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Abstract
Effective immune responses require the precise regulation of dynamic
interactions between hematopoietic and non-hematopoietic cells. The Rho
subfamily of GTPases, which includes RhoA, is rapidly activated downstream
of a diverse array of biochemical and biomechanical signals, and is emerging
as an important mediator of this cross-talk. Key downstream effectors of RhoA
are the Rho kinases, or ROCKs. The ROCKs are two serine-threonine kinases
that can act as global coordinators of a tissue’s response to stress and injury
because of their ability to regulate a wide range of biological processes.
Although the RhoA-ROCK pathway has been extensively investigated in the
non-hematopoietic compartment, its role in the immune system is just now
becoming appreciated. In this commentary, we provide a brief overview of
recent findings that highlight the contribution of this pathway to lymphocyte
development and activation, and the impact that dysregulation in the activation
of RhoA and/or the ROCKs may exert on a growing list of autoimmune and
lymphoproliferative disorders.
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Introduction
Effective immune responses require an intricate and dynamic 
cross-talk between hematopoietic and non-hematopoietic cells. 
Precise regulation of these interactions is necessary to efficiently 
clear pathogens while preventing the emergence of autoimmunity. 
Rho-GTPases, such as RhoA, are emerging as important media-
tors of this cross-talk owing to their ability to be rapidly activated 
downstream of a broad range of biochemical and biomechanical 
signals1,2. Upon activation, RhoA interacts with a number of dif-
ferent effector molecules, including the Rho kinases (or ROCKs), 
two highly homologous serine–threonine kinases that coordinate a 
tissue’s response to stress and injury via effects on a wide array 
of biological processes1,3–5. The RhoA-ROCK pathway has, indeed, 
been implicated in the control of cytoskeletal reorganization and 
migration, proliferation, survival, and gene expression1,3–5. Despite 
the fundamental reliance of T and B cells on these processes, the 
precise involvement of the RhoA-ROCK pathway in lymphocyte 
biology has not been fully elucidated. In this commentary, after 
briefly discussing recent work on the role of RhoA and the ROCKs 
in the development and activation of lymphocytes, we will high-
light new findings that may link dysregulation of this pathway to 
a growing list of autoimmune and lymphoproliferative disorders. 
The reader should note that despite the well-established connection 
between the activation of RhoA and that of the ROCKs, their role 
in immune physiology and pathophysiology has often been investi-
gated separately and thus most of the studies that will be discussed 
primarily focus on one or the other component of this signaling 
cascade.

Regulation of the RhoA–ROCK pathway
Rho GTPases, which include the RhoA subfamily, are ubiquitously 
expressed molecular switches that cycle between an inactive (GDP-
bound) and an active (GTP-bound) state, a process regulated by 
the local balance of guanine nucleotide exchange factors (GEFs, 
which promote the exchange of GDP for GTP), GAPs (GTPase 
activating proteins, which enhance the intrinsic GTPase activity), 
and guanosine nucleotide dissociation inhibitors (GDIs, which bind 
and sequester inactive GTPases in the cytoplasm)2. GEF activation 
in response to stimuli such as chemokines, growth factors, cell–
matrix interactions, and mechanical signals leads to the activation 
of RhoA, which can then interact with several downstream effector 
molecules1. Over 79 GEFs have been identified in the mammalian 
genome, with at least 24 of them being reported to activate RhoA6. 
This redundancy in RhoA activation allows multiple upstream 
signals to converge onto RhoA and may help compartmentalize 
specific GEFs with selected RhoA substrates into unique com-
plexes, thus facilitating the transmission of distinct downstream 
effector functions7.

Critical downstream effectors of RhoA are the ROCKS, ROCK1 
and ROCK2, two serine-threonine kinases encoded by separate 
genes1,3–5. The catalytic kinase domain is located in the N-terminus 
and is followed by a coiled-coil region containing the Rho-binding 
domain (RBD) and a pleckstrin homology domain. The C-terminus 
of the ROCKs interacts with the N-terminus and has autoinhibi-
tory activity1,3–5. Binding of activated RhoA to the RBD disrupts the 
association of the autoinhibitory C-terminus with the N-terminal 
kinase domain, leading to kinase activation. RhoA-independent 

mechanisms of activating the ROCKs have also been described3–5. 
Since ROCK1 and ROCK2 exhibit a high degree of identity in 
their kinase domains, they can phosphorylate similar substrates  
in vitro3–5. Isoform-specific roles of the ROCKs in vivo are,  
however, likely to exist and may become fully appreciated once 
detailed analyses of ROCK1 and ROCK2 conditional knockout 
mice are undertaken.

The ROCKs control a diverse range of biological processes  
enabling them to act as critical coordinators of a tissue response 
to stress and injury. The regulation of cytoskeletal dynamics is 
one of the best-described roles of the RhoA-ROCK pathway, with 
the ROCKs being implicated in the control of several processes 
including actomyosin contractility, intermediate filament assem-
bly, microtubule dynamics, and the tethering of integral membrane 
proteins to the actin cytoskeleton3–5. Consistent with its role in 
regulating cytoskeletal dynamics, the RhoA-ROCK pathway is also 
involved in establishing front-rear polarity and cell migration3–5,7. 
The ROCKs have, furthermore, been shown to control cell prolif-
eration and survival, although this regulation appears to be highly 
cell type and context dependent3–5. The ROCKs also regulate gene 
expression by controlling the nuclear translocation of transcription 
factors via effects on actin dynamics as well as by directly phos-
phorylating transcriptional activators and coactivators to alter their 
activity3–5,8. In the following sections, we will first provide a brief 
overview of the roles of RhoA and/or the ROCKs in the develop-
ment and activation of T and B cells. We will then highlight new 
findings potentially linking RhoA and/or the ROCKs to autoimmu-
nity and lymphoproliferative disorders.

The RhoA–ROCK pathway in T and B cell 
development
Early studies employing a number of transgenic models dem-
onstrated a role for RhoA in thymocyte development9,10. More 
recently, T-cell-specific conditional knockout mice generated by 
crossing RhoAflox/flox with CD2-Cre or Lck-Cre transgenic mice 
have confirmed these early findings and further shown that the 
absence of RhoA leads to defective thymocyte β-selection, impaired 
positive selection, and decreased thymocyte proliferation and 
survival11. These abnormalities were accompanied by reduced pre- 
T cell receptor (TCR) expression, impaired TCR signaling, 
enhanced mitochondrial function, and increased ROS production, 
suggesting a multifaceted and complex role of RhoA in thymocyte 
development11. The downstream effectors mediating the diverse 
effects of RhoA on thymocyte development have not been inves-
tigated and thus it is not yet known whether the ROCKs, or other 
effectors, are directly involved in mediating the RhoA-dependent 
T cell developmental actions.

RhoA plays a non-redundant role in B cell development, as under-
scored by the marked reduction in peripheral B cell populations 
(encompassing transitional, follicular, and marginal zone B cell 
compartments) that occurs when RhoA is deleted using a CD19-Cre 
transgene12. The effects of RhoA deficiency on peripheral B cells 
were shown to be due to decreased expression of the BAFF 
receptor (BAFF-R) leading to defects in BAFF/BAFFR-mediated 
survival, while B cell receptor (BCR)-mediated survival was unaf-
fected by the absence of RhoA12. Although a detailed examination 
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of the role of the ROCKs in B cell development has not been con-
ducted, the addition of a ROCK inhibitor was shown to partially 
blunt the response of normal B cells to BAFF, suggesting that the 
effects of RhoA on BAFF-mediated B cell survival may partly rely 
on ROCK activation12.

The RhoA-ROCK pathway in T and B cell activation
In response to antigen exposure, the adaptive immune system 
undergoes a rapid and coordinated response geared at clearing the 
insulting pathogen. In addition to the expansion of antigen-specific 
T and B cells and the acquisition of specific differentiation states, 
these responses also rely on complex cytoskeletal rearrangements 
to regulate cell migration and cell-cell interactions. Not surpris-
ingly, given the involvement of the RhoA-ROCK pathway in 
cytoskeletal reorganization, studies exploring the role of RhoA in 
T cell activation have primarily focused on its role in the regulation 
of cytoskeletal dynamics. In line with early studies showing that 
the RhoA-ROCK pathway is activated downstream of chemokine 
receptors such as CXCL1213–15, the utilization of a RhoA activity 
biosensor has demonstrated that active RhoA can be detected at 
the leading edge in lamellipodia and filopodia, as well as in the 
uropod of migrating T cells16. Importantly, as reviewed in more 
detail in 7, RhoA and its downstream effectors, including the 
ROCKs, are required for transendothelial migration (TEM) by pro-
moting uropod contractility and by modulating integrin-mediated 
T cell adhesion. T cell transmigration through endothelial cells with 
low, but not high, permeability appears to be particularly reliant on 
the RhoA-ROCK pathway because of the greater dependency of 
T cell migration on effective T cell uropod contractility in the 
former settings17. Involvement of the RhoA-ROCK pathway in 
additional T cell cytoskeletal processes such as the regulation of 
lipid raft dynamics has also been suggested18,19, although more 
work will need to be performed to fully address the role of the 
RhoA-ROCK pathway in these aspects of T cell biology.

Following early leads suggesting a role for the RhoA-ROCK 
pathway in the proliferation and activation of T cells19,20, recent 
studies have furthermore implicated the RhoA-ROCK pathway 
in the regulation of T helper (T

H
) cell differentiation. The lack of 

RhoA in T cells has been shown to impair T
H
2, but not T

H
1, dif-

ferentiation in vitro, presumably by modulating metabolic proc-
esses such as glycolysis21. These effects may be mediated by the 
ROCK1 isoform, since heterozygous ROCK1-deficient mice 
exhibit decreased expression of the T

H
2 cytokines interleukin (IL)-5 

and IL-13 in bronchoalveolar lavage (BAL) fluid from a murine 
model of allergic inflammation22. In contrast, ROCK2 is selectively 
activated under T

H
17-skewing conditions, but not under neutral, 

T
H
1, or T

H
2 conditions, and phosphorylates IRF4, a key regulator 

of IL-17 and IL-21 production23. In line with these results, naïve 
T cells from heterozygous ROCK2-deficient mice exhibit impaired 
T

H
17 differentiation, as demonstrated by decreased expression of 

RORγt and diminished production of IL-17 and IL-2123. Findings 
in the murine system have been corroborated by human studies 
showing increased ROCK activation in human T cells exposed to 
T

H
17 conditions and a similar dependency of human IL-17 and 

IL-21 production on the ROCK2 rather than the ROCK1 
isoform24,25. The addition of a selective ROCK2 inhibitor to dif-
ferentiating human T cells can furthermore skew the T

H
17-Treg 

balance by decreasing the activation of STAT3 while promoting 

that of STAT5, suggesting that ROCK2 can control T
H
17 differ-

entiation by multiple mechanisms25. This modulation of STAT3 
signaling may also underlie the recently reported ability of ROCK2 
to regulate the in vitro differentiation of follicular T helper cells 
generated under T

H
17-skewing conditions26. While additional 

studies will be required to fully define the precise role of the two 
ROCK isoforms in different T

H
 subsets, these initial investigations 

suggest that ROCK1 and ROCK2 may promote the differentiation 
of distinct T

H
 subsets.

Similarly to T cells, the most extensively characterized role of the 
RhoA-ROCK pathway in the B cell compartment lies in the regu-
lation of cytoskeletal reorganization, although an involvement of 
RhoA in the regulation of BCR-induced proliferation of mature 
B cells has also been described27. Studies examining BCR dynam-
ics in vitro have shown that active RhoA interferes with the abil-
ity of TLR ligands to enhance BCR signaling by restricting BCR 
mobility via effects on the actin-severing protein cofilin28, while 
ROCK1 activation is required for antigen internalization through 
the BCR29, suggesting a dynamic utilization of this axis in response 
to distinct B cell stimulatory pathways. Not surprisingly, the RhoA-
ROCK pathway has also been shown to regulate the migration of 
B cells30–32. Intriguingly, recent studies have uncovered a role for 
one of the Rho-GEFs, ARHGEF1, in the retention of B cells within 
the germinal center (GC)33. Potentially relevant to the recently 
described involvement of RhoA in lymphomagenesis, which will 
be discussed below, the lack of ARHGEF1 in GC B cells was 
accompanied by the systemic dissemination of GC B cells out of 
the mesenteric lymph nodes33. Whether the pro- or anti-migratory 
roles of RhoA in mature B cell populations or GC B cells are 
mediated by distinct RhoA effectors remains to be determined, but 
could be of great interest for the proper therapeutic targeting of this 
pathway.

The RhoA–ROCK pathway in autoimmunity
While dysregulation of the RhoA-ROCK pathway has been well 
documented in cardiovascular, renal, and neurological disorders34–36, 
its impact on the pathogenesis of immune-mediated diseases is just 
beginning to be appreciated8. In line with a broad role for T

H
17 cells 

in autoimmunity, and consistent with the ability of the RhoA-ROCK 
pathway to regulate this T

H 
subset, aberrant activation of this path-

way has been observed in murine models of rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), and multiple sclero-
sis (MS). Indeed, T cells from a spontaneous mouse model of RA 
exhibited increased activation of ROCK2 and dysregulated produc-
tion of IL-17 and IL-21, which was shown to be dependent on both 
RhoA and ROCK223. Enhanced ROCK activation has also been 
observed in synovial tissues from rodents with collagen-induced 
arthritis, an induced model of arthritis37. Notably, in vivo administra-
tion of a pan-ROCK inhibitor, fasudil (which blocks both ROCK1 
and ROCK2 activity), or a ROCK2 selective inhibitor resulted in 
decreased IL-17 and IL-21 production, diminished autoantibody 
production, and attenuation of arthritis in both spontaneous and 
induced models of RA23,25, supporting a role for the RhoA–ROCK 
pathway, and in particular the ROCK2 isoform, in RA.

T cells from MRL/lpr mice, a spontaneous model of lupus, also 
display aberrant activation of ROCK2, and ROCK inhibition dimin-
ishes their in vitro production of IL-17 and IL-2123. Administration 
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of the pan-ROCK inhibitor fasudil furthermore diminished the 
production of these cytokines in vivo and resulted in remarkable 
improvements in autoantibody production and proteinuria23. The 
administration of fasudil to NZB/W F1 mice, a distinct spontane-
ous model of lupus, was accompanied by decreased plasma cell 
formation and also resulted in lower levels of autoantibodies and 
protection from nephritis38. ROCK dysfunction may also contribute 
to the pathogenesis of MS. Increased ROCK activity has indeed 
been observed in the spleens and spinal cord of mice following the 
induction of EAE, a rodent model of MS, and the administration of 
ROCK inhibitors can delay disease onset and severity via a number 
of mechanisms including inhibition of IL-17 production39–41 and 
induction of regulatory T cells40,41.

Human studies also support the notion that dysregulated ROCK 
activation might contribute to autoimmunity. Enhanced phos-
phorylation levels of ROCK substrates, like the ERM proteins, 
have been observed in T cells from SLE patients42. Furthermore, 
approximately 60% of SLE patients display higher levels of ROCK 
activity in their peripheral blood mononuclear cells (PBMCs) than 
do healthy controls24. The production of IL-17 and IL-21 by SLE 
T cells is furthermore amenable to inhibition by statins (which, by 
blocking RhoA prenylation, can interfere with RhoA activation), 
a pan-ROCK inhibitor, or a selective ROCK2 inhibitor, further 
supporting a link between the RhoA–ROCK pathway and T cell 
dysfunction in this disease (Rozo, Salmon, and Pernis, unpublished 
observations). PBMCs from RA patients also display enhanced 
ROCK activity compared to healthy controls (Khianey Maharaj, 
Rozo, Bykerk, Goodman, and Pernis, unpublished observations), 
and a selective ROCK2 inhibitor similarly diminished IL-17 and 
IL-21 production by RA T cells25. Studies in patients with relaps-
ing remitting MS have furthermore shown that the production of 
T

H
17 cytokines by T cells from these patients could be inhibited by 

statins in addition to a pan-ROCK inhibitor43. Dysregulation in the 
RhoA-ROCK pathway may thus represent a common pathogenic 
mechanism in multiple autoimmune disorders.

The RhoA–ROCK pathway in lymphomagenesis
Signaling downstream of Rho-GTPases has been shown to play 
critical roles in regulating several aspects of tumorigenesis and 
metastasis including proliferation, survival, and invasion44,45. Con-
sistent with its multifaceted role in regulating these key processes, 
aberrancies in the RhoA-ROCK signaling pathway have been 
observed in several non-hematopoietic and hematopoietic malig-
nancies and have often been associated with the overexpression of 
Rho family members or activating mutations in the ROCKs44–46. 
Intriguingly, recent studies have demonstrated that inactivating 
mutations in RhoA can promote lymphomagenesis. Indeed, approx-
imately 60–70% of angioimmunoblastic T-cell lymphoma cases, a 
rare peripheral T cell lymphoma that phenotypically resembles fol-
licular T

H
 cells, have been found to express an inactivating mutation 

in RhoA (encoding p.Gly17Val)47–50. The Gly17Val RhoA mutant 
does not bind GTP and is believed to act as a dominant-negative 
by sequestering activated GEFs51. Similar mutations in the GTP-
binding domain of RhoA have also been observed in cutaneous 
T cell lymphoma (CTCL)52. As additional investigations of 
this pathway in T cell lymphomas are being undertaken, a more 

complex situation is, however, emerging. Both loss- and gain-of-
function RhoA mutations have recently been identified in adult 
T cell leukemia/lymphoma, which interestingly may be associated 
with distinct T cell phenotypes53,54.

Potentially inactivating mutations in components of the RhoA 
pathway, including RhoA itself and the RhoA-GEF ARHGEF1, 
have also been reported in two B cell lymphomas, Burkitt’s lym-
phoma (BL) and GC B-cell-derived diffuse large B cell lymphoma 
(DLBCL)33,55,56. RhoA mutations in BL are commonly found within 
the GEF-binding domain and inhibit the ability of RhoA to bind 
to and become activated by GEFs56. Interestingly, RhoA mutations 
are more prevalent in endemic BL compared to sporadic BL, and 
they overlap with those detected in peripheral T cell lymphomas57. 
Given that both types of tumors are associated with Epstein-Barr 
virus (EBV) infection, it will be important to determine whether 
the cross-talk between RhoA-mediated pathways and EBV could 
help promote lymphomagenesis57.

In line with the ability of the RhoA-ROCK pathway to regulate 
cytoskeletal dynamics, the migration of several B cell malig-
nancies, including classic Hodgkin lymphoma (cHL), chronic 
lymphocytic leukemia (CLL), and multiple myeloma (MM), was 
shown to depend on ROCK signaling in vitro15,30,31,58, and homing 
of MM cells to the bone marrow in xenograft models could be pre-
vented by pre-treatment of cells with a ROCK inhibitor15. However, 
the activation of RhoA may not necessarily be linked to the dissem-
ination of tumor cells but rather may suppress migration. Indeed, 
mice lacking Gα13, an upstream regulator of the RhoA-ROCK 
pathway and common target for mutations in BL33,56,59, develop 
B-cell-derived lymphomas characterized by the dissemination of 
GC B cells from the lymph nodes into the periphery33. Similarly, 
mutations in ARHGEF1, which mediates the activation of RhoA 
in response to Gα13 and other receptors, have also been identi-
fied in GC-derived B cell lymphomas and, as mentioned above, the 
absence of ARHGEF1 in mice also results in the dissemination of 
GC B cells from the mesenteric lymph nodes into the periphery33. 
Likewise, GC-derived DLBCLs expressing high levels of HGAL, 
a protein that binds to and enhances the activity of RhoA-GEFs, 
exhibit high levels of RhoA activity, which can suppress cell migra-
tion in vitro60,61. The contrasting roles of RhoA activation, whereby 
it can suppress the migration of tumor cells from the lymph nodes in 
the case of BL yet promote homing to the bone marrow in the case 
of MM, underscore the complexity of RhoA biology and highlight 
the dynamic ability of RhoA-controlled pathways to be influenced 
in a cell-type-specific manner.

Conclusions
The RhoA-ROCK pathway is a central coordinator of tissue injury 
response. Recent findings have shown that in addition to its well-
known roles in regulating the non-hematopoietic compartment, 
the RhoA-ROCK pathway is also critical for the recruitment and 
function of immune cells, including T and B cells, to sites of tissue 
damage. The multifaceted involvement of the RhoA-ROCK path-
way in T and B cell biology has resulted in an increasing appre-
ciation that dysregulation of this pathway may play potential 
pathophysiological roles in autoimmune and lymphoproliferative 
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disorders. While this commentary has focused on a select few 
conditions, recent work in scleroderma, vasculitis, and graft- 
versus-host disease62–65 suggest an extensive involvement of this 
pathway in a wide spectrum of immune-mediated diseases. Future 
studies coupling genetic approaches to the growing number of 
non-selective and selective pharmacologic agents that are becom-
ing available to target this pathway will be invaluable to unravel 
the intricacies of the RhoA-ROCK pathway in different immune-
mediated pathophysiological states. This information, in turn, will 
be essential to ensure that this pathway, which could be highly 
amenable to therapeutic intervention, is effectively targeted in 
autoimmune and lymphoproliferative disorders.
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