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INTRODUCTION 
 

Age is the main risk factor for neurodegeneration in the 

central nervous system (CNS) and concomitant 

cognitive and functional impairments. Cerebral blood 

flow (CBF), the rate of arterial blood flow through the 

capillary bed in cerebral tissue, is the main determinant 
of oxygen and substrate delivery as well as clearance of 

metabolic by-products. Several lines of research suggest 

that CBF is a critical biomarker affected by normal 

aging as well as a myriad of neurodegenerative diseases 

[1]. Indeed, mounting evidence suggests that perfusion 

plays an important role in the progression of many 

neurodegenerative processes, including Alzheimer’s 

disease [2]. Therefore, changes in CBF with age may be 

causally linked to age-associated pathology. 

Characterizing the changes in CBF that occur with 
normal aging in the absence of clinically detectable 

pathology is of further importance to distinguish this 

from specific pathologic effects. 
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ABSTRACT 
 

Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work 
suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly 
controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not 
been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM 
regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with 
literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF 
with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to 
maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with 
prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our 
work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF 
values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL 
in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in 
a variety of settings, including aging, cerebrovascular diseases, and dementias. 
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CBF is conventionally measured using techniques such 

as positron-emission tomography, single-photon 

emission computerized tomography, or computed 

tomography. These methods require injection of 

contrast agents or radioactive tracers which require 

exposure to ionizing radiation or may cause 

nephrotoxicity. However, arterial spin labeling (ASL) 

magnetic resonance imaging (MRI) techniques permit 

whole-brain CBF mapping within a few minutes. 

Briefly, ASL makes use of magnetic labeling of arterial 

water protons by radiofrequency pulses [3], upstream of 

the volume of interest. It is a difference technique, 

requiring subtraction of a labeled image from a control, 

non-labeled, image. The difference between these two 

images corresponds to the effect of the labeling 

procedure, resulting in a perfusion-weighted image that 

can be combined with an additional proton density-

weighted image to derive a CBF map [4]. 

 

ASL has been widely used to investigate CBF in 

various neurological disorders and to characterize age- 

and sex-effects. While there is consistent evidence for 

an overall decrease in CBF with age, conclusions have 

been mixed regarding the effects of age and sex on 

regional CBF. Indeed, while some studies have shown 

that cortical CBF decreases with age, other 

investigations have indicated the opposite trend or 

found no correlation with age [5–13]. Further, Parkes 

and colleagues [14] have shown that WM CBF 

increases with age using continuous ASL, while Liu and 

colleagues’ study suggested that WM CBF decreases 

with age in women using pseudo-continuous ASL 

(pCASL) [8]. These discrepancies are likely due to 

limited cohort sizes as well as the technical challenges 

of implementing truly quantitative CBF determination 

using ASL. In addition, most previous studies focused 

on brain GM, with little information available regarding 

CBF in cerebral WM. This is likely due to the lower 

CBF values in WM along with the high sensitivity to 

noise of CBF values derived from ASL especially given 

that it is a subtraction technique for an effect of limited 

dynamic range. With the development of new post-

processing analysis techniques, including the nonlocal 

estimation of multispectral magnitudes (NESMA)-ASL 

filter [15], more accurate analysis of CBF in WM has 

become feasible. 

 

Our main goal in the present work is to characterize the 

dependence of regional CBF on age and sex in critical 

GM and WM brain regions, and to provide reference 

CBF values using the standardized ASL protocol 

recommended by the ISMRM Perfusion Study Group 

and the European ASL in Dementia consortium [4]. Our 

investigation was conducted on a cohort (N = 80) of 

cognitively unimpaired participants spanning the wide 

age range of 22 to 88 years. 

 

RESULTS 
 

Visualization of cerebral blood flow maps at 

different ages 

 

Figure 1 shows a representative axial slice of derived 

CBF maps from brains of male and female participants 

within each age decade of our cohort. CBF maps 

derived with (first row) or without (second row) 

NESMA filtering of the ASL images are displayed. It is 

readily seen that, as expected, NESMA substantially 

 

 
 

Figure 1. Cerebral blood flow (CBF) maps derived from pCASL imaging datasets with or without the NESMA-ASL filter. 
Corresponding GM and WM masks generated using FSL-FASL are also displayed. Results are shown for fourteen representative male and 
female participants within each age decade. 
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reduces random variation in derived CBF maps. 

Further, visual inspection indicates that CBF varies with 

age, with the most pronounced variations occurring in 

the GM regions; this is clearly visible from the CBF 

maps derived after NESMA filtering. It is also observed 

that older participants have lower GM CBF as 

compared to young participants within the third, fourth, 

and fifth age decades. However, CBF varies minimally 

with age in the WM regions. 

 

Effects of age and sex on CBF 

 

Figure 2 shows linear relationships between CBF 

measurements using NESMA-filtered ASL images 

and age in the GM ROIs for men and women 

separately, and for all participants taken together. GM 

CBF was found to decrease with age, with regional 

variation among regions (Figure 2). Statistical 

analysis of all participants showed that all brain 

structures exhibited significant (p < 0.05) decreases of 

CBF with age except for the GM within the parietal 

lobes (Table 1). In addition, the most rapid decline in 

CBF with respect to age was found in the frontal 

lobes, while the slowest decline was in the temporal 

lobes (Table 1). For all GM ROIs, women exhibited 

significantly higher CBF values as compared to men 

(Figure 3). For women, all GM ROIs showed 

significant decreases in CBF with age (Table 2). For 

 

 
 

Figure 2. Regressions of NESMA-CBF with age and sex shown for the six gray matter (GM) regions investigated. For each 
structure, the coefficient of determination, R2, and p-value, obtained after FDR correction, are reported. Most regions investigated showed 
linearly decreasing CBF with age. 
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Table 1. Significance (p-value) and slope of the variation in CBF as a function of age and sex for the linear regression 
analysis for each GM and WM brain region studied. 

 NESMA filtered  Unfiltered 

 

Gray matter (GM) White matter (WM)  Gray matter (GM) White matter (WM) 

Age Sex Age Sex  Age Sex Age Sex 

p-value Slope p-value Slope p-value Slope p-value Slope  p-value Slope p-value Slope p-value Slope p-value Slope 

Whole Brain < 0.01 -0.11 < 0.01 -4.95 < 0.01 0.08 < 0.05 -1.90  < 0.01 -0.11 < 0.01 -4.92 < 0.01 0.07 < 0.1 -1.41 

Frontal Lobes < 0.01 -0.16 < 0.01 -3.85 < 0.05 0.04 < 0.05 -1.44  < 0.01 -0.15 < 0.01 -3.85 < 0.05 0.02 > 0.1 -1.04 

Occipital Lobes < 0.05 -0.10 < 0.01 -8.32 < 0.01 0.06 < 0.01 -2.56  < 0.1 -0.10 < 0.01 -8.35 < 0.01 0.04 < 0.01 -1.96 

Parietal Lobes < 0.1 -0.08 < 0.01 -5.20 < 0.01 0.06 < 0.05 -1.66  > 0.1 -0.08 < 0.01 -5.32 < 0.05 0.04 < 0.05 -1.20 

Temporal lobes < 0.05 -0.07 < 0.01 -4.82 < 0.01 0.05 < 0.01 -1.84  < 0.05 -0.07 < 0.01 -4.82 < 0.05 0.03 < 0.01 -1.34 

Cerebellum < 0.05 -0.09 < 0.01 -5.64 < 0.05 0.04 < 0.01 -2.12  < 0.1 -0.10 < 0.01 -5.38 < 0.05 0.02 < 0.01 -1.85 

All p-values presented are obtained after FDR correction. Results are shown for both CBF maps derived with or without the 
NESMA filtering of the ASL images. 

men, the frontal lobes showed significant decreases with 

respect to age, while the whole brain showed a non-

significant trend towards a decrease in CBF with age 

(Table 2). Furthermore, women exhibited steeper slopes 

in the decline in CBF with age as compared to men for 

all GM ROIs with, for both men and women, the frontal 

lobes exhibiting the steepest decline. The rate with 

respect to age for the decline in CBF for women was 

 

 
 

Figure 3. Comparison of mean CBF values obtained from NESMA-filtered ASL images for men and women in the indicated 
GM and WM regions. Mean CBF values for women are overall significantly greater than mean CBF values for men. 
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Table 2. Significance (p-value) and slope of the variation in NESMA-CBF as a function of age and sex for the GM and 
WM regions studied, for men and for women. 

 
Men  Women 

GM WM  GM WM 

 p-value Slope p-value Slope  p-value Slope p-value Slope 

Whole Brain < 0.1 -0.07 < 0.01 0.11  < 0.01 -0.18 > 0.1 0.05 

Frontal Lobes < 0.01 -0.12 < 0.05 0.05  < 0.01 -0.21 > 0.1 0.03 

Occipital Lobes > 0.1 -0.04 < 0.05 0.06  < 0.05 -0.20 < 0.1 0.05 

Parietal Lobes > 0.1 -0.03 < 0.01 0.07  < 0.05 -0.16 > 0.1 0.04 

Temporal Lobes > 0.1 -0.02 < 0.01 0.05  < 0.01 -0.16 > 0.1 0.03 

Cerebellum > 0.1 -0.04 > 0.1 0.02  < 0.01 -0.17 < 0.05 0.04 

All p-values presented are obtained after FDR correction. 

found to be significantly different from the rate for 

men in the cerebellum, the whole brain, and the 

occipital and temporal lobes. We note that the 

interactions between age and sex were not significant 

in any ROI after FDR correction. Finally, although 

qualitative CBF results derived from NESMA-filtered 

and from unfiltered ASL images were similar in GM 

regions, the finding of a significant dependence on age 

was greatly strengthened with NESMA filtering in 

several brain structures including the occipital and 

parietal lobes, and the cerebellum (Table 1). This is 

consistent with the effect of the NESMA filter to 

decrease image noise, and hence variance of parameter 

estimation [15]. 

 

Figure 4 shows linear relationships between CBF 

measurements using NESMA-filtered ASL images and 

age in the WM ROIs for men and women separately, 

and for all participants taken together. WM CBF 

increased slightly but significantly with age, both for 

the whole brain and across all examined regions (Figure 

4, Table 1). Further, for all WM ROIs, women exhibited 

significantly higher CBF values as compared to men 

(Figure 3). Women exhibited a steeper and more 

statistically significant increase with respect to age in 

the cerebellum, and a smaller rate of increase with 

respect to age as compared to men in the occipital lobes 

that approached significance (Figure 3, Table 2). For 

men, increases in WM CBF as a function of age were 

seen in all brain regions investigated except in the 

cerebellum (Table 2). Furthermore, men exhibited 

relatively larger rates with respect to age for the decline 

in CBF as compared to women for all ROIs studied 

except in the cerebellum. The interactions between age 

and sex were not significant in all ROIs after FDR 

correction. Table 3 provides a detailed summary of GM 

and WM CBF values. Finally, results of CBF derived 

from NESMA-filtered ASL images as compared to 

those derived from unfiltered ASL images were 

substantially different in WM regions. Indeed, the 

regression coefficients calculated from CBF maps 

derived from filtered ASL images exhibited, overall, 

higher values in most WM regions examined (Table 1). 

Here as well, significance with age was strengthened 

with NESMA-filtering in most ROIs, including within 

the parietal lobes and temporal lobes. 

 

DISCUSSION 
 

In this cross-sectional study of a cohort of cognitively 

unimpaired participants, we investigated CBF as a 

function of age and sex within twelve cortical and 

white matter cerebral structures. Our results indicate 

that CBF decreases with age in all GM regions 

investigated, consistent with previous studies [5–8, 13, 

16]. This age-related reduction in CBF may reflect 

decreased cerebral metabolic demand, decreased 

neuronal firing, decreased dendritic synaptic density, as 

well as cerebrovascular deterioration [16–21]. Indeed, 

aging is accompanied by changes in brain structure 

which likely lead to a decreased metabolic demand 

while also rendering it particularly vulnerable to 

neurodegenerative processes [22]. 

 

There is increasing evidence of an association between 

brain hypoperfusion and dementia [23, 24], so that 

characterizing normative age-related changes in CBF 

may represent a fundamental step towards differen-

tiating between normative aging and pathology. Several 

previous studies have reported a decrease in cortical 

CBF with age, while others have found no trend or an 

increase [5–12]. Comparison of these results with the 

present ones is difficult due to differences in cohort 

size, non-standardized methodology, and analysis of 

different brain regions. Our work is distinguished by the 

use of a large cohort and a modern, sensitive, ASL MRI 

sequence, pCASL, incorporation of NESMA filtering, 

and optimized experimental parameters. Indeed, our 

advanced postprocessing analysis [15] allowed us to 

provide results for WM as well as GM regions. 



 

www.aging-us.com 4916 AGING 

Our findings of statistically significant increases in CBF 

with age in all WM regions investigated agrees with 

previous studies [11, 12, 14]. However, the literature 

regarding age-related differences in CBF in WM 

regions is limited and results are sparse. This is likely 

due to the high degree of noise sensitivity of CBF 

values derived from ASL, especially in WM with its 

inherently low CBF values. We provisionally attribute 

the observed increase in WM CBF with age to increased 

oligodendrocyte metabolic demand for production and 

maintenance of myelin homeostasis [25, 26]. Indeed, 

studies have shown that brain undergoes rapid myelin 

loss after the fourth age decade [27–31]. However, 

further studies, especially longitudinal studies, are 

required to elucidate the mechanisms underlying CBF 

changes in WM. 

 

We note that re-analysis of our data using unfiltered 

CBF maps showed trends similar to the results 

presented for filtered maps (Table 1). Thus, the trends 

of increasing CBF with age in WM observed in this 

work are independent of filtering. However, with the 

improvement in parameter estimation derived from 

use of filtering, the power of the analysis is  

greatly increased. Our results must be interpreted  

with caution. Indeed, it has been shown that  

 

 
 

Figure 4. Regressions of CBF values obtained from NESMA-filtered ASL images with age and sex shown for the six white 
matter (WM) regions investigated. For each structure, the coefficient of determination, R2, and p-value, obtained after FDR correction, 
are reported. Most regions investigated showed linearly increasing CBF with age. This trend is more pronounced for men (blue) as compared 
to women (red). 
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Table 3. The mean and standard deviation (SD) of CBF values, derived from NESMA filtered ASL images, for all 
participants as well as for men or women, for each ROI and for each age interval as well as across the entire age 
range. 

Mean ± SD CBF values (mL/100g/min) 

   20–29 yrs. 30–39 yrs. 40–49 yrs. 50–59 yrs. 60–69 yrs. 70–79 yrs. 80–89 yrs. All 

A
ll

 P
a

r
ti

ci
p

a
n

ts
 

GM 

Whole Brain 36.4 ± 6.40 34.5 ± 6.45 32.9 ± 6.39 31.9 ± 5.50 31.6 ± 5.77 31.2 ± 4.58 26.1 ± 3.71 33.0 ± 6.17 

Frontal Lobes 37.3 ± 6.14 34.9 ± 5.76 33.7 ± 7.14 31.2 ± 6.15 30.8 ± 6.05 30.6 ± 4.92 24.0 ± 2.80 33.0 ± 6.66 

Occipital Lobes 41.3 ± 9.41 39.4 ± 9.92 36.9 ± 8.56 38.7 ± 8.02 36.7 ± 8.26 35.7 ± 5.75 31.7 ± 5.65 37.9 ± 8.43 

Parietal Lobes 36.4 ± 7.66 35.5 ± 8.85 32.9 ± 8.57 33.1 ± 5.68 31.7 ± 7.74 33.5 ± 6.87 28.3 ± 5.04 33.8 ± 7.59 

Temporal Lobes 36.9 ± 6.76 35.4 ± 6.10 33.5 ± 5.98 33.0 ± 6.05 33.9 ± 6.28 33.3 ± 5.66 29.7 ± 4.21 34.2 ± 6.14 

Cerebellum 35.3 ± 6.82 31.7 ± 7.98 32.6 ± 6.26 30.6 ± 6.74 31.5 ± 5.41 30.6 ± 3.59 25.1 ± 3.71 32.0 ± 6.43 

WM 

Whole Brain 16.6 ± 2.92 17.2 ± 4.35 16.6 ± 3.10 17.3 ± 3.38 19.2 ± 4.84 22.1 ± 4.97 18.7 ± 1.90 18.0 ± 4.13 

Frontal Lobes 12.8 ± 2.25 14.3 ± 3.16 13.7 ± 2.13 13.2 ± 2.55 14.6 ± 3.44 15.7 ± 3.27 14.4 ± 1.36 14.0 ± 2.77 

Occipital Lobes 15.0 ± 2.67 14.7 ± 3.47 15.1 ± 3.29 16.9 ± 2.59 17.4 ± 3.31 17.4 ± 3.34 16.3 ± 5.19 15.9 ± 3.29 

Parietal Lobes 14.4 ± 2.94 14.4 ± 4.14 14.4 ± 3.40 15.1 ± 2.32 17.4 ± 3.59 17.8 ± 3.56 15.3 ± 1.91 15.4 ± 3.45 

Temporal Lobes 13.5 ± 2.32 13.8 ± 2.81 13.7 ± 2.63 14.8 ± 2.97 15.1 ± 3.10 16.1 ± 3.10 15.3 ± 2.58 14.4 ± 2.82 

Cerebellum 20.8 ± 1.95 18.7 ± 2.99 19.7 ± 3.00 20.0 ± 3.35 21.4 ± 2.44 22.8 ± 2.26 18.8 ± 2.73 20.4 ± 2.87 

M
e
n

 

GM 

Whole Brain 32.4 ± 4.17 31.3 ± 5.58 31.6 ± 6.57 30.6 ± 5.49 29.3 ± 5.92 30.9 ± 4.04 25.0 ± 3.65 30.9 ± 5.18 

Frontal Lobes 33.9 ± 4.84 32.6 ± 5.94 33.3 ± 7.06 29.7 ± 6.34 29.8 ± 7.41 30.4 ± 4.65 23.5 ± 3.23 31.3 ± 6.05 

Occipital Lobes 34.9 ± 4.29 35.1 ± 6.79 34.3 ± 7.87 36.8 ± 7.6 31.1 ± 3.76 34.4 ± 3.27 29.5 ± 4.59 34.5 ± 5.95 

Parietal Lobes 32.3 ± 4.91 31.6 ± 7.24 31.7 ± 9.10 31.7 ± 5.91 29.4 ± 8.42 32.9 ± 6.84 27.2 ± 5.60 31.6 ± 6.65 

Temporal Lobes 32.6 ± 4.72 32.8 ± 5.32 32.0 ± 5.97 32.2 ± 6.20 30.9 ± 4.94 33.2 ± 5.06 28.9 ± 4.78 32.2 ± 5.16 

Cerebellum 31.1 ± 4.66 28.6 ± 5.71 30.1 ± 6.51 30.0 ± 7.17 28.5 ± 5.75 30.7 ± 3.70 23.4 ± 1.82 29.6 ± 5.50 

WM 

Whole Brain 15.1 ± 1.88 15.5 ± 3.84 15.9 ± 3.97 17.1 ± 3.59 18.5 ± 4.06 22.1 ± 5.64 18.1 ± 1.83 17.3 ± 4.35 

Frontal Lobes 11.8 ± 1.87 13.2 ± 3.34 13.2 ± 2.69 12.8 ± 2.59 15.9 ± 3.02 14.8 ± 3.47 14.2 ± 1.58 13.4 ± 2.83 

Occipital Lobes 13.6 ± 1.84 13.7 ± 3.34 13.5 ± 3.37 16.8 ± 2.78 15.2 ± 2.96 17.1 ± 3.53 14.8 ± 5.22 14.9 ± 3.32 

Parietal Lobes 13.2 ± 1.96 13.4 ± 3.53 13.8 ± 4.12 15.3 ± 2.4 17.1 ± 3.13 17.1 ± 4.13 15.4 ± 2.34 14.8 ± 3.42 

Temporal Lobes 12.5 ± 1.59 12.9 ± 2.7 12.4 ± 2.55 14.8 ± 3.08 13.5 ± 2.21 15.7 ± 3.42 14.9 ± 3.01 13.7 ± 2.83 

Cerebellum 19.9 ± 1.78 18.6 ± 3.02 18.3 ± 3.22 19.5 ± 3.84 20.8 ± 1.75 21.9 ± 2.04 17.6 ± 1.36 19.6 ± 2.90 

W
o

m
e
n

 

GM 

Whole Brain 40.8 ± 5.59 40.0 ± 3.63 34.5 ± 6.27 35.3 ± 4.68 32.8 ± 5.86 31.8 ± 6.16 29.4 ± n/a 36.0 ± 6.28 

Frontal Lobes 41.2 ± 5.18 39.7 ± 2.36 34.3 ± 7.77 35.4 ± 3.55 31.2 ± 5.99 31.0 ± 6.16 25.4 ± n/a 35.4 ± 6.9 

Occipital Lobes 48.5 ± 8.34 45.8 ± 12.9 40.2 ± 8.80 43.8 ± 7.85 39.5 ± 8.68 38.2 ± 9.16 38.0 ± n/a 42.7 ± 9.06 

Parietal Lobes 41.0 ± 7.84 43.4 ± 9.01 34.4 ± 8.27 36.9 ± 3.16 32.8 ± 7.94 34.9 ± 7.75 31.5 ± n/a 36.8 ± 7.96 

Temporal Lobes 41.7 ± 5.39 38.8 ± 5.14 35.5 ± 5.85 34.9 ± 6.37 35.4 ± 6.73 33.6 ± 7.60 32.1 ± n/a 36.9 ± 6.33 

Cerebellum 40.0  5.75 37.3 ± 9.08 35.9 ± 4.40 32.1 ± 6.52 33.0 ± 5.03 30.6 ± 3.91 30.2 ± n/a 35.4 ± 6.19 

WM 

Whole Brain 18.2 ± 3.07 20.3 ± 3.76 17.5 ± 1.17 17.8 ± 3.40 19.5 ± 5.53 22.2 ± 4.04 20.4 ± n/a 19.1 ± 3.60 

Frontal Lobes 13.9 ± 2.21 16.8 ± 1.73 14.3 ± 0.98 14.2 ± 2.65 13.9 ± 3.72 17.6 ± 2.12 15.1 ± n/a 14.8 ± 2.53 

Occipital Lobes 16.4 ± 2.76 15.8 ± 3.71 17.2 ± 1.62 17.2 ± 2.54 18.5 ± 3.11 18.1 ± 3.33 20.7 ± n/a 17.4 ± 2.70 

Parietal Lobes 15.7 ± 3.42 16.1 ± 6.14 15.3 ± 2.21 14.7 ± 2.49 17.6 ± 4.07 19.3 ± 1.53 15.2 ± n/a 16.3 ± 3.38 

Temporal Lobes 14.7 ± 2.56 14.8 ± 2.78 15.4 ± 1.71 14.9 ± 3.29 15.9 ± 3.36 16.9 ± 2.60 16.5 ± n/a 15.4 ± 2.50 

Cerebellum 21.7 ± 1.74 18.8 ± 3.38 21.6 ± 1.06 21.3 ± 1.08 21.6 ± 2.84 24.5 ±1.66 22.6 ± n/a 21.7 ± 2.37 

 

a high signal-to-noise ratio, achieved through a large 

number of signal averages, is required to detect perfusion 

signal in deep white matter regions [32]. Furthermore, the 

ASL protocol used in our study is optimized for GM 

CBF. ASL studies using multiple post-labeling delays are 

required for further validation [33]. 

The details of the linear relationships between CBF and 

age, including their slopes and statistical significance, 

will exhibit some variability as a function of sampling 

density within age groups, range of ages incorporated, 

and consistency of data [34]. In addition, the choice  

of a linear regression model, while conventional and 
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consistent with our visual inspection of the results, is 

best considered as an expedient to model the data, 

without the implication that it is based on the biology of 

underlying physiologic processes. Nonlinear models 

may serve equally well as data descriptors. Indeed, in a 

very large cohort of youth participants, it has been 

demonstrated that the relationships between CBF and 

age are best described by nonlinear trends [35]. 

However, the present analysis provides a basic 

description of the variation of CBF with age in 

adulthood. Moreover, at ages younger or older than our 

sample, the trends with respect to age may deviate 

substantially from the indicated regression results. The 

fundamental physiology of these extremes of age may 

differ from that within the age range we are 

investigating. 

 

In further agreement with the literature, our results 

indicated that women exhibit significantly higher CBF 

values than men [8, 14, 36–41] in most WM and GM 

structures investigated. This may be attributed to several 

factors including sex differences in heart rate, blood 

pressure, and hematocrit, all of which may modulate 

CBF [41–44]. Indeed, it has been shown that CBF 

quantification from ASL using a fixed hematocrit of 

43.5%, as generally assumed, may lead to bias in 

derived CBF values particularly in non-European or 

female subjects, so that individually measured 

hematocrit should be considered to improve 

determination of CBF [43]. In addition, recent studies 

have shown that women have higher myelin content 

than men [25, 26]; this may also explain differences in 

CBF in WM, with these myelinated regions exhibiting 

increased metabolic demand to maintain myelin 

homeostasis. Differences in sex hormones may also 

contribute to the differences in CBF observed between 

men and women. Indeed, studies have shown that 

estrogen and testosterone have different effects on CBF 

[8, 41, 45, 46]; overall, estrogen decreases cerebral 

vascular tone and increases CBF by enhancing 

endothelial-derived nitric oxide and prostacyclin 

pathways, while testosterone increases cerebral artery 

tone. From this perspective, declining estrogen levels 

following menopause [47, 48] could further contribute 

to the observation that women exhibit statistically 

significant decreases in CBF compared to men found 

here and in other studies [8, 12]. Finally, changes in 

CBF during the follicular and luteal phases of the 

menstrual cycle have recently been demonstrated [49]. 

However, elucidation of these effects would require a 

much larger cohort size than in the present study. 

 

Sex differences in CBF may provide insights into their 
potential role in neurodegenerative diseases, especially 

given the emerging data regarding the higher incidence 

rate of Alzheimer’s disease (AD) in women [50–52]. 

Evidence implicates decreases in regional CBF with 

subsequent decreased metabolic activity in AD and 

other forms of dementia [53–57]. These studies and our 

current findings motivate further investigation of the 

underlying mechanisms of CBF decline and its role in 

the development of cognitive impairment, including 

dementia. If confirmed with longitudinal studies, this 

could establish maintenance of CBF through 

pharmacologic or lifestyle interventions as a therapeutic 

target for prevention of dementia; this could be tailored 

differently for men and women. 

 

Finally, we note that our measured CBF values are 

somewhat different from those reported in the literature; 

this may be attributed to the dependence of such values 

on ASL sequence type, labeling pulse duration, post-

labeling duration, background suppression method, 

repetition time, echo time, and other factors [33]. 

Indeed, derived CBF values span a wide age range in 

the literature, between 40 to 80 mL/min/100g for GM 

and 10 to 30 mL/min/100g in WM [5–14, 16, 58–60]. 

Nevertheless, we have employed a self-consistent MRI 

protocol throughout this study, so that the age and sex 

related results within our cohort are reliable. 

 

Limitations 

 

Although our work examines a relatively large cohort 

and uses advanced MR methodology, certain limitations 

remain. Our dataset is cross-sectional, so that the CBF 

associations with age observed here require further 

validation through longitudinal studies. Such work, 

motivated by the present results, is underway. 

Furthermore, we used identical ASL experimental 

parameters for all subjects and acquired perfusion 

images at a single post-labeling delay (PLD), implicitly 

assuming minimal effects from potential spatial 

variation in arterial transit time (ATT), the transit time 

of the arterial bolus from the labeling plane to the 

imaging voxels [33, 61]. Although this is a reasonable 

assumption [4], ATT may vary spatially within a single 

subject, and may differ between subjects secondary to 

arterial blood velocity differences. Further work may 

implement ASL techniques employing multiple post-

labeling delays to address this [33]. In addition, a PLD 

of 1800 ms was recommended for patients less than 70 

yrs. [4]. We fixed PLD to 2000 ms based on the 

recommendations of Alsop and colleagues: “… a PLD 

of 2000 ms recommended for the clinical adult 

population, independent of age, given the potential for a 

wide variety of pathologies, which are often not known 

in advance of imaging” [4]. Moreover, as conventional 

[4], we assumed constant longitudinal and transverse 
relaxation times for all participants, although these 

parameters follow complex patterns with aging [30, 62, 

63]. Further, although our assessment of white matter 
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hyperintensities (WMHI) did not reveal WMHI in any 

of the participants of our study cohort, our inspection 

was based on the PD images only. A thorough 

evaluation using FLAIR-based images could have 

provided a better assessment of WMHI. Finally, other 

factors, including cortical tissue atrophy [5, 64, 65], 

medications, and dietary intake were not considered in 

this work. 

 

In conclusion, we examined regional CBF in cerebral 

WM and GM structures in a cohort of cognitively 

unimpaired participants across a wide age range. We 

found lower CBF values with age in GM regions, while 

higher CBF values with age in WM regions. In addition, 

women exhibited overall higher CBF values as 

compared to men. This work may lay the foundation for 

longitudinal investigations to establish the nature of 

regional CBF changes with normal aging and 

neurodegeneration, including Alzheimer’s disease. 

 

MATERIALS AND METHODS 
 

Participants 

 

Investigation has been conducted in accordance with the 

ethical standards and according to the Declaration of 

Helsinki and according to national and international 

guidelines and has been approved by the authors' 

institutional review board. Participants were drawn 

from two ongoing healthy aging cohorts at the National 

Institute on Aging (NIA). 15 volunteers from the 

Baltimore Longitudinal Study of Aging (BLSA) [66, 

67], and 52 from the Genetic and Epigenetic Signatures 

of Translational Aging Laboratory Testing (GESTALT) 

were enrolled in this study. Thirteen additional 

participants from our home institution were recruited. 

The study populations, experimental design, and 

measurement protocols of the BLSA have been 

previously reported [66, 67]. The BLSA is a 

longitudinal cohort study funded and conducted by the 

NIA Intramural Research Program (IRP). Established in 

1958, the BLSA enrolls community-dwelling adults 

with no major chronic conditions or functional 

impairments. The GESTALT study is also a study of 

healthy volunteers, initiated in 2015, and funded and 

conducted by the NIA IRP. The goal of the BLSA and 

GESTALT studies is to evaluate multiple biomarkers 

related to aging. We note that the inclusion and 

exclusion criteria for these two studies are essentially 

identical. Participants underwent testing at the NIA's 

clinical research unit and were excluded if they had 

metallic implants, or neurologic or medical disorders. 

Participants underwent a Mini Mental State 

Examination (MMSE) and achieved a score > 25. The 

final cohort consisted of 80 cognitively unimpaired 

volunteers ranging in age from 22 to 88 years (mean ± 

standard deviation 49.2 ± 18.7 years) of which 47 were 

men (49.7 ± 19.2 years) and 33 were women (48.4 ± 

18.3 years). Data from four additional subjects were not 

included due to excessive motion artifacts. The number 

of participants per age-decade was: 17 (8 women) 

within 20-29 years, 11 (4 women) within 30-39 years, 

16 (7 women) within 40-49 years, 11 (3 women) within 

50-59 years, 9 (6 women) within 60-69 years, 12 (4 

women) within 70-79 years, and 4 (1 woman) within 

80-89 years. Figure 5 provides a detailed distribution of 

the number of participants per age-decade and sex. 

Experimental procedures were performed in compliance 

with our local Institutional Review Board, and 

participants provided written informed consent. 

 

 
 

Figure 5. Number of participants per age decade and sex within the study cohort. 
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Data acquisition 

 

MRI scans were performed on a 3T whole body Philips 

MRI system (Achieva, Best, The Netherlands) using the 

internal quadrature body coil for transmission and an 

eight-channel phased-array head coil for reception. For 

each participant, multi-slice single shot 2D echo-planar 

imaging (EPI) pCASL imaging datasets were acquired 

following the consensus recommendations of the 

ISMRM Perfusion Study Group and the European ASL 

in Dementia consortium [4]. This consisted of control, 

labeled, and proton density (PD) images acquired with 

incorporation of background suppression, FoV of 220 

mm × 210 mm × 120 mm, and spatial resolution of 2.5 

mm × 2.5 mm × 5 mm with reconstruction to 1 mm × 1 

mm × 1 mm through linear interpolation after scanner 

reconstruction. 24 slices were acquired in ascending 

order to avoid slice ordering confounds associated with 

interleaved order schemes, and with minimal temporal 

slice spacing to ensure similar post-labeling duration 

(PLD) for all slices. Other experimental parameters were: 

echo time (TE) of 15 ms, repetition time (TR) of 7.5 s, 

labeling duration of 1.8 s, PLD of 2 s, SENSE factor of 

2.3, flip angle of 90°, label distance of 8.5 cm, and 30 

signal averages [4]. We note that the PD image was 

acquired with identical TE and TR as for the control and 

labeled images. The total acquisition time was ~12 min. 

 

Data processing 

 

After careful visual inspection of data quality for each 

participant [4], a whole-brain CBF map was generated 

from the corresponding pCASL dataset using NESMA 

noise filtering to improve accuracy and precision in 

CBF determination [15]. Briefly, NESMA-ASL restores 

the amplitude of an index voxel by incorporating the 

intensities of voxels with similar multispectral signal 

patterns, that is, intensities from pCASL images. The 

similarity between two voxels across the pCASL 

images is calculated using the relative Euclidean 

distance within a large search window centered on the 

index voxel. The size of the search window must be 

sufficiently large to ensure inclusion of an adequate 

number of similar voxels, and sufficiently restricted to 

ensure that the transmission and reception radio-

frequency fields and noise standard deviation are 

approximately constant within the window. Voxels 

exhibiting relative Euclidean distance lower than 5% 

are considered as being similar to the index voxel [15]. 

Finally, CBF maps derived from unfiltered ASL images 

were also generated for comparison with those derived 

from the NESMA-filtered ASL images. All CBF maps 

were calculated based on the following equation [4]. 
 

( ) ( )

( )( )
 

1,

1, 1,

PLD /
CBF 6000 mL /100 g / min ,

2 1 LD /

C L Blood

Blood PD Blood

I I exp T

T I exp T





−
= 

− −

 

where IC, IL, and IPD are the control, labeled, and PD 

images, respectively. Here, λ is the partition coefficient 

between brain tissue and blood with value set to 0.9 

mL/g, α is the labeling efficiency with value fixed  

to 0.85, T1,Blood = 1.65 s (at 3T) representing the 

longitudinal relaxation time of blood, and LD and  

PLD are the label duration and post labeling delay, 

respectively. 

 

The PD image of each participant was nonlinearly 

registered to the Montreal Neurological Institute (MNI) 

space with 1 mm × 1 mm × 1 mm voxel resolution, 

using FNIRT as implemented in the FMRIB Software 

library (FSL) [68]. Using FSL, FAST segmentation was 

performed to generate WM and GM masks. Figure 1 

shows examples of GM and WM masks for fourteen 

participants within different age decades. Six regions of 

interest (ROIs) were defined from the MNI structural 

atlas corresponding to the whole brain, and the frontal, 

parietal, temporal, and occipital lobes, and the 

cerebellum. In each ROI, only voxels with at least 90% 

of GM or WM, as defined from the FSL-FAST WM 

and GM masks, were considered to minimize partial 

volume effects. The mean CBF value within each ROI 

was then calculated. 

 

Statistical analysis 

 

For each ROI, the effects of age and sex on CBF were 

investigated using multiple linear regression with the 

mean CBF value within each WM or GM ROI as the 

dependent variable and age and sex as the independent 

variables. The initial model incorporated an interaction 

term between sex and age which was removed if found 

not to be significant. The resulting parsimonious model 

was then constructed without this interaction term. This 

analysis was conducted on CBF values derived both with 

and without use of NESMA-ASL filtering to define the 

possible effect of filtering on our results. 

 

Further, the effect of age on CBF for men and for 

women separately was also investigated with the mean 

CBF value within each WM or GM ROI as the 

dependent variable and age as the independent variable. 

For all statistical analyses, the threshold for statistical 

significance was p < 0.05 after correction for multiple 

ROI comparisons (i.e. 12 ROIs) using the false 

discovery rate (FDR) method [69, 70]. All calculations 

were performed with MATLAB (MathWorks, Natick, 

MA, USA). 
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