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The Google matrix controls the stability of
structured ecological and biological networks
Lewi Stone1,2

May’s celebrated theoretical work of the 70’s contradicted the established paradigm by

demonstrating that complexity leads to instability in biological systems. Here May’s random-

matrix modelling approach is generalized to realistic large-scale webs of species interactions,

be they structured by networks of competition, mutualism or both. Simple relationships are

found to govern these otherwise intractable models, and control the parameter ranges for

which biological systems are stable and feasible. Our analysis of model and real empirical

networks is only achievable on introducing a simplifying Google-matrix reduction scheme,

which in the process, yields a practical ecological eigenvalue stability index. These results

provide an insight into how network topology, especially connectance, influences species

stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in

these systems are found more restrictive than those controlling stability, helping explain the

enigma of why many classes of feasible ecological models are nearly always stable.
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S
ome of the outstanding unsolved challenges in theoretical
biology concern the puzzling relationships between
the feasibility, stability and complexity of biological

systems1–14. Robert May’s seminal paper1 from the 70’s, drew
on the emergent patterns of ensembles of large random matrices
to demonstrate that more complex and highly interconnected
ecosystems are less likely to be stable, (that is, in terms of
returning to equilibrium after disturbance). The approach has
been applied widely in many other disciplines, ranging from
systems biology, neurosciences, social network theory, to
economics and banking systems15,16. May’s analysis has been
broadened in recent years as methods for analysing random
matrices have advanced2–4. In addition to stability, any credible
ecological model must maintain the basic constraint of feasibility,
that all species present must have positive population abundances
at equilibrium5,6. However, for systems of only minimal
complexity, the study of feasibility becomes mathematically
intractable. Fortunately, progress over the last decade in
network science has made exciting new approaches available.
From this viewpoint, Rohr, Saavedra and Bascompte (RSB) in
ref. 6 introduced a framework which characterizes the range of
parameters possible to simultaneously conserve feasibility and
stability in large complex networks.

Here we propose a completely new direction based on a
powerful reduction approach for studying complex systems
having large-scale interaction architectures. Mutualistic pollina-
tion networks, for example, have blocks of competitive and
mutualistic interactions6,7, which often drown out the presence of
other subtle underlying factors that might matter more, and can
result in complex stability transitions. A basic understanding of
these systems is still lacking6,7. By peeling away community-wide
background interactions, simpler conditions for feasibility and
stability can be derived. We make use of the same basic
mechanism that sits at the heart of Brin and Page’s17 ‘Google
matrix’ which ranks web pages, as it sifts through billions of
hyperlinks across the entire world-wide-web17,18. The method
provides a new way of working with time-honoured ecological
interaction matrices. From this perspective, the Google matrix
was made use of in Mathematical Biology (Stone19 (1988)),
some 10 years before it was invented by Google (Supplementary
Note 4).

Results
Competition model. The Lotka–Volterra (LV) equations of
interspecific competition have been a source of tremendous
inspiration for ecologists. The equations, for n-competing species,
read5,13,14,19–22:

dNi

dt
¼ riNi 1�

Xn

j¼1
aijNj

� �
: ð1Þ

Here Ni is the abundance of the i’th species, while the positive
parameter ri40 defines its birth-rate. Central to our work is the
interaction matrix A¼ (aij). The competition coefficient aij40
measures the negative impact species-j has directly on species-i.
Intraspecific competition coefficients for individuals within a
species are scaled to unity aii¼ 1, as are the carrying capacities of
all species. These commonly adopted scalings have a long
historical justification1,5,13,14,19–22, but may also be relaxed
(Supplementary Note 1K).

In the naive ‘uniform competition model’ each species
competes with every other with equal strength aij¼ c,
(0oco1). To incorporate the vagaries of the real world, the
limited uniform model may be ‘brought to life’ by incorporating
stochasticity that acts to structurally disturb interaction para-
meters14,19–23. A large ensemble of competitive communities may
be specified all of which on the average, resemble the uniform

model:

aij ¼ cþ bij; ð2Þ
with mean interaction strength oaij4¼ c. The structural
disturbance matrix B¼ (bij) has elements of mean zero,
uniformly distributed in the interval [� cv, þ cv] with ‘spread’
v (0rvr1), and variance Var(bij)¼ s2. In this model,
environmental fluctuations make the interaction strengths vary
about the mean strength of competition. Thus two communities
may both have the same average strength of competition c, but
the one undergoing stronger perturbations will show a greater
variation in its interaction coefficients. Hence the stochastic
model associates increasing disturbance with an increase in s2.
We will find it convenient to represent the level of disturbance in
the whole community by g, where:

g ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

s
1� c

: ð3Þ

The ensemble contains the totality of possible interaction
matrices. Each matrix is associated with its own equilibrium
vector of population abundances. The subset of feasible solutions
of (1), all have positive equilibria, with N�i 40 for each species-i
(‘*’ indicating equilibrium). The feasible subset represents all
possible candidates for survival as a persistent system.

For competition communities, the ecological interaction matrix
A may be decomposed into three components: a background
network of uniform all-to-all competitive interactions C (cij¼ c),
a matrix of perturbations B¼ (bij) and the self-regulatory
interactions via the diagonal identity matrix (1� c) I. Then
A¼ (1� c)IþBþC, or in full:

A ¼

1� c b12 : : b1;n� 1 b1;n

b21 1� c : : b2;n� 1 b2;n

: :
: :

bn� 1;1 1� c bn� 1;n

bn;1 bn;2 : : bn;n� 1 1� c

2
6666664

3
7777775
þ

c c : : c c
c c : : c c
: : : : : :
: : : : : :
c c : : c c
c c : : c c

2
6666664

3
7777775
ð4Þ

The first matrix on the Right Hand (RH) side is May’s matrix of
fluctuations AM¼ (1� c)IþB, while the second is the rank-one
matrix C.

Stability of competition model. Under what conditions are
feasible model competition systems stable? Recall that local sta-
bility guarantees that an ecosystem will return to equilibrium
after a ‘small’ population perturbation, while global stability
ensures return to equilibrium for any sized population pertur-
bation1,24. Theoretical ecologists study matrix eigenvalues (li) of
the stability matrix S¼DA to determine local stability [where
diagonal matrix D¼ diag(N�i )]. It is important to emphasize that
for the models studied here, for feasible systems (D40), the
matrix S is locally stable if all the eigenvalues of the matrix AM

have positive real parts (Methods section).
A major achievement of May1 was to characterize the

stability properties of the random matrix of fluctuations
AM¼ (1� c)IþB when competition is absent (C¼ 0). This
reflects the stability of all those systems close to equilibrium in
which interactions are equally likely to be positive or negative.
May1 demonstrated that a typical random community will be
locally stable if the interaction disturbances are ‘not too large,’
namely:

go1 ð5Þ
and unstable otherwise (Fig.1a). The larger the number of species
n, the sharper the transition from stability to instability at c¼ 1
(Fig. 1a). However, the analysis does not give direct information

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12857

2 NATURE COMMUNICATIONS | 7:12857 | DOI: 10.1038/ncomms12857 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


about the stability of structured communities, such as
communities of competition. Nevertheless, the matrix AM will
be shown to form the backbone of more complex ecological
network models.

We begin by arguing that stability criterion (5) for the May
matrix AM proves to be the exact same stability condition for
feasible LV-competition systems but for any c (0oco1), in
equation (1). To understand this, compare the matrices:

A ¼ I 1� cð ÞþBþC; AM ¼ I 1� cð ÞþB : ð6Þ

In fact A is just AM, but perturbed by the uniform competition
matrix C. Quite remarkably, we show that the stability matrices
associated with these two matrices are Google matrices (Methods
section) and therefore have all eigenvalues, except for one, exactly
the same (Fig. 2b; Supplementary Note 1F). The end result is that
matrix C, with all its many interactions, has little relevance for
determining stability, which can be deduced solely from analysis
of the reduced matrix AM (Supplementary Note 1E). The result,
which is not trivial, has gone unnoticed previously, but it is robust
and holds almost exactly when the scaling of model (1) is relaxed
(Supplementary Note 1K). The same underlying concept was
taken advantage of in a different context to calculate PageRank
via the Google matrix, in a way that takes into account the
massive number of links across the entire world-wide-web17

(Methods section). Putting this all together, we have found:

Result A. Feasible competition systems for any c (0oco1), are
locally stable if May’s matrix AM is locally stable, namely when
go1, and unstable otherwise. The larger the number of species, n,
the sharper is the transition from stability to instability at
g¼ 1(Fig. 1a).

The conclusion should be seen as a restatement of May’s1

result for random communities, but now here widened to
apply for random communities structured with competition. The
parameter g representing the intensity of structural disturbances,
completely governs stability in a simple manner. It should also be
noted that we are chiefly interested in local stability, since
fortuitously, feasible locally stable competition systems can be
shown to be nearly always globally stable (Supplementary Note
1G; The exceptions are discussed in the Methods section.).

Feasibility of competition model. Following the lead from
Roberts (1974, 1989), suppose we draw a system at random from
the stochastic ensemble competition model, for fixed model
parameters. We are interested in determining the probability of
its feasibility, Pr(Feasible), for which all n-species have positive
equilibrium populations. The probability Pr(Feasible) may be
estimated as the percentage of feasible systems from a set of 500
random model systems as plotted in Fig. 1b. It is possible to show
that for a given community size n, the probability is purely a
function of g (Supplementary Note 1C). The model estimates of
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Figure 1 | Local stability and feasibility. (a) Percentage of locally stable ‘May matrices’ AM as a function of disturbance g in an ensemble of 500 matrices

for different community sizes n¼ 10, 20, 50 and 100. May’s stability threshold sits at g¼ 1. (b). The probability of feasibility, Pr(feasible), as a function of

disturbance g, for n-species competition with different community sizes n¼ 1, 8, 14, 20 and 100. Each probability marked by a square, circle and so on is the

proportion of feasible systems in 500 runs of equation (1). Analytical prediction from Supplementary Note 1C displayed as continuous curves.
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Figure 2 | Competition model. (a) Competition model. Characteristics of communities having n¼ 20 species, competition c¼0.3, as a function of

disturbance g. Percentage of 500 systems that were: (i) feasible: %F (red line); (ii) possessed locally stable interaction matrices A: %LS (Locally Stable;

green line); (iii) feasible together with locally stable interaction matrices A: %F&LS (blue circles); (iv) having globally stable interaction matrices %GS

(Globally Stable; magenta): (v) both feasible and having globally stable interaction matrices: %F&GS (also blue circles). The graphs indicate

%F¼%F&LS¼%F&GS. (b) As the stability matrix S¼DA (blue line) is a Google matrix , its critical eigenvalue is identical to that of SM¼DAM (redþ ; see

Methods-Google matrix). The critical eigenvalues of the two matrices lie exactly on the same curve when plotted as a function of competition strength c.

Here the competition interaction matrix is A¼ I(1� c)þCþB and AM¼ I(1� c)þB with n¼ 10, v¼0.4.
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Pr(Feasible) match analytical predictions closely (Methods
section). Clearly the larger the number of species n, the more
difficult it becomes to generate a feasible system. Moreover,
Fig. 1b demonstrates that large feasible systems (n414) require
that the variability of the structural disturbances is ‘not too large,’
specifically go1.

Importantly, analytical and numerical analyses predict that
almost all feasible competition systems sit in the range co1
(Methods section, Supplementary Note 1H). Hence feasible
systems must be stable (locally and globally; Methods section,
Supplementary Note 1I) and certainly for large systems, all are
stable (n414; Fig. 2a).

To understand this further, Fig. 2a displays the feasibility and
stability characteristics of an n¼ 20 species community with
c¼ 0.3, and plotted as a function of disturbance g. These results
were deduced numerically from equation 1. Almost all feasible
model communities are locally stable, and nearly always
globally stable. As g increases, the proportion of feasible
systems (red) reduces to zero well before the proportion of
locally (green) or globally (magenta) stable interaction matrices
reduce to zero. As such, these calculations predict that nearly all
feasible systems are stable, a characteristic that appears to be
not restricted to the specific parameter ranges of Fig. 2a
(Supplementary Note 1J).

However, this probability argument does not make trans-
parent the key link between feasibility and stability. In
Supplementary Note 1H a simple generic mathematical
argument identifies this link, and can be explained via
Fig. 3a. As shown, when g increases, at least one positive
equilibrium population is destined to become unsustainably
large in magnitude, and finally ‘blows-up’ at gC1 when
stability of the interaction matrix A is lost. Before
‘blow up,’ the large equilibrium values of some populations
necessarily drive weaker species to extinction (g¼ 0.58), and
‘negative values,’ explaining why feasibility is lost before
stability of the interaction matrix A is lost. This is the first
theoretical prediction of the transition in a relatively general
setting.

Competition-mutualism (CM) networks. The same methods
can be extended to study more complex ecological systems, such
as the animal-plant system presented in RSB (refs 6,7) in which
mutualistic and competition networks operate simultaneously.
Despite years of study, the stability properties of these systems
remain poorly understood. Let Ai and Pi and denote the
abundances of n1 animal species and n2 plant species.

Equations (1) then read:

dPi

dt
¼ r Pð Þ

i Pi 1�
X

j

cPjþ
X

j

m Pð Þ
ij Aj

 !

dAi

dt
¼ r Að Þ

i Ai 1�
X

j

cAjþ
X

j

m Að Þ
ij Pj

 ! ð7Þ

Here, all plants species compete with each other with the same
negative interaction strength c (0oco1) and likewise for animal
species. Any interactions between plant species-i and animal
species-j are mutualistic and positive (mijZ0).

The interaction matrix A may be split into its competitive and
mutualistic blocks, and for the naive uniform model:

A ¼

1 c

c 1

�m �m

�m �m

�m �m

�m �m

1 c

c 1

2
6664

3
7775 ¼ 1� cð Þ

1 0

0 1

0 0

0 1

0 0

0 0

1 0

0 1

2
6664

3
7775

�

0 0

0 0

m m

m m

m m

m m

0 0

0 0

2
6664

3
7775þ

c c

c c

0 0

0 0

0 0

0 0

c c

c c

2
6664

3
7775¼ 1� cð ÞI�M� þC�

ð8Þ

The two diagonal blocks of matrix C* represent the uniform
competitive interactions within plants and within animals.
Off-diagonal blocks of C* are set zero given plants do not
compete with animals for the same resources.

The two off-diagonal cooperative blocks define the matrix
M* of mutualistic interactions between plants and animals.
Diagonal blocks are set to zero, since in this scheme animals
(/plants) do not help their kind. Matrix M*, as shown
schematically above, represents the uniform model of all-to-all
interactions, although other network topologies are also explored.
This includes connectance, whereby a proportion (1� q) of
randomly chosen nonzero interactions of M* are set to zero,
leaving a proportion q nonzero.

Moving over to the stochastic ensemble model framework,
nonzero mutualistic interactions are taken to be of the form
mij¼mþ bij40 , and thus all of the same average strength m.
The mutualism matrix is now

M ¼ M� þB; ð9Þ
where B¼ (bij) consists of random mean-zero structural
disturbances, and where the uniform model corresponds
to B¼ 0. The bij are uniformly distributed in the interval
[�mv, þmv] with ‘spread’ v (0rvr1), having corresponding
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Figure 3 | Equilibrium blow-up and loss of stability. (a) Equilibrium abundances for competition model (v¼ 1, c¼0.3) with n¼ 20 species plotted versus

disturbance level g. The green line plots the real part of the critical eigenvalue of the interaction matrix A which zeroes when g¼ 1.04, initiating instability.

Feasibility is lost when g¼0.58 and a population goes negative, well before stability of A is lost at g¼ 1.04 where equilibria ‘blow-up’ see Methods section.

(b) Equilibrium abundances of CM-model for n¼ 20 species (n1¼ n2¼ 10; c¼0.2, q¼0.7) plotted versus destabilizing interaction strength m. Feasibility is

lost at m¼0.19. This is well before the critical eigenvalue (green line) zeroes at the equilibrium ‘blow-up’ point m¼0.27, where stability of A is lost.
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variance Var(bij)¼s2. We are chiefly interested in local stability
of the interaction matrix A since fortuitously, feasible locally
stable CM-systems are always found globally stable (Supple-
mentary Note 2; RSB).

Consider then an n-species fully connected community
(n1¼ n2¼ n/2 plants and animals; q¼ 1). Figure 4a outlines the
feasibility and stability properties as a function of mutualism
m and competition c. The interaction matrix A is locally stable for
all parameters inside the shaded prominent ‘Triangle of Stability’
D (green and brown). Note that the region where systems are
both feasible and stable (brown), is necessarily enclosed within D.
Stability requires competition c to lie in an interval between lower
and upper bounds: strong enough to prevent runaway mutualism,
but not too strong to promote competitive exclusion. Moreover
the interval shrinks as mutualism increases in intensity, thereby
creating the triangle’s geometry. Figure 4b demonstrates that D
can span large areas of parameter space, especially when
disturbance is low (for example, v¼ 0.1), indicative of relatively
high structural stability. The latter implies the existence of a
relatively large area in parameter space where the model is both
feasible and stable.

Contrast this pattern with a community of intermediate
connectance q¼ 0.4 in Fig. 4c, where D proves to be relatively
small in area. This small D holds for disturbance levels that are
both low (v¼ 0.1) and high (v¼ 0.9), and is characteristic to a
wide range of connectance levels 0.1oqo0.9 as shown in Fig. 4e.
Intriguingly, CM-systems are endowed with intrinsically poor
structural stability for the intermediate connectances typical of
real world networks (Fig. 4d). Note however, once connectance q
exceeds 50% structural stability actually increases with q; at first
gradually but the increase is rapid once the interaction network
becomes tight (Fig. 4e).

Extending the Google matrix approach to CM networks. Ideally
we would like to be able to predict the stability and other char-
acteristics of the CM-system from a knowledge of the empirical

interaction network M. It is not obvious that the Google matrix
approach outlined above can contribute because the matrices
involved are more complex in structure here. Quite remarkably
though, the reduction approach can be successfully extended, and
yields general criteria for mutualism matrices M of arbitrary
topology.

Progress can be made by determining the borders of the
triangle of stability D (Fig. 4a). The left-hand (LH) border is just
the line qmCc (magenta circles; Supplementary Note 2D). On
this border a species benefits from mutualism are on average
equal to its losses from competition. Stability requires that
mutualism levels be of limited intensity qmoc, which include all
points in Fig. 4a below the LH-border.

The RH-stability border is found by applying the Google
reduction to interaction matrix A¼ I(1� c)þC*�M. The
reduction makes it possible to discard the competition interaction
matrix C*, and leads to a simple condition based importantly,
on k2(M), the ‘second-largest’ or subdominant eigenvalue
of the mutualism matrix M (Supplementary Note 2C). In
Supplementary Note 2C it is shown that the RH-stability
boundary in Fig. 4a corresponds to the line k2(M)¼ 1� c.

Result B. Summarising, stability requires that we consider only
points in parameter space lying below the LH-border of the
triangle D. For these points: feasible CM-models are locally
stable if

l2 Mð Þo1� c ð10Þ

and unstable otherwise.
This establishes a direct connection between the topology of M,

as coded into the eigenvalues10 of M, and the stability of the
CM-model. While many analyses (for example, ref. 10) focus on
the dominant eigenvalue of M, this can lead to a wrong
interpretation for understanding general stability. The above
criterion (10) was tested on simulated model mutualism networks
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Figure 4 | CM-model. (a,b) with n¼ 100 species (n1¼ n2¼ 50), all-to-all mutualistic connectance q¼ 1 and disturbance spread v¼0.5. All systems are

feasible and stable (F&S) in brown area of parameter space, which is here mutualistic strength m versus competition c. Systems possessing stable

interaction matrices (S) but not feasible are located in green area of parameter space. The ‘Triangle of Stability’ D has LH-stability border where qm¼ c

(magenta circles). The RH-Stability border is determined by the second-eigenvalue criterion equation (5) (red circles); and corroborated by numerical

computations (blue line). (b) Similar to (a) with q¼ 1, but compares two disturbance levels, v¼0.1, and v¼0.5 by overlaying plots. (c) As (b) but with low

connectance q¼0.4. (d) Canadian forest pollination matrix analysis n1¼ 102, n2¼ 12; q¼0.13. v¼0.5; (e) Height h(D) of triangle D, versus q (when

n1¼ n2¼ 50; v¼0.2). Simulations (red) and mathematical prediction h(D)B1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq 1� qð Þ

p
(blue) from Supplementary Note 2D; (f) Testing May’s criterion

gCM¼ 1 (see below Result C). F and S plotted as function of disturbance gCM versus c (q¼ 1, m¼0.2) for n1¼ n2¼ 50 species.
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in Fig. 4a,c,d,f and provides excellent predictions (red circles) of
the true RH-stability border (blue).

The criterion (10) is appropriate whether or not M* has block
structure or the disturbance matrix B is random, thereby opening
the door for studying real empirical networks (Supplementary Note
3). As an example, consider the highly speciose mutualist-
pollination network from Canadian spruce-fir forests25, having
n1¼ 102 insect species, and n2¼ 12 plants. The eigenvalue l2(M)
accurately identifies the RH-stability border of D in Fig. 4d (red
circles). The low connectance (q¼ 0.13) of the matrix effectively
swivels D to the left, and results in a mutualism-competition trade-
off: intense mutualism can be maintained only for sufficiently weak
levels of competition, and vice-versa. In this respect, the mutualistic
network acts to reduce or minimize competition7.

Note that the feasible systems (brown region) in Fig. 4 are
contained fully within the triangle of stability D. Figure 3b makes
clear a step-wise transition. As mutualistic strength (m) increase
from zero, feasibility is lost first, followed by loss of stability of the
interaction matrix A at higher levels of disturbance (Methods
section; Supplementary Note 2E).

All-to-all mutualism. Returning now to the methodology, it is
enlightening to take the Google reduction procedure one step
further. Suppose that the matrix M* is significantly structured, for
example, in all-to-all connected blocks with connectance q¼ 1.
Now when investigating stability, both matrices C* and M* may
be ‘discarded’ (Supplementary Note 2C). Stability may then be
determined from the matrix: AM¼ I(1� c)�B, which returns us
back to the May criterion:

Result C. Assuming that we consider only points in parameter
space lying below the LH-border (Supplementary Note 2E), then:
feasible all-to-all block CM-systems are locally stable if matrix AM

is locally stable.and unstable otherwise (Supplementary Note 2D).
The criterion gives deeper insight into the determinants of

stability in the CM-model. Namely stability is lost when the
underlying stable uniform model is perturbed too severely. For
the simplest case, where the number of animal equals the number
of plant species (n1¼ n2¼ n

2, q¼ 1), the May stability condition
requires gCMo1, and instability when gCM41, where now
gCM¼

ffiffiffiffiffi
2n
p

s= 1� cð Þ (Supplementary Note 2A). In Fig. 4a,f, the
May criterion accurately predicts the border of stability at
gCM¼ 1 (black line). The LH-border occurs as predicted at m¼
c¼ 0.2 (magenta).

Real mutualism networks. Although claims have been made that
mutualism networks have strong internal structure6, our analysis
of 20 real empirical mutualism networks from RSB show them to
have almost identical characteristics as their randomized matrix
counterparts26,27 in terms of two key parameters—their critical
eigenvalue and species nestedness (Fig. 5; Supplementary Note
2F). Surprisingly, any internal topological structure in these
networks cannot play a major role, assuming realistic biological
constraints that preserve the network degree distribution26,27.
The impact of these features on the eigenvalue appears to be
minimal compared with the impact of connectance on structural
stability, as just outlined.

Discussion
In conclusion, while recent studies of the CM-model have failed
to find any stability conditions or ‘particular pattern in how the
critical (stability) level of mutualistic strength varies with model
parameters’ (RSB), the techniques presented here result in
strong clear relationships. Moreover, May’s1 early stability
predictions equation (5) for large complex random systems and

equation (10), hold surprisingly well for competition, as well as
highly networked CM-systems; local stability is lost when
disturbances increase beyond a relatively small threshold level
(g¼ 1). This proneness to instability increases with the number of
species, intensity of competition and level of disturbance.
Analysis of structural stability, the range of parameter space for
which feasibility and stability holds, leads to a different but not
contradictory viewpoint, more in line with Elton28. Namely, CM-
systems have poor structural stability for 0.1oqo0.9, while
tightly connected ecological networks have the highest structural
stability. Ecosystem stability and vulnerability should be assessed
by integrating the results from these two different frameworks.

The theory developed here also makes clear that constraints on
feasibility are more restrictive than those on stability, and
explains why nearly all feasible systems are stable for many
classes of ecological models (Supplementary Note 2E). Interest-
ingly, loss of feasibility might be viewed as an early warning
precursor of the interaction matrix losing stability. Hence,
external anomalies from changing climate, resource availability
or environmental hazards, may readily lead to species extinctions
often well before ecosystem instability can even be identified. The
tools presented here, based on the Google matrix, extend the
scope of May’s study of large complex systems making it possible
to untangle other important ecological interaction structures.
These techniques can be readily adapted to a wide range of
disciplines in network science.

Methods
Feasibility. A calculation (Supplementary Note 1C, refs 19,20) shows that the
probability a single arbitrary species has a positive equilibrium population is
purely a function of g, the variability of the structural disturbances, that is,
Pr(N�i 40)¼ p(g), as plotted in Fig. 1b (purple). A good approximation for the
probability that all n-species are positive is then: Pr(Feasible)¼ p(g)n. The
predictions of feasibility, Pr(Feasible) accurately match model simulations for a
wide range of community sizes n and parameters. This is seen in Fig. 1b which
plots Pr(Feasible) as estimated as the percentage of feasible systems from a set of
500 random model systems. The figure shows that large feasible systems are only
possible if the variability of the structural disturbances is ‘not too large,’ or in
quantitative terms, if go1 (cf equation (3)). Only then can p(g) be large enough
to ensure that Pr(Feasible) is significantly greater than zero. Even for relatively
small systems, the probability of feasibility is slight when gE1 (for example,
Pr(Feasible)¼ 0.07 when g¼ 1, n¼ 8).

Stability. The stability of equation (1) is determined by the eigenvalues
of the stability or community matrix S¼DA, where D is the diagonal matrix
D¼ diag(N�i ). Local stability is ensured iff all eigenvalues of S have positive real
parts. For feasible competition systems, D40, it is demonstrated in Supplementary
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Figure 5 | Nestedness. The critical eigenvalue (blue line) of the interaction

matrix and nestedness (black line; calculated as in ref. 26 for each of 21

empirical networks separated along x-axis (RSB; Supplementary Note 2F)

where parameters taken as c¼0.2 and m¼0.1. Each red/green circle

shows the average of the eigenvalue/nestedness of 25 randomized

matrices26,27.
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Note 1I that the matrix S is locally stable iff all eigenvalues of AM have positive real
parts. Global stability is ensured if the symmetric matrix AþAT40 is positive
definite (that is, has all eigenvalues positive; (24) and Supplementary Note 1G).
In fact, nearly all feasible competition systems are globally stable, with rare
counterexamples appearing only for g40.71 when the number of species n
is not large (Fig. 2a (magenta)) as proven in Supplementary Note 1G.

When Google meets Lotka–Volterra. The simplest Google matrix is of the form:

G ¼ 1� cð ÞAþ cE

where E is a matrix with Eij¼ 1/n. The matrix A is an nxn stochastic matrix whose
row sums add to unity, that is, Ae¼ e, e¼ [1, 1, 1, y., 1, 1]0 . Matrix A usually
represents a scaled directed network such as the world-wide-web. The Google
matrix G has two special properties. (I) First, there is a left-eigenvector p of G such
that pG¼ p, referred to as the PageRank vector, that provides a rank of the relative
importance of the nodes (/webpages) in the network17. (II) A second property
concerns the eigenvalues of A. Specifically, if A has eigenvalues l1¼ 1, l2, y,
ln� 1, ln, then the eigenvalues of G are18 l1¼ 1, (1� c)l2, y, (1� c)ln� 1,
(1� c)ln. It is important that the ‘damping factor’ c is in the range 0oco1,
because this gaurantees a unique solution for the PageRank vector and one that can
be computed in a fast way and whose convergence is assured.

A more general Google matrix is of the form G¼ 1� cð ÞAþ c uvT where A is an
nxn matrix (not necessarily stochastic) and u is a right eigenvector of A. In the case
of the Lotka–Volterra competition model, the interaction matrix is:

A ¼ AM þ cE ¼ 1� cð Þ IþB0½ � þ c e:eT

where the matrix of ones is E¼ e.eT and. eT¼ [1, 1, 1, y 1, 1] and AM is the May
stability matrix. But A is not a Google matrix since e is not a right eigenvector of A,
and thus neither of the two properties above will hold. However, at equilibrium the
LV equations also satisfy the additional constraint AN*¼ e, where N* is the vector
of equilibrium populations. Using this, it is easy to show that the stability matrix
S¼DA is a Google matrix. Because of the scaling involved and property II above,
all but one of the eigenvalues of S¼DA are identical to the eigenvalues of the May
stability matrix DAM (ref. 19; Supplementary Notes 1F and 4).

Feasibilty lost before stability. For competition systems see main text. A similar
generic mechanism is found for CM-systems. As the mutualistic interaction
strength m increases from zero in Fig. 3b, many of the equilibrium populations
grow exponentially, and ultimately reach unsustainable levels. Thus feasibility is
lost at m¼ 0.19, well before the population ‘blow-up’ point at m¼ 0.27 where
stability of the interaction matrix is always lost. The mechanism reflects an intrinsic
bifurcation instability of the CM-model whereby at high levels of mutualism,
species with large abundances drive weaker species to low levels and then ‘negative’
values so that feasibility is lost before stability is lost. For this reason, all feasible
CM-models examined here are stable, as explained in more depth in
Supplementary Note 2E.

CM-systems and the subdominant eigenvalue. Intriguingly l2(M) is a direct
proxy for interaction variability and our analysis finds it composed of two
components: l2(M)¼Rand1þRand2 (Supplementary Note 2D). (i) Rand1 represents
the variability or ‘spread’ of the structural disturbances bij, via the parameter v.
Surprisingly, this component has negligible impact unless connectance is extreme for
example, qE1. (ii) Rand2 represents the randomness induced by connectivity itself,
since each interaction has a probability q of being nonzero. This component eclipses
the former when 0.1oqo0.9. Figure 4e shows how the height h(D) and thus area of
the stability triangle, depends on q according to both simulations and mathematical
predictions (Supplementary Note 2D). Unusually, h(D) is almost constant and of low
magnitude for 0.1oqo0.9. In this regime, a network’s connectivity has large
restrictive impact on the area of D, and thus structural stability.

Data availability. The study required analysis of 21 empirical mutualism net-
works. The data were chosen based on the networks analysed in the paper of
Rohr et al. (ref. 6) and published at www.web-of-life.es.
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