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Abstract

Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in
health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human
health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeu-
tics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of na-
tive or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of con-
ventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential
has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics
is still in the developing stage and is facing various technical and administrative issues that require research attention. This re-
view aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing
health-and-disease applications, and discusses the potential future directions of microbiome modulations.
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Introduction

The human microbiome enlists all the microorganisms and their
related metabolites/products identified in and on the human body
[1]. Technological advancement has enabled the assessment of the
pleiotropic effects of the human gut microbiome in health and dis-
eases [2]. With the extensive role of microbes in human health,
they hold the enormous potential to be used as therapeutics for dis-
ease management. Microbiome therapy holds great promise to treat
any severe type of disease condition and acts as the potential
source to achieve the objective of personalized therapy by overcom-
ing key issues like interpersonal variability and stability in every
type of environment [3]. The high-resolution data analysis enabled

the development of modifiers for microbiome engineering [4, 5]. As
microbial dysbiosis is associated with the majority of human dis-
eases, various strategies are now being applied to restore the native
microbiota for efficient disease management [6]. There is now an
emerging interest in developing and delivering synthetic microbial
consortia for health benefits [7]. Strategies such as fecal microbiota
transplantation (FMT) or probiotics that rely on the administration
of exogenous microbes could be used to manage dysbiosis-related
disorders [6]. Recent advancements in synthetic biology have devel-
oped the possibility of targeted cell therapeutics through probiotic
engineering that targets specific cells, tissues, or pathways [8].
Genetic switches are being prepared to modulate the microbiome-
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related pathways [9]. The individual microbe or entire microbial
consortia could be manipulated to generate certain therapeutic
molecules or antitoxins [10]. Gut-microbiome engineering leads
to the development of chemical entities to advance personalized
medicine and improve human healthcare [11–14]. Similarly, bac-
teriophages could be used or even engineered to add or delete
specific functions into the microbial community [11]. Certain
non-living agents such as microbial metabolites and peptides
could be engineered to be used as small-molecule modulatory
therapy for microbial disease management [12]. The response to
therapeutics could vary from individual to individual depending
upon the disease and type of medications [13]. However, the field
of microbiome therapeutics faces some major challenges such as
the proper identification of disease-causing microbial signatures,
lack of consideration of ethical and safety issues, and lack of clin-
ical trials, as most of the experiments have been done in rodents.
Thus, more experimental trials need to be done to provide effi-
cacy in the microbiome therapeutics through the study of the in-
teraction between therapeutics and the host. In this review, we
took efforts to summarize the current research progress in the
field of microbiome therapeutics (Figure 1), as well as tried to
showcase the health implications of microbiome therapeutics.

Why is microbiome therapeutics significant?

It is believed that conventional therapies have resulted in antibi-
otic resistance among pathogens, resistance to chemotherapy,

drug non-responsiveness, and poor specificity. These manifesta-
tions are posing a serious threat to the health of the human pop-
ulation. Microbial therapy overcome these drawbacks of modern
medicines [15, 16]. Microbes are natural residents within the
body that increase their therapeutic capacity without any side
effects. Additionally, microbes can be engineered genetically to
improve their efficacy and safety. A resilient human gut micro-
biome has an important role in the maintenance of human
health, while its dysbiosis could result in disease onset [17].
Microbes harbor the potential to overcome the onset of the dis-
eases by interacting with the host and thus are useful for micro-
biome therapeutic development [18]. Christensenella sp. is known
to reduce depression and anxiety-like behavior [19]. Akkermansia
muciniphila relieves metabolic disorders and cooperates with the
use of metformin in cancer therapeutics [20] as well as protects
against atherosclerosis by reducing gut permeability and pre-
venting inflammation [21]. Lactobacillus johnsonii protects against
cancer [22]. Bifidobacterium longum reduces the severity of Crohn’s
disease [23] and repairs the integrity of the mucus layer impaired
due to a high-fat diet [24]. Oxalibacterium formigenes prevents kid-
ney stones by the homeostasis of oxalic acid [25]. Bacteroides spp.
protects against adiposity [26]. With increased information about
the potential of gut microbes, the scope in the field of therapeu-
tics emerged with a new hope of disease diagnosis, test methods,
and new ways of data collection and manipulation [27]. Live bio-
therapeutics are being developed to introduce microbes into the
host [28]. Microbiome modulation by the addition of exogenous

Figure 1.Role of microbiome augmentation in the maintenance of healthy life
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microbes has been fascinating for the previous decade [12]. The
need of the hour is the small-molecule therapeutics to manipu-
late the host microbiota. The small molecules should be able to
alter the functions of the microbes to prevent the cause of dis-
eases [12].

How to implement microbiome therapeutics

Efforts were made to harness the benefits of the host–micro-
biome interaction for microbiome therapeutic development [4].
Additive therapy, subtractive therapy, and modulatory therapy
are commonly used strategies for microbiome therapeutics
(Figure 2) [4]. Additive therapy includes the addition of micro-
bial strains or microbial consortia, while subtractive therapy is
aimed to remove the lethal pathogens known for the onset of a
specific disease [29]. Modulatory therapy is primed to modify or
manipulate the host–microbiome interaction for certain func-
tions using certain non-living agents [30].

Additive therapy

Additive therapy is the administration of individual strain or
microbial consortium to harness the health-promoting benefits
either as probiotics or through FMT (Figure 2) [29]. Microbes
used in additive therapy could be either natural or genetically
engineered to produce therapeutic molecules [31].

FMT
In general, FMT involves the administration of the therapeutic
microbial population. FMT is a beneficial method to replace the
disease-causing microbes with beneficial microbes. It involves
the transfer of healthy microbes from healthy donors to recipi-
ents through various modes of delivery. The donor must be
screened using strict guidelines [32]. To reduce the transmission

of infection from the donor, suitable stool and blood examina-
tions need to be done within 4 weeks before transplantation
[32]. For the immunotolerance of the recipient against the
donor’s microbes, a close relative of the recipient should be pre-
ferred as the donor [33] whereas an unrelated donor should be
the choice in the case of a genetic disorder such as inflamma-
tory bowel disease [34]. It was found that mere fecal filtrate con-
taining bacterial debris, metabolites, DNA, etc. was enough to
treat recurrent Clostridioides difficile infection (CDI) [35, 36]. Pure
culture of intestinal bacteria from a single healthy donor was
used to treat recurrent CDI [37]. FMT has been successfully used
to treat antibiotic-induced dysbiosis in C. difficile infection [38,
39]. FMT has been used efficiently to treat recurrent infections
of C. difficile (with a spectacular percentage of recovery) [40] and
research is ongoing to test whether FMT can be used for other
diseases (with the percentage of success much lower than those
observed with CDI) [41]. Restoration of butyrate-producing bac-
teria and improved insulin production were achieved on the
transfer of fecal microbes from lean to obese mice [42].
Antibiotic-resistant pathogens associated with recurrent uri-
nary-tract infections were drastically reduced post FMT [43].
Certain disorders such as alcoholic hepatitis and cirrhosis are
associated with a deficiency in mucosa-associated invariant T-
cells. Restoration of these T-cells was observed in patients after
FMT [44]. Similarly, alcohol-induced loss of Bacteroidetes was
restored after FMT [45]. With successful efficacy, several FMT
clinical trials have been done in the case of liver disorders, the
progression of fibrosis, hepatic encephalopathy, and alcoholic
hepatitis [46]. FMT has been successfully studied in various neu-
rological disorders such as autism, sclerosis, and Parkinson’s
disease [47]. The transfer of fecal microbes from healthy to can-
cer patients improved the response to immune checkpoint
inhibitors [48]. The success of the FMT approach depends on the
heritability of microbes once transferred, which depends on the

Figure 2.Overview of the strategies used as microbiome therapeutics
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host genes related to the immune system [49]. FMT has shown
success in the treatment of ulcerative colitis but was accompa-
nied by the chance of remission [50, 51]. Similarly, the FMT
treatment was not found effective in recurrent Crohn’s disease
[52]. Immune-compromised people are prone to ill effects of fe-
cal transfer, as was reported in the case of the transfer of b-lac-
tam-resistant Escherichia coli [53] (Table 1). The adverse effects
of FMT and the risk posed due to bad stools [72] urged an alter-
native FMT approach in the form of the artificial stool where
commensals from stool can be fermented and grown in vitro un-
der conditions similar to those in the human gut and then en-
capsulated in the living form [73]. Additionally, the patient’s
stool can be restored to re-establish the native gut microbes in
case of severe infections.

Probiotics
Probiotic therapy is one of the most convenient methods of ad-
ditive therapy. The use of probiotics is based on the employ-
ment of either natural or genetically engineered therapeutic
microbes as monotherapies. As per guidelines given by the
FAO/WHO working group in 2002, probiotics are defined as “Live
microorganisms which when administered in adequate
amounts confer a health benefit to the host.” An ideal probiotic
should be species-specific, free from pathogens, have a benefi-
cial impact on the host, and be able to survive within the hu-
man body [74]. Lactobacilli, Bifidobacteria, and E. coli have been
successfully used to treat a range of diseases [75, 76]. Probiotics
work through the competitive exclusion of pathogens by pro-
ducing bacteriocins, competing for attachment sites and
nutrients, altering pathogen functions, and improving the
immune-stimulatory and nutritional status of the host [77].
Recognized health benefits are pathogen defense, stimulation
of the host immune system, and antimicrobial production pos-
ing potential efficacy within the human body [78]. One of the
most significant effects of probiotics is the improvement in gut-
microbiome composition. Thus, now the intestinal microbes are
being used as next-generation probiotics to improve the intesti-
nal microbiome composition [79]. The gut microbes respond to

the live microbes given orally as diet and thus the probiotic
microbes have a positive impact on the human gut microbial
composition [80], thereby improving nutritional health and sta-
tus [81]. Probiotics have been efficiently used to treat several
diseases such as inflammatory bowel disease [82], diarrhea [83],
Crohn’s disease [84], ulcerative colitis [85], and cancer [86].
During inflammatory bowel disease, ulcers, or fistula, the gut
barrier is destroyed. The leaky gut lining is more prone to patho-
gens and pH fluctuations [87]. Now, efforts are being made to
engineer these probiotics to express certain biotherapeutics.
Engineered probiotics are being developed for disease diagnosis
and treatment (Table 2). This approach works based on re-
modulating the diseased environment to healthy environmen-
tal conditions by augmenting with an exogenous functional
trait.

In general terms, FMT can be considered as super probiotic,
as the fecal microbiota consists of a microbial consortium that
has a complex network/support mechanism for long-term sur-
vival within the host (Figure 3).

Subtractive therapy

Subtractive therapy has emerged to be a fascinating tool in the
field of microbiome engineering [124]. This therapy aims to re-
duce the deleterious pathogens from the microbiome with the
help of the antimicrobial activity of bacteriocins and bacterio-
phages (Figure 2). Antibiotics were traditionally used for the re-
moval of unwanted pathogens but due to the development of
antibiotic resistance among the gut microbes, therapies such as
bacteriocins and bacteriophages are being used to target the
pathogens with minimal effects on the other members of the
microbiome. Bacteriocins are ribosomally synthesized peptides
exhibiting antimicrobial activity [125]. Bacteriocins work against
pathogens in multiple ways, such as membrane rupture, toxins,
inhibition of the respiratory mechanism, and overall cell lysis
[126]. Bacteriocins could be either lanthionine-containing [127]
or non-lanthionine-containing bacteriocins [128]. The non-
lanthionine-containing bacteriocins act against Clostridium,
Enterococcus, Pediococcus, Lactobacillus, and Leuconostoc [129]
whereas lanthionine-containing enterocin and nisin have anti-
bacterial activity against Bacillus cereus, Geobacillus stearothermo-
philus, and Clostridium botulism [130]. Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria are known to produce bac-
teriocins [131, 132]. Commensals use bacteriocin to successfully
survive the niche competition within the gut [133]. They prevent
pathogen colonization, inhibit the defensins, and have an over-
all positive effect on host immunity [134] (Table 3). Bacteriocins
have been used for the preservation of dairy products [156].
Bacteriocins are used to preserve meat, vegetables, beverages,
etc. [157]. Pediocin and nisin are commercial food preservatives
[158]. Bacteriocins produced by Pediococcus acidilactici BA28 are
used to treat peptic ulcers [159]. Ferrmenticin HV6b produced by
Limosilactobacillus fermentum HV6b has antimicrobial and sper-
micidal activity, and thus is used in vaginal creams [160].
Bacteriocins such as nisin are also used in the veterinary indus-
try to control microbial infections [156]. Similarly, Enterococcus
faecalis SL-5-produced ESL5 is used as a lotion to prevent acne
lesions caused by Propionibacterium acnes [161]. Bacteriocins are
also used for oral care. Macedocin produced by S. macedonicus is
used for mouthwash and maintaining oral health [162].
Similarly to the development of antibiotic resistance, microbes
may develop bacteriocin resistance by adapting to the environ-
mental conditions or degradation of bacteriocins [163]. Efforts

Table 1. Health attributes of fecal microbiota transplantation in vari-
ous diseases

Serial no. Target disease References

1 Clostridium difficile infection [35]
2 Recurrent Clostridium difficile infection [38]
3 Irritable bowel syndrome [54, 55]
4 Insulin sensitivity [42]
5 Recurrent urinary-tract infection [43]
6 Alcoholic liver disease [44]
7 Autism [47]
8 Multiple sclerosis [56]
9 Parkinson’s disease [57]
10 Cancer [48]
11 Pseudomembranous colitis [58]
12 Ulcerative colitis [59, 60]
13 Crohn’s disease [61, 62]
14 Hepatic encephalopathy [63]
15 Alcoholic hepatitis [64]
16 Diarrhea [65]
17 Aging [66, 67]
18 Stroke [68]
19 Alzheimer’s disease [69, 70]
20 Sepsis [71]
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Table 2. Applications of naive/engineered probiotics to achieve a desired physiological trait for better health

Serial no. Engineered/
naive strain

Cloned gene Desired target Effect References

1 Escherichia coli CsgA-TFF þ trefoil factor Gut epithelium during
colitis

Treated colitis with mu-
cosal healing and
immunomodulation

[88]

Deletion of negative
regulator of L-arg
biosynthesis and
insertion of a feed-
back-resistant L-arg
biosynthetic enzyme

High concentration of
ammonia in blood

Conversion of ammonia
to arginine

[89]

Phenylalanine
metabolizing enzyme

Phenylalanine concen-
tration in blood

Conversion of phenylal-
anine to trans-cinna-
mate and
phenylpyruvate treat-
ing phenylketonuria

[90]

Antibiofilm protease
DegP

Biofilm inhibition of
other E. coli strains,
S. aureus, and S.
epidermidis

Inhibition of the growth
of pathogens

[91]

Antibiotic microcin H47 Pathogen-growth
inhibition

Displaced Salmonella
enterica from gut

[92]

Detecting and utilizing
tetrathionate and
Microcin

Inhibition of Salmonella
sp.

Inhibition of Salmonella
sp. in presence of
tetrathionate

[93]

b-galactosidase and
luciferase

Tumor detection Liver metastasis detec-
tion with luciferin
detection in urine

[94]

Thiosulfate and tetra-
thionate sensor

Detection of
tetrathionate

Detection of gut
inflammation

[95]

Lysine and pyosin Sense biofilms of
Pseudomonas aerugi-
nosa through quorum
sensing

Inhibition of the growth
of Pseudomonas
aeruginosa

[96]

Quorum sensing with
CRISPRi technology

The presence of Vibrio
cholerae

Vibrio cholera detection [97]

Sense and detect in-
flammatory signal
from nitric oxide

Detection of gut inflam-
mation due to nitric
oxide

Inflammatory signals
cause activation of
DNA recombinase to
detect and respond to
NO signals

[98]

Two-component regula-
tory system to detect
tetrathionate

Detection of
tetrathionate

Detection of inflamma-
tory signals

[99]

2 Lactococcus lactis IL-10 Intestinal inflammation
during colitis and
Crohn’s disease

Anti-inflammatory IL-10
production

[100]

Human Trefoil Factor 1 Oral mucosa Reduced severity of oral
mucositis

[101]

GAD65370–575-encoding
plasmid

Reversal of diabetes Tolerance induction in
Type 1 diabetes

[102]

Proinsulin and IL-10 Reversal of autoimmune
diabetes

Tolerance induction in
Type 1 diabetes

[103]

Glucagon like Peptide-1 Oral delivery of
Glucagon like
Peptide-1

Efficacy in treatment of
Type 2 diabetes

[104]

Ligand-binding domain
and signal transduc-
tion domain of Vibrio
cholera

Sense the presence of
Vibrio cholerae

Detection and suppres-
sion of pathogen
Vibrio cholera

[105]

MT1 or MT1–MT1 nano-
body with a HisG and
Myc-tag

Intestinal inflammation
associated with colitis

Anti-inflammatory ac-
tion against colitis

[106]

(continued)
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Table 2. (continued)

Serial no. Engineered/
naive strain

Cloned gene Desired target Effect References

through secretion of
anti-mTNF antibodies

3 Bacteroides ovatus Transforming growth
factor-b1

Intestinal inflammation
during colitis

Improvement of colitis
treatment by produc-
tion of transforming
growth factor-b

[107]

Keratinocyte-growth
factor-2 with xylanase
promoter

Intestinal inflammation
during colitis

Anti-inflammatory ac-
tion against colitis
through secretion of
human growth factors
in response to dietary
xylan

[108]

4 Lactic-acid bacteria Elafin Intestinal inflammation
during inflammatory
bowel disease

Improved treatment
against intestinal
dysfunction

[109]

5 Lactobacillus gasseri
ATCC 33323

Glucagon like Peptide-1 Intestinal cells to be-
come glucagon-re-
sponsive insulin-
secreting cells

Reduced hyperglycemia [110]

6 NS8 Attenuation of neuroin-
flammation and me-
tabolism of 5-
hydroxytryptamine

Prevention of cognitive
decline and anxiety-
like behavior during
hyperammonemia

[111]

7 Lactobacillus acidophilus,
group N
Streptococcus,
Bacteroides distasonis,
Escherichia coli var.
mutabilis, Clostridium
sp., Streptococcus faeca-
lis, Lactobacillus sali-
varius, and an EOS
fusiform bacterium

Urease activity Reduced
hyperammonemia

[112]

8 Limosilactobacillus reuteri Interleukin-22 Increased expression of
REG3G

Reduction in ethanol-in-
duced steatohepatitis

[113]

9 Lactobacillus acidophilus,
Lacticaseibacillus casei,
and Bifidobacterium
bifidium

Change in biochemical
measures of depres-
sion and anxiety

Depression [114]

10 Lacticaseibacillus casei,
Lactobacillus acidophi-
lus, and
Bifidobacterium longum

Hypocholesterolemic
effects

Obesity [115]

11 Limosilactobacillus fer-
mentum NCIMB 5221

Anti-proliferative effect
against cancer

Colorectal cancer [116]

12 Lactiplantibacillus planta-
rum L67

IL-12 and IFN-c
production

Allergy [117, 118]

13 Levilactobacillus brevis
DPC6108 and
Bifidobacterium dentium

c-aminobutyric acid
production

Anxiety and depression [119]

14 Levilactobacillus brevis W,
Bifidobacterium lactis
W, Lactobacillus aci-
dophilus W37,
Bifidobacterium bifidum
W2, Ligilactobacillus
salivarius W2,
Lacticaseibacillus casei
W5, and Lactococcus
lactis

Central nervous system Neurodegeneration [120]

(continued)
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should be made to improve the potency of bacteriocins to work
in the direction of therapeutics.

Bacteriophages are viruses that are specific to a bacterium.
As bacteriophages insert their genome within their specific bac-
teria and cause bacterial membrane disintegration, bacterio-
phages are used to target antibiotic-resistant pathogens [164].
Phage and phage products are used to treat several diseases
caused by antibiotic-resistant microbial pathogens [165].
Bacteriophage therapy successfully eradicated methicillin-
resistant Staphylococcus aureus [166], thus treating osteomyelitis
[167]. The /MR299-2 and /NH-4 have been successful in the
treatment of Pseudomonas-induced lung infection [168].
Propionibacterium acnes bacteriophage is successfully used in acne
treatment [169]. Bacteriophage sb-1 from Staphylococcus was used
to heel foot ulcers [170]. Bacteriophages selectively reduce the
colonization of an E. coli strain responsible for inflammation

[171–173]. Phage treatment relieved the colitis symptoms in E. coli
strain LF82-colonized mice [174]. Engineered phages used with a
CRISPR-Cas system help in the more specific killing of pathogens
by sensing the strain-specific determinants [175]. Phages are
host-specific and function against their specific hosts without af-
fecting the environment with no side effects in the host. Also,
the phages can be administered through various routes, which
facilitates the treatment. Additionally, phages can mutate to pre-
vent the development of resistance within the host. Despite
these advantages, phage therapy suffers some drawbacks.
Bacteria may develop resistance to phages by adopting restric-
tion modification, spontaneous mutations, or using adaptive im-
munity by the CRISPR-Cas system [176]. Phage therapy should be
preceded by the correct identification of the bacterial pathogen
[16]. Certain cases of phage therapy have shown no efficacy [16].
Also, phage therapy requires a neutralized environment that is

Table 2. (continued)

Serial no. Engineered/
naive strain

Cloned gene Desired target Effect References

15 Lacticaseibacillus rhamno-
sus, Limosilactobacillus
reuteri, and
Bifidobacterium lactis

Diarrhea [121]

16 Bifidobacterium,
Lactobacillus, and
Streptococcus
thermophilus

Ulcerative colitis [122, 123]

Figure 3.The differential functions of fecal microbiota transplantation and probiotics in treating human disorders
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not obtained within the digestive tract due to the influence of
gastric secretions [177].

Modulatory therapy

Modulatory therapy includes the modulation of the gut
microbes or their associated interactions with the human host
for human health. It considers the restoration of the depleted
microbiome and the transformation of existing microbes for a
healthier microbiome (Figure 2). Restoration/modulation of gut
microbiota can happen through various modulations such as

diet, exercise, and antibiotics that impact the composition of
the gut microbiome [178, 179]. The microbiome sustains what
we eat, thus diet is a major target for modifying the gut micro-
biome. Dietary modification has a great effect on the gut micro-
biome. Physical exercise is also associated with a healthy
microbiome and consequent short-chain fatty acid (SCFA) pro-
duction [180]. Athletes consume more proteins that have an im-
pact on the gut microbiome [181]. Marathon runners were
examined with an increase in Veillonella promoting exercise en-
durance [182]. A gluten-free diet [183]; reduced fiber intake [184];
fermentable oligo-, di-, or monosaccharides, and polyols [185];

Table 3. Therapeutic potential of bacteriocin-producing human gut microbes

Serial no. Host strain Bacteriocin produced Target organism Host benefits Reference

1 Enterococcus faecalis Bacteriocin 21 Multi-drug-resistant
Enterococcus

Limiting infections [133]

2 Ligilactobacillus salivarius Abp118 Listeria monocytogenes Anti-infective
activity

[135]

Salivaricin P Listeria monocytogenes Anti-infective
activity

[136]

Bacteriocin L-1077 Campylobacter jejuniL-4 Antimicrobial
activity

[137]

3 Streptococcus salivarius Salivaricin A2 and
Salivaricin B

Streptococcus pyogenes Pathogen inhibition [138]

4 Engineered R-type
bacteriocins

Avidocin Clostridium difficile Anti-infective
activity

[139]

5 Lactococcus lactis Nisin Z Clostridium difficile Anti-infective
activity

[140]

Nisin A Clostridium difficile Bactericidal activity [141]
Nisin V Clostridium difficile Bactericidal activity [142]
Lacticin Clostridium difficile Antimicrobial

activity
[143]

6 Streptococcus mutans Mutacin B-Ny266 Staphylococcus aureus Anti-infective
activity

[144]

Mutacin H-29B Neisseria gonorrhoeae,
Helicobacter pylori,
Campylobacter jejuni

Antimicrobial
activity

[145]

7 Probiotic mixture of
Lactobacillus,
Bifidobacterium, and
Lactococcus/
Streptococcus

Mixture of
bacteriocins

Salmonella enterica and
Listeria monocytogenes

Inhibition of patho-
gen growth

[146]

8 Pediococcusacidilactici UL5 Pediocin PA-1 Listeria monocytogenes Pathogen inhibition [147]
9 Bacillus thuringiensis DPC

6431
Thuricin CD Clostridium difficile Bactericidal activity [148]

10 Planobisporarosea LFF571 Clostridium difficile Antimicrobial
activity

[149]

11 Actinoplanesliguria Actagardine A (DAB) Gram-positive pathogens
including Clostridium
difficile

Antimicrobial
activity

[150]

12 Bacillus sonorensis Sonorensin Staphylococcus aureus and
Listeria monocytogenes

Inhibition of spoilage
bacteria

[151]

13 Escherichia coli strain H22 ColicinIb, E1, and
Microcin C7

Enterobacter, Escherichia,
Klebsiella, Morganella,
Salmonella, Shigella,
and Yersinia

Antimicrobial
activity

[152]

14 Brevibacillus sp. strain
SKDU10

Laterosporulin10
(LS10)

Cancer cells like MCF-7,
HEK293T, HT1080,
HeLa, and H1299

Antibacterial and an-
ticancer activity

[153]

15 Enterococcus faecium Bacteriocin E50–52 Campylobacter jejuni Antimicrobial
activity

[154]

16 Enterococcus sp. Enterocin E-760 Campylobacter sp. Antimicrobial
activity

[155]
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and increased protein intake [181] affect the gut-microbiome
composition. Dietary fibers improve disorders such as chronic
constipation [186]. Limited or inadequate dietary intake renders
the gut microbes having to use the glycans in the host mucus
layer, which disturbs the integrity of the mucus layer [187].
Vitamin D is a key factor in determining microbiota composi-
tion [188]. Dietary modifications could improve the production
of microbial metabolites such as SCFAs [189] and help in the
continued growth of beneficial microbes [190]. Diet modification
along with other therapy for diabetes improves the glycemic in-
dex [191]. Administration of a ketogenic diet decreased the
abundance of gut Eubacterium rectale, Bifidobacteria, and
Dialister in children with severe epilepsy [192]. Thus, a keto-
genic diet was used as an alternative for drug-resistant epilepsy
[192]. The administration of long-chain fatty acids restored the
Lactobacillus and improved the pathological conditions in
ethanol-induced liver disease [193]. Similarly, butyrate concen-
tration was corrected by the administration of glycerol tributy-
rate [194] to have a positive effect on health [195]. The
antioxidant tempol was used to change the bacterial composi-
tion towards non-obese conditions, thus treating obesity [196].
Prebiotics increase the beneficial microbes and remove the
pathogens such as fibers, galactooligosaccharides that increase
the Bifidobacterium abundance [197]. Other factors such as alco-
hol consumption [198], smoking [199], and drugs [200] also im-
pact the gut-microbiome composition. Some medicines/drugs
may impact the gut-microbiome composition and may poten-
tially increase antibiotic-induced resistance [201]. Alcohol con-
sumption increases the content of gram-negative bacteria [202],
decreases SCFA production [203], and increases intestinal per-
meability [204]. Alcohol increases the abundance of
Bacteroidetes and reduces the Lactobacilli content [205] as well
as the abundance of Proteobacteria [206]. Increased alcohol up-
take results in the increased abundance of Proteobacteria and
decreased Faecalibacterium in the human stool [203]. Smoking
also induces alterations in the oral, airway, and gut-microbiome
composition [207]. Smoking cessation alters the intestinal
microbiome composition by increasing the abundance of
Firmicutes and Actinobacteria with a simultaneously decreased
abundance of Bacteroidetes and Proteobacteria [208]. There
exists an association between smoking, dysbiosis, and the on-
set of an illness. The increased abundance of Bacteroidetes in
CD patients contributes to the disease development and sever-
ity [209]. Antibiotics also affect the gut microbiome negatively

by decreasing the microbial diversity, altering the metabolic
activity, and developing the antibiotic resistance that ulti-
mately leads to antibiotic-associated diarrhea and CDI infec-
tions [210].

Psychobiotics

Psychobiotics are the group of agents that may be probiotic,
postbiotic, prebiotic, or synbiotic and target the gut–brain axis
and confer mental health [211] (Table 4). Psychobiotics have a
psychotropic effect on anxiety, depression, and stress [216].
Brain and gut microbes communicate through vagus nerves,
immunoregulatory pathways, and the neuroendocrine system
[217]. Psychobiotics work through a strategy by affecting the
cognitive and emotional pathways, targeting the hypothalamic–
pituitary–adrenal (HPA) axis for inflammatory molecules that
are directly related to depression [218], or targeting the neuro-
transmitters as well as proteins that are a part of the brain func-
tions [219]. Human microbes such as Lactobacillus GG and
Bifidobacterium infantis 35,624 increase the interleukin-10 and
thus, by reducing pro-inflammatory cytokines directly or indi-
rectly, they help in maintaining the integrity of the blood–brain
barrier [220] (Table 5). Strains of Lactobacillus such as
Lactobacillus odontolyticus and Lactiplantibacillus plantarum pro-
duce acetylcholine [232]. Similarly, spore-forming human gut
microbes increase the biosynthesis of serotonin from the en-
terochromaffin cells [233]. Psychobiotics, mainly FMT, have
shown beneficial results in the case of various mental disorders
such as Parkinson’s disease [229], Alzheimer’s disease [234],
Tourette syndrome [235], autism [236], and insomnia [237]. FMT
was found to be successful in relieving depression and anxiety
[238]. Thus, psychobiotics have emerged as a solution to various
neurodegenerative disorders. They can be a useful and promis-
ing strategy for healthy well-being. Although the results are
promising, human studies are still lacking. Further research in
the area of psychobiotics needs to be done to make them an al-
ternative therapy for neurodevelopmental and neurodegenera-
tive disorders.

Challenges in the field of microbiome
therapeutics

Microbiome therapy establishes a native gut microbial environ-
ment for healthy gut functioning and preventing dysregulation.

Table 4. Various types of significant psychobiotics

Psychobiotics Definition Examples Reference

Probiotics Live microbes that when consumed or applied
in adequate amounts to the body provide
health benefits

Escherichia coli, Lactococcus lactis, Bacteroides ova-
tus, lactic-acid bacteria, Lactobacillus gasseri,
Lactobacillus helveticus, etc.

[212]

Postbiotics Inanimate microbes and/or their components
that confer health benefits to the host

Microbial cell lysates, cell fractions, short-
chain fatty acids (SCFAs), polysaccharides
(EPS), peptidoglycan-derived muropeptides,
teichoic acid, metabolites, etc.

[213]

Prebiotics A non-digestible food component that stimu-
lates the host’s health by improving the
growth or activity of one or more colon
microbes

Fructans, Galacto-Oligosaccharides, Starch,
and Glucose-derived Oligosaccharides

[214]

Synbiotics A mixture of prebiotics and probiotics that af-
fect the host’s health by improving the
growth/activity of beneficial microbes pre-
sent in the gut

A mixture of probiotics such as Lacbobacilli,
Bifidobacteria spp., S. boulardii, B. coagulans,
etc., with prebiotics such as fructooligosac-
charide, xyloseoligosaccharide, inulin, etc.

[215]
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The microbes as therapy aim to restore dysbiosis and improve
the host survival by affecting the metabolic, nutritional, as well
as physiological pathways. The success of microbiome therapeu-
tics is promising but usually suffers from a few challenges. The
major challenge in the field of microbiome therapeutics is the
identification of the microbes to address disease complexities
(Figure 4). Different microbial strains are suitable for different
therapeutic approaches based on their survival within the body.
The Bacteroides sp. [107], Lactobacillus sp. [110], E. coli Nissle 1917
[239], and Lactobacillus lactis [102] have been used as therapeutic
vectors. Bacteroides sp. colonizes the colon and caecum success-
fully while Lactobacillus sp. and E. coli Nissle successfully enrich
within the small intestine. Lactobacillus lactis cannot colonize the
intestine [240]. Thus, the disease biogeography decides the suit-
ability of the probiotic used for the treatment. Proper characteri-
zation of microbes based on their functional benefits needs to be

done before choosing them for treatment. The efficacy of micro-
biome therapeutics has, for a long time and under various
circumstances, become challenging. Additionally, microbiome
therapeutic research was primarily carried out using rodent mod-
els and efforts are required for human trials. The stability and
robustness of the clinically relevant microbial strains ensure suc-
cessful microbiome therapeutics (Figure 4). To understand the
environmental conditions faced by the microbes and the mutual
interactions among microbes that affect functions, chemostats
need to be developed [241]. Similarly, 3D intestinal scaffolds [242],
organoids [243], and gut-on-a-chip models [244] have been used
to study the interactions between hosts and probiotics. Various
safety and regulatory issues need to be examined for successful
clinical trials of microbiome therapeutics. A regulatory frame-
work needs to be designed to address the biosafety of therapeu-
tics to reduce the negative effects and release of the engineered
microbes into the environment. The safety of engineered probiot-
ics needs to be assessed for prolonged therapeutic efficacy
(Figure 4). The horizontal transfer of the recombinant DNA from
the engineered microbiome to the native microbiome is a major
concern [245]. Similarly, the environmental release of recombi-
nant probiotics could have harmful effects [246]. Thus, auxotro-
phic microbes that lose viability in the absence of a particular
substrate need to be used as therapeutics [247], as they are not
able to colonize the outer environments. Thus, synchronized
research and regulatory mechanisms need to be used for a safe
therapeutic approach, in addition to therapeutic maintenance, as
engineered phages may lead to their loss of function [248]. Thus,
further efforts should be done to reduce the burden on cellular
therapies for the long-term stability of therapeutics [246].

Table 5. Attributes of psychobiotics in mental health

Serial no. Psychobiotic Effect Target disease Reference

1 Lacticaseibacillus rhamnosus JB-1 Regulation of emotional behavior
and central GABA-receptor
expression

Depression and anxiety [216]

2 Galactooligosaccharide mixture Waking cortisol response Depression [221]
3 Sodium butyrate Central serotonin neurotransmis-

sion and brain-derived neuro-
trophic factor (BDNF)
expression

Depression [222]

4 Bifidobacterium or Lactobacillus Restoration of gut-barrier integrity Stress [223]
5 Lactiplantibacillus plantarum PS128 Inflammation and corticosterone

level
Depression and anxiety [224]

6 Lactobacillus helveticus NS8 Levels of serotonin, norepineph-
rine, and BDNF

Anxiety, depression, and
cognitive dysfunction

[225]

7 Bifidobacterium longum NCC3001 BDNF expression Depression [226]
8 Lactobacillus helveticus R0052 and

Bifidobacterium longum R0175
Anxiety and depression [227]

9 Lactiplantibacillus plantarum
MTCC1325

Improves cognitive behaviors,
gross behavioral activities, and
restores the level of
acetylcholine

Alzheimer’s disease [228]

10 Mixture of Lactobacillus acidophilus,
Bifidobacterium bifidum,
Limosilactobacillus reuteri, and
Limosilactobacillus fermentum

High-sensitivity C-reactive protein
and malondialdehyde levels

Parkinson’s disease [229]

11 Lactobacillus acidophilus Self-control and attention Attention deficit hyperac-
tivity disorder

[230]

12 Heat-killed Levilactobacillus brevis
SBC8803

Wakefulness and night-time
wheel-running activity

Insomnia [231]

Figure 4.Challenges associated with the field of microbiome therapeutics
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Current scenario

As an estimate, the global microbiome therapeutics market size
was valued at USD 34.1 million in 2019, which is expected to
reach to USD 838.2 million by 2026 [249]. Several companies are
virtually using microbiome therapeutic approaches to treat and
diagnose diseases [250]. In 2020, the fecal microbiome suspen-
sion with the name SER-109 completed its third-phase trial.
It was found to be effective against CDIs. Companies such as
Rebiotix and Ferring pharma are using the bacterial suspension
as RBX2660 [251]. This suspension with live spores of bacteria
was the first to enter clinical trials. Additionally, companies are
targeting immune-system arousal through the use of check-
point inhibitors to treat tumors. Vedanta Biosciences has devel-
oped a microbe–drug combination to induce helper T-cells
against tumors [252]. This trial is currently in phase 1. Merck
along with Evelo Biosciences and 4D Pharma is currently work-
ing in this direction with the use of the drug Keytruda [253].
There are certainly several advantages in using this subset of
bacteria for disease treatment but it is often associated with risk
factors such as the presence of pathogens in the stool sample
that may lead to disease initiation. To avoid this, certain com-
panies such as Seres are using purified suspensions devoid of
pathogens [254]. Microbiotica [255] and Vedanta [256] are
currently working on a strategy to isolate gut microbes and
identify detailed genomic information for the healthy bacteria
and pathogens and then prepare a list of microbes associated
with the disease or human health. However, there is a risk of
contamination at every step of purification. Thus, companies
are trying to isolate the specific bacterial products for
therapeutics and scaling them up through fermentation.
Companies like 4D Pharma use single microbes for immuno-
modulation [257]. 4D Pharma in association with Merck have
invested in developing a microbial vaccine. Evelo Biosciences
is also working on the strategy of the single-microbiome ap-
proach [258]. Also, Second Genome [259], Kaleido Biosciences
[260], and Enterome [261] are focusing on the biologically ac-
tive molecules of microbes. Enterome has targeted a signaling
pathway that causes Crohn’s disease and developed a product

that is currently in a phase 2 trial. Certain microbial molecules
that may inhibit inflammation or initiate immunity against
tumor development are also being targeted by the company
(Table 6).

Conclusion and future perspectives

Global human microbiome therapeutics is expected to grow
spontaneously by 2027 and acquire a market size worth USD
1,731 million [265]. Advancement in synthetic biology and
microbiome ecology has inspired the use of additive, subtrac-
tive, and modulatory therapies of microbiome engineering in
clinics. Although research efforts have proven the efficacy of
microbiome therapeutics, additional research to understand
the microbiome and its interaction with the host needs to be
done to move this concept of microbiome therapeutics into clin-
ical trials to create a guide for efficient treatment. This era of
microbiome therapeutics along with the combined efforts may
help in disease treatment with clinical applications. The use of
bacterial suspensions poses a risk to patients’ health, as it may
lead to the entry of pathogens within the recipient; thus, strate-
gies to avoid contamination need to be used. Live therapeutics
is the need of the hour to treat patients with the hand-picked

healthy microbial group. Additionally, before the administra-
tion of bacteria into patients, proper genomic characterization
of the bacterial groups needs to be done to discriminate dis-
ease-specific signature microbes from healthy microbes.
Companies should now increase the manufacturing of bacteria-
specific products to avoid the broad range of negative impacts
of the microbes and, for that, companies should invest more.
Efforts need to be made to prepare pills with single-microbe
species that may improve the immune response in patients and
treat patients better. Thus, the microbiome therapeutic compa-
nies need to unite with the pharma industries to improve the
efficacy of the treatments. The studies and results obtained
through the clinical trials on gut bacteria should further be ex-
plored for autoimmunity and neurological disorders to expand
the field of microbiome therapeutics.

Table 6. Strategies adopted by the various institutions to overcome microbial disorders

Serial no. Disease target Strategy Outcome Reference

1 IBD Fimbrialadhesin (Fim H)
inhibitor

Blockage of Escherichia coli binding to
intestinal epithelium

[12]

2 Irritable bowel
syndrome

SYN-010 containing
modified lovastatin

Reduction in methane production to
provide relief in IBS

[12]

3 Hyperammonemia Drug KB195 Reduction in nitrogen metabolism to
provide relief in hyperammonemia

[12]

4 Inhibition of drug-
resistant pathogen

Bioactive products Improvement in beneficial microbes
and inhibition of methicillin-resis-
tant Staphylococcus aureus

[262]

5 Clostridium difficile
infection

Vaccine oral capsule
CP-101

Improved treatment of CDI [263]

6 Cancer Microbial consortium of
commensal bacteria
(VE800)

Improvement in the ability of T-cells
to infiltrate tumors, suppress tumor
growth, and potentially improve pa-
tient survival

[263]

7 Obesity Oxygen pills Oxygen pills improve the aerobic/fac-
ultative aerobic bacteria for effec-
tive treatment of obesity

[262]

8 Multiple disorders Live biotherapeutics Single strain of gut bacteria improves
the microbial dysbiosis

[264]
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