP enrichment between samples for a given ChIP-seq assay. To 

Leistico et al. Page 22

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



account for actual differences in the strength of the signal across patients and condition, the 

median of ratios scaling method described in Anders and Huber (2010) was used to scale the 

genomic location vectors across samples for a given ChIP-seq assay. Specifically, for each 

location index l, the geometric mean across conditions and patients

g Xs1
: , : , ia = a, l = ∏

ic = 1

nc
∏

ipt = 1

npt
Xs1

ic, ipt, ia = a, lncnpt

was computed for each assay, with nc equal to the number of conditions and npt the number 

of patients. For each sample, the ratio of the sample data to the geometric mean was taken at 

all locations where the geometric mean was non-zero. The inverse scaling factor is taken to 

be the median of these ratios

s Xs1
ic = c, ipt = j, ia = a, :

= sc, j, a = median
l

Xs1
ic = c, ipt = j, ia = a, l

g Xs1
: , : , ia = a, l g Xs1

: , : , , ia = a, l > 0 .

The scaled subtensor was then obtained by dividing each entry in Xic = c, ipt = j, ia = a:  by 

sc,j,a

Xs2
ic = c, ipt = j, ia = a, l

= 1
sc, j, a

Xs1
iC = c, ipt = j, ia = a, l

.

The final data processing step was to normalize across the different ChIP-seq assays. This 

step was necessary because of variability in antibodies for different histone modifications, 

which could skew certain component values in the tensor. We thus scaled the subtensor 

obtained by fixing the assay index to have total value 1:

Xs3
ic, ipt, ia = a, l

= ∑
c = 1, pt = 1, l = 1

nc, npt, L
Xs2

c, pt, ia = a, l
−1

Xs2
ic, ipt, ia = a, l

.

This final processed data tensor was used for all further analysis.

The DeCET method—We designed the DeCET (Decomposition and Classification of 

Epigenomic Tensors) method to identify differential epigenetic signals in heterogeneous 

histone modification ChIP-seq datasets and to classify disease conditions using the identified 

features. The power of a tensor method comes from fully leveraging the structure of a 

complex dataset. For the dataset generated in this study, it involved integrating information 

from multiple histone modifications from matched healthy and tumor samples across a set of 

patients into a single tensor. The DeCET method for identifying differential epigenetic 

features consisted of three steps that will be described in detail below:

• The data tensor was decomposed to obtain a set of vectors in genomic space and 

corresponding sets of projections onto these vectors for each sample.
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• The projections were used to identify genomic location vectors along which 

groups of samples diverged.

• The components of a discriminatory genomic location vector were used to 

identify regions in the genome with differential epigenetic signal.

Support Tensor Machine (STM) and Support Vector Machine (SVM) classifications of tissue 

samples were performed using the projections obtained in the first step, as described in 

detail below.

The DeCET framework is flexible, and our method can easily be generalized to 

accommodate additional structure in the data, such as time points at which samples were 

taken, by simply adding additional indices to the data tensor. Similarly, the DeCET method 

can also be applied to datasets with less structure, such as when matched tissue samples are 

not available.

Decomposing the data tensor—Higher order singular value decomposition (HOSVD) 

(De Lathauwer et al., 2000) of the normalized data tensor was used to identify correlated 

features. The HOSVD representation of the data tensor took the following n-mode product 

form:

X = S × 1 U(condition) × 2 U(patient) × 3U(assay) × 4U(location),

where S is the core tensor, and U(condition); U(patient); U(assay); U(location) are orthogonal 

matrices with size equal to the dimension of the corresponding unfolded subspace (the 

number of conditions nc = 2, the number of patients npt = 21, the number of assays na = 3, 

and the number of genomic location bins L).

The HOSVD result was used to express the vectorized data for a given condition ic, patient 

ipt, and assay ia as a weighted sum over characteristic, orthonormal vectors in location space

Xiciptia: = ∑
l

∑
α1α2α3

Sα1α2α3lUic, α1
(condition)Uipt, α2

(patient)Uia, α3
(assay) U : , l

(location) = ∑
l

ℬiciptialU : , l
(location) .

The number of location vectors needed to obtain a complete representation of the data was 

limited by the rank of the corresponding unfolded matrix, with the upper limit being the 

product of the dimensions of the other three indices (2 ×21 ×3 = 126). We used the 

projection weights ℬiciptial obtained from this representation to compare disease condition 

subtypes.

We developed our own implementation of the HOSVD on GPU. We used the TensorLy 

package (Kossaifi et al., 2019) to perform all n-mode products and matrix unfolding of 

tensors, with a PyTorch (A. Paszke et al., 2017, NIPS Autodiff Workshop, conference) 

backend for matrix operations and eigenvalue decomposition of symmetric matrices on GPU 

processors. Our implementation of the HOSVD takes advantage of the rank restrictions 

imposed by matrix SVD to avoid eigen decomposition of a large matrix. This is done by 

Leistico et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observing that the informative location vectors (those with non-zero projections) can be 

obtained by first obtaining the right singular vectors of the genomic-location mode unfolding 

of the data tensor and then obtaining the corresponding left singular vectors through a matrix 

multiplication. For most genomic datasets, the implementation of the HOSVD used in 

DeCET will be very efficient as the product of the number of samples and assays will be 

much less than the dimension of the genomic location space. For the datasets used in this 

study, the HOSVD of the normalized tensor took only seconds, with the greatest 

computation time coming from binning and normalizing the ChIP-seq data.

Identifying epigenetic alterations—The difference in histone modification ChIP-seq 

signal between conditions for a given patient j and assay k can be expressed using the 

HOSVD results as

∑
l = 1

126
ℬL, j, k, l − ℬM, j, k, l U : , l

(location) .

For each assay, we used a one-way analysis of variance (ANOVA) of the projection weights 

to identify the vectors in the genomic location space decomposition along which the 

projections separated the two conditions and, hence, the mean difference between conditions 

was significantly non-zero. To prioritize epigenetic alterations showing a high effect size, we 

considered both the p value and the relative values of the ANOVA test statistics when 

identifying location vectors with significant between-group separation. For the comparison 

of leiomyoma and. myometrium samples, 1 and 40 were used for the numerator and 

denominator degrees of freedom in the ANOVA test. For the comparison of MED12-mut 

and MED12-wt leiomyomas, 1 and 19 were used for the numerator and denominator degrees 

of freedom. The location vector with the greatest ANOVA test statistic was selected, while 

the ANOVA p value was used to test the statistical significance of the separation under the 

assumptions of ANOVA.

In addition to the ANOVA analysis for each assay, we sought to quantify the overall 

separation between the tumor and healthy samples across all assays along a given location 

vector. To quantify the overall separation into a single test statistic, we first computed the 

within- and between-condition separation (the denominator and numerator, respectively, of 

the ANOVA test statistic) for each assay. These quantities were then summed over assays, 

and the ratio of the summed between-condition separation to summed within-condition 

separation was taken as the test statistic for each location vector. Because the projections 

onto a location vector for different assays were not independent, the test statistic was not F-

distributed as in ANOVA. Instead of computing p-values, we thus compared the relative 

values of the test statistic to identify the location vector with the greatest overall separation 

between the groups. We found the separation of the condition projection means for the 

fourth location vector to be far greater than all the others (Figures S3B–S3E). Therefore, 

considering the equation above describing the condition difference, this location vector 

specified the differences in histone modifications between the two conditions. As the 

condition projection means were fixed for this location vector, the sign of the difference in 

projection means and the sign of the location vector component specified the direction of the 
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alterations (either increasing or decreasing in the tumors relative to healthy tissue). The 

magnitude of the vector entries specified the effect size of the alteration. We used the 

empirical distribution of the absolute value of all location vector entries to set a threshold for 

a location vector entry to be considered significantly non-zero. We set the threshold at the 

99.9th percentile of this distribution (Figure S3F). Genomic regions with differential 

epigenetic states were identified as those for which the absolute value of the corresponding 

vector entry exceeded the threshold value.

The same procedure was used to identify regions different between leiomyomas with and 

without MED12 mutations. Here, the mean projections for leiomyomas with and without 

MED12 mutations were compared to identify the seventh location vector to be specifying 

the mutation-specific alterations.

Projection of additional samples—Given a histone modification ChIP-seq dataset for a 

new patient, projections onto the location vectors were obtained using the location vector 

matrix U(location) from the HOSVD. This was accomplished by first vectorizing the new 

dataset and subtracting a corresponding control, as was done for the samples used in the 

tensor. Denoting this new data vector by vk where k∈{H3K27ac, H3K4me3, H3K4me1}, the 

projection onto the lth location vector was obtained by taking the dot product of vk with the 

lth column of U(location). The new vector of projections is then given by

projectionsk = vk
t U(location) .

Tissue sample classification—We applied two different techniques for classifying the 

condition of tissue samples. Each technique has advantages in certain conditions or 

applications. Both techniques use supervised machine learning to train a classifier to predict 

a label for a given tissue sample based on the projections obtained by the HOSVD used in 

the DeCET method.

To enable direct cross-sample comparison, we applied an additional standardization step to 

each tissue sample. For each condition, patient, and assay, the vector consisting of the 

projections onto the first 10 location vectors from the HOSVD was scaled to unit ℓ2-norm. 

This same standardization was applied to both the tissue samples used in the tensor for the 

HOSVD and the additional test samples that were projected onto the obtained location 

vectors. Each tissue sample (consisting of a fixed condition and patient index) was 

represented as a 3×10 matrix of scaled projections, with the row index corresponding to the 

assay and the column index to the HOSVD location vector.

Classification based on a single histone modification was performed using a support vector 

machine (SVM) classifier with a linear kernel. The SVM was implemented using SciKit-

learn (Pedregosa et al., 2011) linearSVC with an ℓ2-penalty regularization and a squared 

hinge loss function (options C = 1, loss = ‘squared_hinge’, penalty = ‘l2′, max_iter = 10000, 

tol = 1e-5, class_weight = ‘balanced’). For each histone modification, the SVM classifier 

was trained to classify tissue samples based on the scaled 10 dimensional vector of HOSVD 

projections for that assay. We also applied this method to classify samples based on the joint 

Leistico et al. Page 26

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profile of all three histone modifications. To do this, each tissue sample was encoded as a 

30-dimensional vector containing all histone modifications by concatenating the three 10-

dimensional vectors representing the three histone modifications.

We next built a support tensor machine (STM) classifier (Cai et al., 2006; Tao et al., 2007) to 

improve the classification based on the full set of histone modifications. The STM classifier 

utilizes the tensor form of the predictor variable (in this case the 3× 10 matrix of scaled 

projections) to obtain a robust classifier with a smaller set of parameters than the full SVM. 

As fewer parameters are used, the STM classifier is less prone to overfitting and hence ideal 

for small training sets. The STM classifier fits vectors u ∈ ℝ3 and v ∈ ℝ10 that form the 

rank-1 CP-decomposition of the weight matrix W = uvT. Optimal parameters of the STM are 

found by minimizing the following loss function

Loss Function = 1
2λu2v2 + ∑

n
max 0, 1 − y(n) ∑

ij
xij

(n)uivj + b ,

where for each of the tissue samples indexed by n, x(n) denotes the feature tensor and y(n)∈
{−1, 1} is the indicator distinguishing the condition (either leiomyoma/myometrium, or 

MED12 mutation status), b is the bias constant, and λ = 0:0005 is the regularization 

constant. We minimized the Loss Function by optimizing each of the u, v vectors in turn 

while holding the other vector fixed. We have run 400 iterations of successive u, v 
optimization, with each such optimization done using gradient descent method with 250 

iterations and learning rate α = 0:0001.

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP-seq data processing—Illumina adaptor sequences were removed from sequenced 

reads using Trim Galore (options–illumina -stringency 13) (https://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Quality control was performed 

using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After adaptor 

trimming, reads were aligned to the hg19 genome using Bowtie2 (options -end-to-end–

sensitive–score_min L,-1.5,-0.3) (Langmead and Salzberg, 2012). Aligned reads were sorted 

using Picard (https://broadinstitute.github.io/picard), and supplementary and low quality 

alignments were removed using SAMtools view (options -F 3588 -q 13) (Li et al., 2009). 

Duplicate reads were removed using Picard MarkDuplicates. Coverage files were generated 

from bam files using bedtools genomecov (options -bg -split -fs 200) (Quinlan and Hall, 

2010) and then converted to bigWig format using kentUtils bedGraphToBigWig (Kent et al., 

2010). The bigWig files were used for visualization in the UCSC genome browser (Kent et 

al., 2002; Raney et al., 2014). For visualization, each track was scaled by the inverse of the 

Signal Extraction Scaling method (Diaz et al., 2012) scale factor (described above) and the 

corresponding control sequencing depth. All tracks were then scaled evenly to fit in the 

viewing range. To remove potential alignment bias, we removed all aligned reads 

overlapping repeat regions annotated by RepeatMasker (Smit et al., 1996) and segmental 

duplication regions annotated by Variant Annotation Tools (San Lucas et al., 2012) for the 

hg19 genome using bedtools subtract (options -A) (Quinlan and Hall, 2010); annotated 

regions were downloaded from the UCSC table browser (Karolchik et al., 2004). Peak 
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calling for histone modification ChIP-seq was performed relative to a corresponding control 

using MACS2 (options–broad -g hs–broad-cutoff 0.05) after removing reads overlapping 

repeat regions.

RNA-seq data processing—Adaptor sequences were removed from paired-end RNA-

seq reads using Trim Galore (options–illumina–stringency 13–paired) (https://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Quality control was performed 

using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimmed 

paired-end reads were aligned to the hg19 genome using STAR (Dobin et al., 2013). Gene 

counts for the UCSC Known Genes (Hsu et al., 2006) annotation were obtained using STAR 

option–quantMode. Differential expression analysis was performed using DESeq2 (Love et 

al., 2014) with a design matrix including variables for patient and condition (design = 

~patient + condition). P values were calculated using the Wald test, and a significance 

threshold was set at Benjamini-Hochberg adjusted p value of 0.01 and a minimum 

magnitude log2 fold change of 0.5. The same differential expression analysis was performed 

for comparing primary leiomyoma cells treated with control shRNA or HOXA13 shRNA. 

Lowly expressed genes (< 1 FPKM in all patient tissue samples, see below) were removed 

for gene ontology analyses. For comparing cells with control or HOXA13 construct, gene 

counts with row-sum below 10 were excluded from the DESeq2 analysis. Gene counts were 

normalized using cpm function of edgeR (v 3.28.1) (McCarthy et al., 2012; Robinson et al., 

2010) in R (v 3.6.3) (options prior.count = 2, log = TRUE) (https://www.r-project.org) and z-

scores calculated by scale function in R. The matrix obtained for differential genes with 

adjusted p value < 0.05 and FPKM of at least 1 was used for plotting hierarchical clustered 

heatmap using pheatmap (v 1.0.12) (Gu et al., 2016) (Figure 5C).

Principal component analysis (PCA) of RNA-seq data was performed using DESeq2. Prior 

to PCA analysis we applied a regularized log transform to the RNA-seq gene count data 

using the DESeq2 rlog function (option blind = False). To obtain the higher principal 

components used in (Figure S3A), we modified the DESeq2 plotPCA function to return the 

projections onto additional principal components. The projections onto the first 10 principal 

components were used to generate (Figure S3A). The clustering was obtained using the 

adjusted cosine distance metric and an average linkage.

ATAC-seq data processing—Adaptor trimming for paired-end ATAC-seq reads 

followed the same approach as for RNA-seq reads. Paired-end reads were aligned using 

Bowtie2 (Langmead and Salzberg, 2012) with all other options the same as for histone 

modification ChIP-seq. Quality control was performed using FastQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) and ATACseqQC (Ou et al., 2018). 

After alignment, SAMtools was used to remove read pairs with PCR duplicates, 

supplementary alignments, poor quality alignments, or pairs for which only a single read 

aligned (options -b -f 2 -F 2828 -F 1024 -q13). Peaks were called using MACS2 (Zhang et 

al., 2008) callpeak command (options -f BAMPE -g hs -B–keep-dup 1) with a significance 

q-value threshold of q < 0.05. To define the set of relevant open chromatin regions, we 

merged the set of called ATAC-seq peaks from matched samples from all eight patients and 

took the union of these regions. This final set was used for all further ATAC-seq analysis.
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REMC data processing—Consolidated alignment files were downloaded from the NIH 

Roadmap Epigenomics web portal (https://egg2.wustl.edu/roadmap/) (Kundaje et al., 2015). 

Reads aligning to repeat regions or segmental duplications were removed, as was done for 

the leiomyoma data. Reads aligning to the sex chromosomes were also removed to prevent 

gene-specific effects from confounding the tensor decomposition. The order-3 data tensor – 

with indices for sample, assay, and location – was constructed following the same approach 

as for the leiomyoma data. Consolidated broakPeak files were downloaded from the 

Roadmap Epigenomics web portal.

Breast cancer cell line data processing—Raw ChIP-seq data for histone 

modifications in 13 breast cancer cell lines were obtained from the Gene Expression 

Omnibus (GEO) (GEO: GSE85158). RNA-seq data were obtained from Xi et al. (2018). 

ChIP-seq data were processed through the same pipeline as for the leiomyoma data. The 

order-4 data tensor – with indices for cell line, assay, replicate and location – was 

constructed using the same approach as for the leiomyoma data. Peak calling for histone 

modification ChIP-seq was performed relative to a corresponding control using MACS2 

(options–broad -g hs–broad-cutoff 0.05) after removing reads overlapping repeat regions.

Prostate cancer data processing—Processed data for RNA-seq and raw data for 

histone modifications and AR ChIP-seq in a prostate cancer cohort were downloaded from 

the GEO (GEO: GSE120741, GEO: GSE120738). The ChIP-seq data were processed 

through the same pipeline as for the leiomyoma data, but reads aligning to the Y 

chromosome were not removed for this dataset, as all patients were male. We included only 

those samples that had data for all four ChIP-seq assays included in the original study, and 

that matched the data summary provided in the published supplementary information 

(Stelloo et al., 2018). We observed significant variability in the enrichment of H3K4me3 

data across the samples. As this mark was found to contribute least to the clustering of 

samples obtained in the original study, we did not include H3K4me3 data in our DeCET 

analysis. The order-3 data tensor – with indices for patient, assay, and location – was 

constructed following the same approach as for the leiomyoma data. For differential 

expression analysis, the normalized log2-transformed and ComBat-corrected (Leek et al., 

2012) read counts of RNA-seq data were obtained from Stelloo et al. (2018). Differential 

expression between groups was evaluated using a t test with unequal variance (SciPy 

ttest_ind option equal_var = False). A p value threshold of 10−3 was used to call 

significantly differentially expressed genes. Gene ontology analysis was performed with 

DAVID (Huang et al., 2009a, 2009b) using default parameters and the default Homo sapiens 
background.

Gene ontology analysis for leiomyoma samples—For gene ontology (Tables S3 and 

S7), we used a background gene set consisting of all genes with at least 1 FPKM in RNA-

seq data for at least one sample used in the tensor decomposition analysis. Gene lengths for 

FPKM were defined as the length of the union of all exons for a given gene. The obtained 

read counts for each gene (number of reads mapping to the gene obtained from STAR 

option–quantMode) were used to calculate FPKM. Small non-coding RNAs were removed 

by excluding genes with a total length less than 200nt.
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To assign genes to genomic regions, each gene was assigned a 20kb regulatory region 

consisting of 10kb in each direction of the gene TSS. We used the TSS for the UCSC 

knownCanonical (Hsu et al., 2006) transcript for each gene. Genes were assigned to 

identified regions if there was any overlap with the corresponding gene regulatory region. 

For gene ontology, only those genes that were also differentially expressed in the 

corresponding direction in the differential expression analysis were included. Gene ontology 

was performed using DAVID (Huang et al., 2009a, 2009b) with default settings.

Gene ontology analysis for HOXA13 overexpressing cells—Differentially 

expressed genes obtained above (with adjusted p value < 0.05 and FPKM of 1 or more in at 

least one of the 21 matched tissue samples) were listed in Metascape (Zhou et al., 2019) and 

gene ontologies enriched for those genes in Homo sapiens were identified (Figure 5D).

DeCET statistical analysis—The histone modification ChIP-seq data for patients 1–21 

(Table S1) was used to build the data tensor used in this study. For pt10, data from one tumor 

(pt10_1) was included in the data tensor, while data from a second tumor (pt10_2) was only 

used as a test set for the SVM and STM classification. The additional leiomyoma samples 

(pt22, pt23, pt24_1, pt24_2, pt25 and pt26) were used only as test sets for the SVM and 

STM classification.

To identify HOSVD location vectors specifying differences between two groups, a one-way 

ANOVA analysis of the HOSVD projections for each assay was used. The ANOVA test 

statistics were computed in Python and p values were calculated by the F-distribution using 

SciPy 1 - f.cdf (options loc = 0, scale = 1, numerator and denominator degrees of freedom 

provided in main text) (Jones et al., 2001). Levene’s test was used to test for the equivalence 

of the variance between myometrium and leiomyoma samples of the projections onto an 

HOSVD location vector. Levene’s test was implemented using SciPy levene (option center = 

‘mean’). Mann-Whitney U test was implemented using SciPy mannwhitneyu (option 

alternative = ’two-sided’). The construction of the data tensor from bed files, the HOSVD 

and the classification cross-validation were performed using Python v3.6 (https://

www.python.org), while the downstream analysis was performed using Python v3.7. 

Additional Python libraries used were NumPy (Harris et al., 2020) and pandas (W. 

McKinney, 2010, Proc. Python Sci. Conf., conference). Seaborn (Waskom et al., 2018) and 

Matplotlib (Hunter, 2007) were used for generating Figures 1B, 1C, 2B, 2C, 3A–3D, 4A, 

4C–4F, 6A–6C, 7A–7C, S3A–S3F, S4A–S4F, S5B, S6A–S6G, and S8A–S8E; the code for 

generating these figures can be found at https://github.com/jssong-lab/DeCET.

Consensus profiles of the replicate data for breast cancer cell lines—The 

consensus projections onto DeCET location vectors for each breast cancer cell line were 

obtained by decomposing the replicate space in the HOSVD. That is, the histone 

modification ChIP-seq data were projected onto the singular vectors for the replicate and 

location spaces, as

Xir icl iail = ∑
α1α4

∑
α2α3

Sα1α2α3α4Uicl, α2
cell line Uia, α3

(assay) Uir, α1
(replicate)Uil, α4

(location) .
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The two columns of the matrix U(replicate) represented roughly the similarities and 

differences between the replicates, respectively; the consensus projections were obtained by 

taking the projections onto the first “similarity” vector. These consensus profiles captured 

the epigenetic features common to both replicates, while correcting for potential batch 

effects resulting from differences in sequencing depth or antibody efficiency.

Function annotation of location vector regions—Regions with a significant histone 

modification signal along a given location vector were identified using the thresholding 

method based on the distribution of all location vector components described above. 

Functional annotation of the regions with significant histone modifications along a location 

vector was performed using GREAT (McLean et al., 2010) with default parameters. The 

summaries of the GREAT annotation in Table S8 were obtained by sorting the annotation 

results for GO Biological Process by the hypergeometric test rank and taking the first 20 

terms.

Unsupervised hierarchical clustering—We used the projections onto the location 

vectors obtained by the HOSVD to perform unsupervised hierarchical clustering (Figure 

1C). Prior to clustering, we observed extreme outlier projections onto the fifth and sixth 

location vectors. The outliers corresponded to two leiomyoma samples, pt19 and pt21, for 

which we observed much lower IP enrichment in the H3K4me3 ChIP-seq data compared to 

other samples. The H3K27ac and H3K4me1 ChIP-seq data did not exhibit such outlier 

behavior for these samples, and the extreme outlier behavior for H3K4me3 was confined to 

the projections onto only these two location vectors. To remove bias from these outliers, we 

only used the projections onto the other 8 of the first 10 HOSVD projections for the 

unsupervised hierarchical clustering. The distance between two tissue samples was obtained 

by first computing the adjusted cosine distance between the 8 dimensional vector of 

projections for each histone modification separately. These distances were then summed 

over all histone modifications to obtain the total pairwise distance between two samples. 

Hierarchical clustering using average linkage was performed on the obtained pairwise 

distance matrix. We used the Python package SciPy (Jones et al., 2001) to calculate the 

linkage and seaborn (Hunter, 2007; Waskom et al., 2018) to plot the dendrogram and 

heatmap shown in (Figure 1C). The heatmap in (Figure 1C) shows the HOSVD projections, 

mean-centered and scaled to unit variance, of all assays for each tissue sample in the dataset; 

the color bar ranges from the 5th to the 95th percentile.

For the unsupervised clustering of REMC data, the first few location vectors with top 

singular values were used to cluster the samples. This was compared to the clustering using 

the full set of location vectors to ensure that the clustering result was robust. For the breast 

and prostate cancer datasets, the location vectors used for clustering were selected based on 

the variance of the projections onto these vectors. To select the location vectors, the variance 

in the projections onto each location vector was computed for each histone modification. 

The top location vectors with greatest variance (4 for the breast cancer data and 5 for the 

prostate cancer data) were taken for each histone modification and then pooled into a 

common list. The vector of projections of each histone modification onto the pooled list was 

used to perform hierarchical clustering as described above for the leiomyoma data. The color 
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bar ranges from the 10th to the 90th percentile for the REMC, breast cancer, and prostate 

cancer datasets (Figures 6, 7A, and 7C).

Visualization of tissue classification—Figures 2C and S5B were generated after 

training the respective classifier for the corresponding set of training samples. The figures 

were generated in the same way for both the STM and SVM classifiers. The fitted model for 

each classifier consisted of a hyperplane parameterized by an un-normalized direction vector 

w  orthogonal to the fitted hyperplane and an intercept value b specifying the offset of the 

hyperplane from the origin. For the SVM the vector w  was obtained directly, while for the 

STM it was obtained by vectorizing the matrix whose rank-1 CP decomposition gives the 

vectors u and v

w = vec uvT .

We computed the signed distance of a given sample vector x  from the hyperplane as

d = w ⋅ x + b
w ⋅ w

.

The absolute value of this quantity is the distance from the hyperplane, while the sign 

specifies the side of the hyperplane the sample is on. Principal component analysis (PCA) 

was then applied to the vectors after removing the component perpendicular to the 

hyperplane to identify the direction with the greatest sample variance within the hyperplane.

Classification cross-validation—Leave-one-out cross-validation was used to verify the 

robustness of the classification. For each of the 21 patients in the full tensor dataset, the 

tensor scaling and HOSVD were applied to the subtensor with that patient’s data removed. 

The SVM or STM classifier was then trained using the projections from the HOSVD with 

the 20 remaining patients. After training, the classifier was tested on the patient that was 

removed and the additional leiomyoma datasets not included in the full training tensor. For 

classifying subpopulations of leiomyoma samples, the full set of patient data (including 

matched healthy tissue) was included in the HOSVD. The classifier was then trained and 

tested using only the projections for leiomyoma samples.

Functional characterization of altered regions—We used the results of the HOSVD 

to characterize the functional role of the identified regions. The histone modification ChIP-

seq data samples were projected onto the basis vectors found for the assay and condition 

space:

Xic ipt iail = ∑
α1α3

∑
α2α4

Sα1α2α3α4Uipt, α2
(patient)Uil, α4

(location) Uic, α1
(condition)Uia, α3

(assay) .

The two columns of the condition matrix U(condition) represented roughly the similarities and 

differences between leiomyoma and myometrium samples, respectively. The three columns 
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of the assay matrix U(assay) described the combinatorial histone modification patterns 

observed in the data, with the first column corresponding to a weighted combination of all 

three histone modifications moving together, the second to a tradeoff between H3K4me3 and 

H3K4me1, and the third to a tradeoff between H3K4me1 and H3K27ac.

For the regions identified as discriminating leiomyoma from myometrium, we fixed the 

condition basis index α1 to that specifying the differences between leiomyoma and 

myometrium. The average projection across patients onto each assay basis vector was then 

taken for the binned genomic locations with differential signal. The mean projection onto the 

second assay basis vector specified a tradeoff between H3K4me3 and H3K4me1, and hence 

the functional role of the region as a promoter versus enhancer (Figures 3A and 3B). The 

sign of the mean projection was used to classify a region as an enhancer or a promoter. 

Because the projections are taken onto the condition space basis vector discriminating the 

conditions, the interpretation of the sign was opposite for the regions that were lower in 

leiomyoma compared to the regions that were higher. In Figure 3A, we flipped the sign of 

the projections for regions that were lower in myometrium to make the interpretation of the 

x axis consistent between the top and bottom panels.

For the regions identified as separating leiomyomas with and without MED12 mutations, we 

again fixed the condition basis index α1 to that specifying the differences between 

leiomyoma and myometrium. For these regions, MED12-mut leiomyomas separated from 

their corresponding myometrium samples in the opposite direction to MED12-wt 

leiomyomas. This resulted in a change in the sign of the projections onto the condition basis 

vector for patients with and without MED12 mutations. We used the sign of the projection 

onto the first assay basis vector to account for this in an unsupervised way. Since we 

observed the first assay basis vector specified a weighted change in the profile of all three 

histone modifications, the sign specified the overall direction of the change in activating 

histone marks. Therefore, for each region and patient, we first multiplied the projection onto 

the second assay basis vector by the sign of the projection onto the first assay basis vector 

before averaging over patients. The sign-corrected patient mean projection onto the second 

assay basis vector was then used to classify the regions as promoters or enhancers following 

the same procedure (Figure S6A).

For the distribution around the nearest gene TSS, the minimum distance between the center 

of each bin and the nearest gene TSS from the UCSC Known Gene (Hsu et al., 2006) 

annotation was obtained. Distances up to 200kb were binned into 10 equal sized bins, and an 

eleventh overflow bin was used for all values greater than 200kb. The distribution shows the 

fraction of the 2kb differential genomic bins that have distance to the nearest TSS within the 

respected range.

Length scale characterization of epigenetic alterations—To characterize the length 

scale of the identified epigenetic changes, we performed a discrete wavelet transform (DWT) 

multiresolution analysis of the identified location vector. Specifically, we performed the 

DWT of the signal vector v as

Leistico et al. Page 33

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



v[n] = ∑
k = 1

L(J)
akϕ−Jk[n] + ∑

j = 1

J
∑

k = 1

L(j)
bjkψ−jk[n]

where ϕ−Jk are the scaling functions, ψ−jk the corresponding wavelet functions, and k and j 
the translation and scaling indices, respectively. For the genomic location vectors used in the 

tensor model, k specifies the genomic location of a 2000bp bin, while j specifies the scale of 

the wavelet. The scale index j can be interpreted as specifying a wavelet window of width 2j 

* 2000bp. For our analysis we used the Coiflet 5 wavelets with a maximum level J = 10, 

which corresponds to a scale of 2048kb. The discrete wavelet transforms were performed 

using the PyWavelets Python package (Lee et al., 2019).

Because we were interested in comparing the scale of the differential epigenetic signal 

between two conditions, we first identified the location vector along which the two 

conditions diverged. This location vector was then split into positive and negative 

components

v = v+ − v−

where vl
+ = max vl, 0 ; vl− = − min vl, 0 . These vectors were then binarized to restrict the 

transform to the regions with significant changes and to focus on the length scale rather than 

the effect size. The binarization set the insignificant regions to 0 and the significant regions 

to 1, and then scaled each vector to unit ℓ2-norm. The DWTs of the binarized positive and 

negative component vectors were then computed separately. Denoting the obtained wavelet 

coefficients for scale index j and translation index k by bjk
+  and bjk

−  for the binarized positive 

and negative component vectors, respectively, we computed the squared sum of the wavelet 

coefficients across the translation index

bj
± = ∑

k = 1

L(j)
bjk
± 2

.

These values were used to compare the scale of the epigenetic signal along the positive and 

negative components of the vector (Figures 4A and S6D).

As a separate characterization of the length scale, we extracted normalized ChIP-seq signals 

at the differential regions and performed a DWT. For each patient, condition, and assay a 

vector was obtained consisting of the corresponding normalized ChIP-seq signals at the 

identified differential regions (both increased and decreased histone modification regions). 

Regions without differential histone modifications were set to zero. These vectors were first 

scaled to unit ℓ2-norm and then the DWT was performed on each. The squared wavelet 

coefficients were summed across the translation index, and the resulting values were then 

averaged over patients. The square roots of the group mean coefficients were used to 

compare the scale usage between the two groups.
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Chromatin contact domain confinement—Chromatin contact domains identified from 

Hi-C data in HeLa cells (Rao et al., 2014) were accessed from Gene Expression Omnibus 

(GEO: GSE63525). Overlapping contact domains, but not adjacent domains, were merged 

into a single domain. To correlate the histone modification alterations around the domains, 

each domain was first split into 5 consecutive windows of equal size extending the full 

length of the domain. A region of the same length on each side of the domain was also split 

into 5 consecutive windows. Each window was assigned the mean value of the differential 

vector entries corresponding to the bins within that window. This resulted in a 15 

dimensional vector for each of the merged contact domains; the vector entries were sorted 

by the corresponding genomic location order. The Pearson correlation coefficient taken 

across the domains was obtained for each pair of windows and plotted as a heatmap (Figures 

4C and S6E). The Pearson correlation was calculated using SciPy pearsonr. We also 

repeated this analysis using an extension of 50kb or 100kb on each side of the domain, 

which qualitatively showed the same results. As a negative control, we shuffled the contact 

domains by randomly repositioning each domain along the corresponding chromosome; this 

resulted in distance-dependent correlations, but removed the domain block structure seen 

with the true domain locations (Figures 4D and S6F). As an additional negative control, we 

shuffled the differential location vector components with the contact domains fixed at the 

true locations, which removed all significant correlations (Figures 4E and S6G).

To identify contact domains with changes in chromatin state, the net change in histone 

modification profiles across a domain was quantified by summing the significant entries of 

the differential location vector across the domain. Only binned genomic regions completely 

contained within the contact domain were included in the sum, and entries not passing the 

threshold for significant changes were set to zero to remove bias from insignificant changes. 

When the contact domains were sorted by the net change, we observed a very rapid increase 

in the net change at the edges of this distribution (Figure 4F). We applied a method similar 

to that used by the ROSE algorithm for calling super enhancers (Whyte et al., 2013) to 

identify the point in the distribution where the net change increased rapidly. Contact 

domains with non-zero change were sorted by the absolute value of the net change, and 

scaled so that the x and y axis ranged from 0 to 1. The point of rapid increase was then 

found as the point for which a line with slope 1 was tangent to the resulting curve.

Super enhancer analysis—To identify putative super enhancers in leiomyoma, we first 

defined a common set of constituent enhancers by merging the H3K27ac peaks called with 

MACS2 from the 21 leiomyoma samples with patient-matched myometrium. For each of the 

21 leiomyoma samples, the ROSE algorithm (Lovén et al., 2013; Whyte et al., 2013) was 

used to compute the H3K27ac ChIP-seq read density (using the bam files prior to repeat 

filtering) at the common enhancers, and to call super enhancers from the common enhancer 

set using this read density. Putative super enhancers were identified as stitched enhancers 

from the common enhancer set that were called as a super enhancer based on the read 

density of at least one of the patients. We performed a permutation test to statistically test for 

the enrichment of the differential genomic bins in the putative super enhancers. The 

enhancer centers were permuted for all enhancers on the same chromosome with the 

enhancer lengths fixed. The number of altered genomic bins overlapping the permuted super 
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enhancers was then computed. The same permutation test was used to assess whether super 

enhancers were preferentially altered. For this test, the number of permuted super enhancers 

overlapping an altered region was computed. Both tests were performed separately for the 

regions with increased and decreased histone modifications in leiomyoma. In 1000 iterations 

of both tests, the true number of differential regions overlapping super enhancers and the 

number of super enhancers containing alterations were always greater than the values from 

permutations.

Changes in ATAC-seq signal—ATAC-seq peak summits were identified with the 

MACS2 peak caller (Zhang et al., 2008) for matched leiomyoma and myometrium from 8 

patients. For each peak summit that overlapped a region with altered histone modifications 

in leiomyoma, a peak region was defined by extending 500bp on each side of the peak 

summit. For all eight matched leiomyoma and myometrium ATAC-seq datasets, the pileup 

of reads across each of these peak regions was obtained using samtools mpileup (Li et al., 

2009). The pileup for each sample was scaled by 107 divided by the total number of aligned 

reads for the corresponding sample. For each peak region, a consensus ATAC-seq signal was 

obtained separately for leiomyoma and myometrium by taking the median scaled signal at 

each base across the eight patients. The mean of these consensus profiles across peak 

regions was then taken separately for the summits overlapping regions with increased or 

decreased active histone modifications in leiomyoma. Finally, the ratio of the mean of the 

signal at the ± 500bp locations was used to scale the myometrium to the leiomyoma signal 

in Figure S7A and the leiomyoma to the myometrium signal in Figure S7B.

Motif scanning—Motif scanning was performed using the method described in Hejna et 

al. (2019), using the position specific scoring matrices (PSSM) from the HOCOMOCO core 

collection of human transcription factors (Kulakovskiy et al., 2018). We only used motifs for 

transcription factors having FPKM greater than 1 in at least one sample. Motifs were called 

by computing the log-likelihood ratio between the PSSM matrix and a second-order Markov 

background distribution fit to the nucleotide content of the hg19 human genome. We set a 

cutoff threshold for calling a motif hit at the relative entropy of the distribution specified by 

the PSSM matrix with respect to the background distribution.

Motif enrichment analysis—After identifying sets of regions S1 and S2 associated with 

two conditions, we performed motif scanning to identify transcription factor motifs that 

were differentially enriched between the two sets of regions. The union of the regions within 

a set was taken to remove any arbitrary separation of neighboring regions that resulted from 

the genome binning. The resulting sets of regions were then intersected with the combined 

set of ATAC-seq peaks to limit the analysis to chromatin regions open in at least one 

condition for some patient. Intersected regions smaller than 25bp in length were removed 

prior to motif calling. For each region, a binary vector was obtained indicating the presence 

or absence of TF motifs. Fisher’s exact test was used to test for the enrichment of a given 

motif between the two sets of regions. A threshold for significance was set using the 

Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure with a false discovery rate 

of 0.001. The Fisher’s exact test p values were calculated with SciPy fisher_exact (options 

alternative = ’two-sided’).
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Sequence-based region classification—Sequence-based classification was performed 

using the binary motif presence vectors described in the preceding section. An ℓ1 regularized 

logistic regression classifier was trained on the motif presence vectors to classify a region as 

having come from set S1 or S2. The logistic regression was implemented using 

sklearn.linear_model.LogisticRegression (Pedregosa et al., 2011). A weight was included for 

each region in the loss function to account for imbalance in the number of regions from each 

class (option class_weight = balanced). The regularization parameter was chosen by a grid 

search to minimize the 5-fold cross-validation loss. The regions from both sets S1 and S2 

were split into 5 approximately equal-sized groups. The 5-fold cross-validation loss on the 

test sets was obtained for each value of the regularization parameter between 0.01 and 1.0 

using a step size of 0.01. After the regularization parameter was chosen, we performed 500 

iterations of Monte Carlo cross-validation. At each iteration, 20% of the regions were 

removed for testing, and the classifier was trained on the remaining 80% of regions. The 

mean accuracies after the 500 iterations were reported as the training and validation 

accuracies. To identify the most informative motifs, the classifier was trained on the entire 

set of regions and the fitted coefficients were sorted by absolute value. The sign of the fitted 

coefficient was used to determine the associated condition.

Relative mRNA expression—For quantifying relative mRNA expression, Ct (cycle 

threshold) values of genes in each sample were first normalized with GAPDH and then 

expression relative to either myometrium or shControl was determined by 2−ΔΔCt method. 

Data was plotted as mean of the technical replicates for each patient and error bar represents 

the standard deviation. Significance was determined by performing student’s two-tailed t test 

in excel (*** p value < 0.001, ** p value < 0.01).

Jaccard index clustering—For each histone modification the pairwise Jaccard index 

between two samples was computed using bedtools jaccard. To integrate information from 

multiple histone modifications in clustering a set of samples, we first quantile normalized 

the pairwise similarity matrix to account for differences in the distribution of Jaccard indices 

for different histone modifications. Quantile normalization was performed by flattening the 

pairwise similarity matrix into a vector and then quantile normalizing the vector for each 

histone to a reference distribution obtained as the mean of the sorted pairwise similarity 

vectors. A consensus similarity matrix was obtained by unfolding the quantile normalized 

vectors and taking the mean across histones. For clustering a set of samples, a distance 

matrix was obtained by subtracting this consensus similarity matrix from a matrix of ones 

and performing complete linkage hierarchical clustering.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Tensor decomposition provides integrative analysis of epigenomic data

• Leiomyomas exhibit recurrent subtype-specific alterations in histone 

modifications

• Chromatin contact domains constrain histone modification alterations in 

leiomyoma

• HOXA13 is a potential tumorigenic factor in leiomyoma
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Figure 1. DeCET uncovers epigenetic patterns specific to myometrium and uterine leiomyoma 
subtypes
(A) Schematic illustration of how the data tensor is decomposed into characteristic modes in 

each index space (condition (c), patient (pt), assay (a), and genomic location (loc). The 

bottom portion shows how the decomposition represents each ChIP-seq profile as a 

projection onto independent spatial patterns of histone modifications.

(B) The projections of ChIP-seq datasets onto the first 10 HOSVD location vectors.

(C) Unsupervised hierarchical clustering of the 21 patient-matched samples using 8 of the 

first 10 HOSVD projections for each assay (Figure 1B; STAR Methods). The columns 

correspond to an assay and location vector index pair. Leiomyoma tissues are labeled by 
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observed mutations (Table S1): MED12 exon 2 mutations (MED12-mut), HMGA2 
overexpression (HMGA2 high), biallelic loss of FH (FH low), or unknown if none of the 

above three were observed.

See also Figures S1–S4 and Tables S1, S2, S3, S4, and S5.
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Figure 2. DeCET yields a robust epigenomic classifier of uterine leiomyoma disease status
(A) UCSC genome browser tracks (http://genome.ucsc.edu) of the H3K27ac ChIP-seq data 

and the identified differential regions at the HOXA cluster. Significantly differentially 

expressed genes (STAR Methods) are shown below the ChIP-seq tracks (FC = fold change).

(B) Illustration of projecting the data for an additional patient not used in the HOSVD onto 

the location vectors (STAR Methods). The projections were ℓ2-normalized across the first 10 

location vectors; this normalization was used for all classifiers.

(C) STM classification of the 21 patient-matched samples and 7 additional leiomyoma 

samples. The x axis shows the signed distance from the decision boundary hyperplane (black 
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line). The y axis shows the first principal component of the data projected onto the decision 

boundary.

See also Figure S5.
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Figure 3. Genomic annotation and distribution of epigenetic alterations in leiomyomas
(A) Distribution of the patient mean projection onto the second basis vector of the assay 

space for the differential genomic bins higher (top) or lower (bottom) in leiomyoma (STAR 

Methods). The sign of the x axis was flipped in the bottom plot to make the interpretation of 

the direction consistent (STAR Methods).

(B) Heatmap showing the mean difference in the normalized ChIP-seq signal between 

leiomyoma and myometrium at the differential regions identified from the fourth HOSVD 

vector. Within each functional class, the bins (rows) are sorted by the absolute value of the 

fourth location vector component (the most differential bins being at the top). Each column 

is scaled by the 90th percentile of its absolute entry values.

(C and D) The spatial distributions of the center of the 2-kb genomic bins identified in (B) as 

being differential promoters and enhancers, relative to the nearest gene TSS.

See also Figure S6.
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Figure 4. Contact domains confine epigenetic alterations in uterine leiomyomas
(A) Ratio of the discrete wavelet transform coefficients of the binarized fourth location 

vector (top) and patient mean normalized H3K27ac ChIP-seq data extracted at the 

differential regions identified from this vector (bottom).

(B) UCSC genome browser track of HeLa contact domains (Rao et al., 2014) and the fourth 

location vector signal in the region chromosome 6 (chr6): 125,088,000–130,138,000.

(C) Pairwise correlation of the fourth location vector signal at binned regions within and 

flanking contact domains (STAR Methods). The 15 bins are of the same size and ordered by 

their genomic position.

(D) Same as (C), but for random domain locations obtained by moving each contact domain 

to a random location along the same chromosome.

(E) Same as (C), but after shuffling the vector components, while fixing the contact domains 

at the true locations.
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(F) Contact domains sorted by the summed fourth location vector signal at significantly 

altered regions within each domain (STAR Methods). Some top domains are labeled by the 

gene showing the greatest differential expression within the corresponding domain.

See also Figure S6.
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Figure 5. HOXA13 is elevated in and regulates leiomyoma pathogenesis
(A) (Left) Representative images showing HOXA13 IHC staining in the normal 

myometrium (Myo) and leiomyoma (Leio) (scale = 50 μm). (Right) Scatter dot plot of H-

score measured for nuclear HOXA13 in normal myometrium (Myo; n = 70) and leiomyoma 

(Leio; n = 57) from HOXA13-stained tissue microarrays. Vertical dashed line shows mean 

H-score for each condition. p value was from the two-tailed t test.

(B) Relative mRNA levels of MEDAG, PDK4, LIMK1, SDC1 measured by qRT-PCR in 

primary leiomyoma cells treated with shControl or shHOXA13. Mean fold-change in 

shHOXA13 relative to shControl is shown, with error bars representing standard deviation of 
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biological replicates (n = 3). Significance was from the two-tailed t test (***p < 0.001, **p < 

0.01).

(C) Hierarchically clustered heatmap of differentially expressed genes (adjusted p value < 

0.05) in HOXA13-overexpressing primary myometrial cells from three patients (samples 1, 

2, and 3). Gene expression relative to the mean expression in control and HOXA13 

construct-containing cells are shown as row Z scores.

(D) Bar plot of GO enrichment scores (Zhou et al., 2019) for differentially expressed genes 

in HOXA13-overexpressing cells.

See also Figure S7 and Tables S2, S6, and S7.
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Figure 6. DeCET reveals epigenetic organization of tissue types and differentiation states in 
REMC data
(A) Hierarchical clustering of 34 adult human tissues using the projections onto the first 13 

HOSVD location vectors. The REMC sample identifiers and associated laboratory are 

shown on the right.

(B) Hierarchical clustering of 10 adult human muscle tissues using the projections onto the 

first 10 location vectors.

(C) Hierarchical clustering of 8 T cell samples representing three differentiation states using 

the projections onto the first 9 location vectors.

See also Figure S8 and Table S8.
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Figure 7. DeCET provides epigenetic stratification of breast and prostate cancer subtypes
(A) Hierarchical clustering of 13 breast cancer cell lines based on three histone 

modifications (STAR Methods). The 6 location vectors with greatest variance in the 

projections across samples were used for clustering (STAR Methods).

(B) The expression pattern of known marker genes for breast cancer subtypes (Dai et al., 

2017). The cell lines are ordered according to the clustering in (A). Each row is scaled by its 

largest value for visualization.

(C) Hierarchical clustering of prostate cancer samples using the 15 location vectors with 

greatest variation in the projections (STAR Methods). Samples are colored according to the 
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status of a biochemical recurrence (case) or no recurrence (control). The cluster labels, 

named based on expression signatures, represent the DeCET clustering.

See also Figure S8 and Table S8.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-GAPDH Sigma-Aldrich G9545; RRID:AB_796208

Rabbit polyclonal anti-HOXA13 Abcam ab106503; RRID:AB_11128701

Rabbit polyclonal anti-H3K27ac Active Motif 39133; RRID:AB_2561016

Rabbit polyclonal anti-H3K4me3 Diagenode C15410003; RRID:AB_2616052

Rabbit polyclonal anti-H3K4me1 Diagenode C15410194; RRID:AB_2637078

Rabbit polyclonal anti-Histone3 Abcam ab1791; RRID:AB_302613

Mouse monoclonal anti- V5 Thermo Fisher 
Scientific

R960-25; RRID:AB_2556564

Mouse monoclonal anti-HMGA2 Genetex GTX629478

Biological samples

Fresh human uterine leiomyoma and matched myometrium tissues Northwestern 
University 
Prentice 
Women's 
Hospital

N/A

Chemicals, peptides, and recombinant proteins

HOXA13 inserted pLEX_306 plasmid This paper N/A

Critical commercial assays

SimpleChIP kit Cell Signaling 
Technology

9003

Kapa hyper prep kit Kapa 
Biosystems

KK8502

Kapa quantification kit Kapa 
Biosystems

KK4835

RNeasy Fibrous tissue kit QIAGEN 74704

TruSeq stranded mRNA kit Illumina 20020594

DNeasy blood and tissue kit QIAGEN 69504

CellTiter-Glo® 2.0 Cell Viability Assay Promega G9241

Deposited Data

ChIP-seq, RNA-seq, ATAC-seq This paper, 
Gene 
Expression 
Omnibus

GEO: GSE142332

Experimental models: Cell lines

Primary uterine leiomyoma and myometrial cells Fresh tissues N/A

Oligonucleotides

Primers for MED12 exon2 cDNA sequencing Forward: CTTCGGGATCTTGAGCTACG 
Reverse: GTTGGAACTGATCTTGGCAGG

This paper N/A

Primers for MED12 exon2 genomic DNA sequencing Forward: 
GCCCTTTCACCTTGTTCCTT Reverse: TGTCCCTATAAGTCTTCCCAACC

This paper N/A

Primers for HMGA2 qRT-PCR Forward: AGCAGCAGCAAGAACCAACC Reverse: 
CTTGGCCGTTTTTCTCCAGTG

This paper N/A

Primers for HOXA13 qRT-PCR Forward: ACTCTGCCCGACGTGGT Reverse: 
CCGCTCAGAGAGATTCGTCG

This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for MEDAG qRT-PCR Forward: TCAAGAGGTATGTGGAACTGACC Reverse: 
TGACCATGTCCATCCCTTGC

This paper N/A

Primers for PDK4 qRT-PCR Forward: CAGACAGGAAACCCAAGCCA Reverse: 
TTGCCCGCATTGCATTCTTA

This paper N/A

Primers for LIMK1 qRT-PCR Forward: ATCAGGGATGGCCTACCTCC Reverse: 
CAGGCTGAGTCTTCTCGTCC

This paper N/A

Primers for SDC1 qRT-PCR Forward: GGAAGGGCCTGTGGGTTTA Reverse: 
CGCTCTCTACTGCCGGATTC

This paper N/A

Primers for GAPDH qRT-PCR Forward: TGCACCACCAACTGCTTAGC Reverse: 
GGCATGGACTGTGGTCATGAG

This paper N/A

shRNA (shHOXA13): 
CCGGGTTCCAGAACAGGAGGGTTAACTCGAGTTAACCCTCCTGTTCTGGAACTTTTT

Sigma TRCN0000015406

Software and algorithms

Indigo GitHub https://www.gear-genomics.com

FastQC v0.11.5 Babraham 
Bioinformatics

https://
www.bioinformatics.babraham.ac.uk/
projects/fastqc/

Bowtie2 v2.3.2 Langmead and 
Salzberg, 2012

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

trim galore v0.4.4 Babraham 
Bioinformatics

https://
www.bioinformatics.babraham.ac.uk/
projects/trim_galore/

Picard v2.10.1 Broad Institute https://broadinstitute.github.io/
picard/

MACS2 v2.1.1 Zhang et al., 
2008

https://github.com/macs3-project/
MACS

STAR v2.5.3a Dobin et al., 
2013

https://github.com/alexdobin/STAR

DESeq2 Love et al., 
2014

https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

ATACseqQC Ou et al., 2018 https://bioconductor.org/packages/
release/bioc/html/ATACseqQC.html

SAMtools v1.7 Li et al., 2009 http://samtools.sourceforge.net

Bedtools v2.26.0 Quinlan and 
Hall, 2010

https://bedtools.readthedocs.io/en/
latest/

DAVID Huang et al., 
2009a, 2009b

https://david.ncifcrf.gov

Python v3.6.1 and v3.7.3 Python https://www.python.org

NumPy v1.18.5 and v1.16.4 Harris et al., 
2020

https://numpy.org

PyTorch v0.4.0 A. Paszke et 
al., 2017, 
NIPS Autodiff 
Workshop, 
conference

https://pytorch.org

Tensorly Kossaifi et al., 
2019

http://tensorly.org/stable/index.html

SciPy Jones et al., 
2001

https://www.scipy.org

Scikit-learn v0.21.2 Pedregosa et 
al., 2011

https://scikit-learn.org/stable/

pandas v0.24.2 W. McKinney, 
2010, Proc. 
Python Sci. 

https://pandas.pydata.org
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REAGENT or RESOURCE SOURCE IDENTIFIER

Conf., 
conference

Seaborn v0.9.0 Waskom et al., 
2018

https://seaborn.pydata.org

PyWavelets v1.0.3 Lee et al., 
2019

https://pywavelets.readthedocs.io/en/
latest/#

Ranking of Super Enhancer (ROSE) Lovén et al., 
2013; Whyte 
et al., 2013

https://bitbucket.org/
young_computation/rose/src/master/

The Human Genome Browser at UCSC Kent et al., 
2002

https://genome.ucsc.edu

Integrative Genomics Viewer Robinson et 
al., 2011

https://software.broadinstitute.org/
software/igv/

BioEdit Hall, 1999 http://en.bio-soft.net/format/
BioEdit.html

GREAT v4.0.4 McLean et al., 
2010

http://great.stanford.edu/public/html/
index.php

DeCET This paper https://github.com/jssong-lab/DeCET 
(https://doi.org/10.5281/
zenodo.4540815)

Metascape Zhou et al., 
2019

https://metascape.org

R v3.6.3 R https://www.r-project.org

edgeR v3.28.1 McCarthy et 
al., 2012; 
Robinson et 
al., 2010

http://bioinf.wehi.edu.au/edgeR

pheatmap v1.0.12 Gu et al., 2016 http://bioconductor.org/packages/
release/bioc/html/
ComplexHeatmap.html
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