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Abstract Wemodel the spread of an SI (Susceptible→ Infectious) sexually transmit-
ted infection on a dynamic homosexual network. The network consists of individuals
with a dynamically varying number of partners. There is demographic turnover due to
individuals entering the population at a constant rate and leaving the population after
an exponentially distributed time. Infection is transmitted in partnerships between
susceptible and infected individuals. We assume that the state of an individual in this
structured population is specified by its disease status and its numbers of susceptible
and infected partners. Therefore the state of an individual changes through partnership
dynamics and transmission of infection. We assume that an individual has precisely n
‘sites’ at which a partner can be bound, all of which behave independently from one
another as far as forming and dissolving partnerships are concerned. The population
level dynamics of partnerships and disease transmission can be described by a set of
(n + 1)(n + 2) differential equations. We characterize the basic reproduction ratio R0
using the next-generation-matrix method. Using the interpretation of R0 we show that
we can reduce the number of states-at-infection n to only considering three states-at-
infection. This means that the stability analysis of the disease-free steady state of an
(n+1)(n+2)-dimensional system is reduced to determining the dominant eigenvalue
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of a 3 × 3 matrix. We then show that a further reduction to a 2 × 2 matrix is possible
where all matrix entries are in explicit form. This implies that an explicit expression
for R0 can be found for every value of n.

Keywords SI-infection · Mean field at distance one · Dynamic network ·
Concurrency · R0

Mathematics Subject Classification 34D20 · 92D30

1 Introduction

The role that concurrent partnerships might play in the spread of HIV in sub-Saharan
Africa is the subject of an ongoing debate. While simulation studies have shown the
large impact that concurrency potentially has on the epidemic growth rate and the
endemic prevalence of HIV (Kretzschmar and Morris 1996; Morris and Kretzschmar
1997, 2000; Eaton et al. 2011; Goodreau 2011), the empirical evidence for such a
relationship is inconclusive (Lurie and Rosenthal 2010; Reniers and Watkins 2010;
Tanser et al. 2011; Kenyon and Colebunders 2012).

Mathematical modelling results have played a key role in fuelling the debate (Watts
and May 1992; Kretzschmar and Morris 1996; Morris and Kretzschmar 1997, 2000;
Eaton et al. 2011; Goodreau 2011). However, a mathematical framework suitable to
derive analytical results is still lacking. At present, simulation studies prevail, and
general theory is mainly focused on static networks (Diekmann et al. 1998; Ball
and Neal 2008; House and Keeling 2011; Lindquist et al. 2011; Miller et al. 2012;
Miller and Volz 2013). This motivated us to develop and analyse a mathematical
model for the spread of an SI (Susceptible–Infectious) infection along a dynamic
network.

In a previous paper (Leung et al. 2012) a model for a dynamic sexual network
of a homosexual population is presented that incorporates demographic turnover and
allows for individuals to have multiple partners at the same time, with the number
of partners varying over time. This network model can be seen as a generalization
of the pair formation models (that describe sequentially monogamous populations)
to situations where individuals are allowed more than one partner at a time. Pair for-
mation models were first introduced into epidemiology by Dietz and Hadeler (1988)
and extended in various ways (Kretzschmar et al. 1994; Inaba 1997; Kretzschmar
and Dietz 1998; Xiridou et al. 2003; Heijne et al. 2011; Powers et al. 2011). In the
present generalization, individuals have at most n partners at a time. We call n the
partnership capacity. In the partnership network individuals are, essentially, collec-
tions of n ‘binding sites’ where binding sites can be either ‘free’ or ‘occupied’ (by a
partner). In the case that n = 1 we recover the pair formation model of a monogamous
population.

Consider an individual in the sexual network. Since individuals may have several
partners simultaneously, the risk of acquiring infection depends on that individual’s
partners, but also on their partners, and so on.Wewould need to keep track of the entire
network to fully characterize the risk of infection to an individual. Here we introduce
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SI infection on a dynamic partnership network: ... 3

an approximation rather than taking full network information into account: we assume
that properties concerning partners of partners can be obtained by averaging over the
population. This approximation is termed the ‘mean field at distance one’ assumption
(‘mean field at distance one’ should be read as one term; from here on we write this
without quotation marks). This assumption relates to what is called ‘effective degree’
in Lindquist et al. (2011), where transmission of infection along a static network is
studied (we are, apart from Britton and Lindholm 2010; Britton et al. 2011), not aware
of any analytical work so far, on disease transmission across dynamic networks with
demography (see e.g. Altmann 1995, 1998; Ferguson and Garnett 2000; Bansal et
al. 2010; Kiss et al. 2012; Miller and Volz 2013) and references therein for models
incorporating dynamic partnerships in a demographically closed population).

The mean field at distance one assumption is a moment closure approximation
obtained by ignoring certain correlations between the states of two individuals that
are in a partnership and, as a consequence, this assumption is inconsistent with the
assumptions that underlie the partnership network (see e.g. Ferguson andGarnett 2000;
Kamp 2010; House and Keeling 2011; Taylor et al. 2012) and references therein for
different moment closure approximations on networks). However, this assumption
allows us to write down a closed system of ODEs to describe an approximation of the
SI infection on the partnership network. If a partnership capacity n is given, then we
have an (n + 1)(n + 2) dimensional system of ODEs.

A large part of the paper is devoted to characterizing the basic reproduction number
R0 and proving its threshold character for the nonlinear system of ODEs. This system
is quite large already for small n. However, by considering only states-at-infection and
using the next-generation matrix approach, R0 can be characterized as the dominant
eigenvalue of an n × n matrix. Using the interpretation we can further reduce this and
R0 can ultimately be characterized as the dominant eigenvalue of a 2×2 matrix where
the entries of this matrix are explicit, and therefore also R0 has an explicit expression.
In fact, we are able to interpret R0 in terms of individuals (which are considered in
the model specification) and in terms of binding sites.

The structure of the paper is as follows. First, in Sect. 2, we consider the partnership
network of Leung et al. (2012) and summarize the main results needed for this paper.
Next, in Sect. 3 we superimpose an SI-infection on the network and specify the model
assumptions. Particular attention is given to the mean field at distance one assumption.
The rest of the paper is devoted to characterizing the basic reproduction number R0.
For this, in Sect. 4, we first consider the linearisation of the system.

In Sect. 5, which constitutes the core of the paper, we characterize R0 in terms of
newly infected binding sites that produce newly infected binding sites. We introduce
a transition matrix Σ and a transmission matrix T and define R0 as the dominant
eigenvalue of the next generation matrix−TΣ−1 (Diekmann et al. 2013, Section 7.2).
The building blocks for an explicit expression for R0 are presented in Appendix C.We
also show that R0 thus defined can be interpreted as the basic reproduction ratio for
individuals, since individuals can be considered to be collections of n binding sites.
Section 5 can be read independently of the rest of the paper.

The characterization of R0 in Sect. 5 does not, by itself, provide a mathematical
proof that the disease-free steady state is stable for R0 < 1 and unstable for R0 > 1.
We provide such a proof in Sect. 6. The proof is based on the Perron–Frobenius theory
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of spectral properties of positive and positive-off-diagonal irreducible matrices. In
particular we use that

– sign(R0 − 1) = sign(r) where r is the Malthusian parameter (i.e. the dominant
eigenvalue) of the matrix T + Σ

– the linearised system derived in Sect. 4 can be mapped in a natural way to the
binding-site system defined by the matrices Σ and T , while preserving positivity.

The final Sect. 7 provides conclusions and plans for future work. Some more tech-
nical calculations are left for the six appendices. In particular, in Appendix B we show
with explicit calculations for the case n = 2 (suggested to us by Pieter Trapman (per-
sonal communication, 26 August, 2013)) that states of partners are not independent
of one another, implying that the mean field at distance one assumption yields only
an approximate and not an exact description.

2 The partnership network

In this section we will give a summary of the specification of the partnership network
and of the main results presented in Leung et al. (2012).

Consider a population of homosexual individuals—all with partnership capacity
n. The partnership capacity is the maximum number of simultaneous partners an
individualmay have. Onemay think of an individual as having n binding sites. Binding
sites are either ‘occupied’ (by a partner) or ‘free’. We assume that binding sites of an
individual behave independently from one another as far as forming and dissolving
partnerships are concerned. Furthermore, individuals enter (‘birth’) and leave (‘death’)
the sexually active population.

The model specification begins at the individual level. The state of an individual is
given by k, the number of occupied binding sites, k = 0, . . . , n. Consider one individ-
ual born at time tb and suppose it does not die in the time interval under consideration.
An occupied binding site becomes free at rate σ + μ, where σ corresponds to ‘sepa-
ration’ and μ to ‘death of partner’. A free binding site becomes occupied at rate ρF ,
where F denotes the fraction of free binding sites in the pool of all binding sites in
the population. The possible state transitions and the rates at which they occur are:

k → k + 1 with rate ρ(n − k)F,

k → k − 1 with rate (σ + μ)k.

The probability that an individual is in state k at age a is denoted by pk(tb, a), where
tb denotes the time of birth. A newborn individual has n free binding sites, i.e.

p(tb, 0) =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠.

Let A = A(F) denote the matrix corresponding to the state transitions described
above. So, as an example, for n = 2, the matrix A is as follows:
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A =
⎛
⎝

−2ρF σ + μ 0
2ρF −(ρF + σ + μ) 2(σ + μ)

0 ρF −2(σ + μ)

⎞
⎠.

Note that, throughout this paper, we will use the convention that, for a transition
matrix M = (mi j ), mi j denotes the probability per unit of time at which a transition
from j to i is made (instead of the transition from i to j , as it is common in the
stochastic community.)

Then, as long as the individual does not die, we have

∂p

∂a
(tb, a) = A(F(tb + a))p(tb, a).

We assume a stationary age distribution which is exponential with parameter μ, so it
has probability density function

a �→ μe−μa . (1)

Then, in a deterministic description of a large population, the fraction of the population
in state k at time t is

Pk(t) =
∞∫

0

μe−μa pk(t − a, a)da =
t∫

−∞
μe−μ(t−α) pk(α, t − α)dα. (2)

The fraction of free binding sites F is defined as

F(t) = 1

n

n∑
k=0

(n − k)Pk(t). (3)

Due to the assumption of independence of binding sites with respect to partnership
dynamics, the dynamics of F decouple as stated in Lemma 1 below (the proof is
presented in Leung et al. 2012).

Lemma 1 The fraction of free binding sites F satisfies the differential equation

dF

dt
= μ + (σ + μ)(1 − F) − ρF2 − μF. (4)

Consequently,

F(t) → F̄,

for t → ∞, where

F̄ =
√

(σ + 2μ)(4ρ + σ + 2μ) − (σ + 2μ)

2ρ
. (5)
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This convergence to F̄ motivates us to take F constant and equal to F̄ (note,
incidentally, that F̄ does not depend on the partnership capacity n). As a consequence
the argument tb in pk(tb, a) no longer matters and Pk(t) = Pk is independent of time.
In fact, one finds that

Pk =
(
n
k

) ∞∫

0

μe−μaε(a)k(1 − ε(a))n−kda,

where

ε(a) = ρ F̄

ρ F̄ + σ + μ
(1 − e−(ρ F̄+σ+μ)a)

is the probability that a binding site is occupied at age a, given that the ‘owner’ of the
binding site is alive. . We can get rid of the integral by using the binomium of Newton
to expand ε(a)k(1 − ε(a))n−k and compute the integral of an exponential function:

Pk =
(
n

k

)
μ

(
ρ F̄

ρ F̄ + σ + μ

)n

n−k∑
j=0

k∑
i=0

(
n − k

j

)(
k

i

)
(−1)i

(
σ + μ

ρ F̄

) j 1

μ + (ρ F̄ + σ + μ)(n − k − j + i)
.

(6)

So we have explicit expressions for the degree distribution P = (Pk)nk=0.
There are two probability distributions that play amore important role in the charac-

terization of R0. First, consider an individual that acquires a newpartner.We assume, in
accordance with (3), that this newly acquired partner will have state k with probability

qk = (n − k + 1)Pk−1∑n
l=0(n − l)Pl

= (n − k + 1)Pk−1

nF̄
. (7)

(A potential partner with state k − 1 has (n − k + 1) free binding sites. Immediately
after a match is made it will have state k. The denominator serves to renormalise into
a probability distribution.) This assumption gives us information on the state of an
individual in a randomly chosen partnership, as expressed in the next lemma.

Lemma 2 Choose an individual by first sampling a partnership from the pool of all
partnerships and next choosing one of the two partners at random. The probability
that this individual has k partners equals

Qk = kPk∑n
l=1 l Pl

= kPk
n(1 − F̄)

. (8)
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Note that Lemma 2 does not imply that the states of the two individuals in this
partnership are independent of one another. Indeed, they are not. Information about
the number of partners of one of the individuals provides some information about the
duration of the partnership and thus influences the probability that the other individual
has k partners (or, in other words, there exists degree correlation in this network); see
Appendix B for explicit calculations for n = 2. (We have, so far, not calculated degree
correlations for general n.)

Note that the model specification is deterministic in the sense that it concerns
expected values for a population of infinite size. Partnership formation is at random
between two free binding sites. As a consequence of mass action and infinite popu-
lation size, partnership formation with oneself or multiple partnerships with the same
individual occur with probability zero. For the same reason clustering does not occur
in the network. It should be possible to formulate a stochastic version for a population
of size N and derive the present description by considering the limit N → ∞. We
conjecture that all the previous statements hold in the limit. In particular clustering
disappears in the limit, i.e. the probability that a path of a fixed finite length contains
a loop goes to zero in the limit.

Finally, to summarize, we have three degree distributions, i.e. probability distrib-
utions for the number of partners of an individual, that we will use throughout this
paper:

– P = (Pk) for a random individual,
– q = (qk) for an individual who just acquired a partner (but is otherwise randomly
chosen),

– Q = (Qk) for an individual in a randomly chosen partnership.

3 Superimposing transmission of an infectious disease

We consider an SI infection spreading on the dynamic sexual network described in
Sect. 2. We assume that individuals become infectious at the very instant that they
become infected and stay infectious (with the same infectiousness) for the rest of their
life.

3.1 i-states and i-dynamics

The model specification begins at the i-level (i for individual). We classify individuals
as either susceptible (indicated by the symbol −) or infectious (indicated by +). We
assume that the± classification has no influence whatsoever on partnership formation
and separation nor on the probability per unit of time of dying.

The state of an individual is now a triple (x, k−, k+), where x is either + or − and
k− and k+ are nonnegative integers with 0 ≤ k−+k+ ≤ n. The x specifies whether the
individual itself is susceptible or infectious, k− specifies the number of its susceptible
partners, and k+ specifies the number of its infectious partners.
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8 K. Y. Leung et al.

3.1.1 Demographic change of i-states

Consider an individual and suppose it does not die in the period under consideration.
There are two types of state transitions: those that contribute to demography and those
that involve transmission of infection.

We let F− denote the fraction of the total pool of binding sites that is free and
belongs to a susceptible individual and let F+ denote the fraction that is free and
belongs to an infectious individual so F− + F+ = F̄ . We shall say that a binding site
is susceptible or infectious if the ‘owner’ is so.

The possible state transitions and corresponding rates that involve partnership for-
mation, separation, and death of a partner are as follows:

(±, k−, k+) → (±, k− − 1, k+) with rate (σ + μ)k− (separation from or

death of a susceptible partner),

(±, k−, k+) → (±, k−, k+ − 1) with rate (σ + μ)k+ (separation from or

death of an infectious partner),

(±, k−, k+) → (±, k− + 1, k+) with rate ρF−(n − k− − k+) (acquisition of a

new partner who happens to be susceptible),

(±, k−, k+) → (±, k−, k+ + 1) with rate ρF+(n − k− − k+) (acquisition of

a new partner who happens to be infectious).

3.1.2 Transmission (mean field at distance one)

Next, consider the transmission events. A susceptible having a binding site that is
occupied by an infectious partner, gets infected by this partner at rate β. There is more
than one way in which transmission events show up as i-level state transitions. First
of all, we have the possibility that a susceptible individual u gets infected by one of
its infectious partners. This occurs at rate β times the number of infectious partners u
has, i.e.,

(−, k−, k+) → (+, k−, k+) with rate βk+.

Here we have assumed that the frequency of sex acts within one partnership does not
depend on concurrent other partnerships.

It is also possible that a partner v of u (with u either susceptible or infectious)
becomes infected by one of v’s infectious partners (which includes u if u is infectious).
Of course the probability that this happens depends on the actual configuration in terms
of number of partners of v and their infection status. That information is, however, not
incorporated in our description.

Therefore, we assume that we can average over all possibilities (we call this ‘mean
field at distance one’). This assumption is an approximation that we make in order
to close the infectious disease model within our limited bookkeeping framework; we
will come back to this in more detail in Sect. 3.2.2. More concretely we assume that
rates Λ±(t) exist such that
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(−, k−, k+) → (−, k− − 1, k+ + 1) with rate βΛ−(t)k−,

(+, k−, k+) → (+, k− − 1, k+ + 1) with rate βΛ+(t)k−, (9)

and that we can specify Λ±(t) as appropriate population averages. But before we can
provide this specification in Sect. 3.2.2, we have to define the relevant population-level
quantities. For this we need to first consider the i-level dynamics.

3.1.3 i-level dynamics

We have now described all i-states and the possible changes in i-states. The i-level
dynamics are as follows. Newborn individuals are in state (−, 0, 0) (we call this the
i-state-at-birth), i.e. at birth an individual is susceptible and has no partner at all. Let
p
(tb, a) denote the probability that an individual born at time tb is in state 
 at age
a given that the individual does not die in the period under consideration, where 
 is
any allowed triple (±, k−, k+). By choosing a way to order the 
’s, we can think of p
as a vector. This ordering then also allows us to construct a matrix

B = B(F±,Λ±)

on the basis of the transition rates that are described in Sects. 3.1.1 and 3.1.2.
Then thematrix B allows us to describe the dynamics of p. As long as the individual

does not die,
∂p

∂a
(tb, a) = B (F±(tb + a),Λ±(tb + a)) p(tb, a), (10)

with

p(tb, 0) =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ (11)

if (−, 0, 0) is chosen as the first triple in our list.
Finally, as an example, we write out the matrix B for n = 2. If we order the twelve

states (±, k−, k+) as (−, 0, 0), (−, 1, 0), (−, 2, 0), (−, 0, 1), (−, 1, 1), (−, 0, 2),
(+, 0, 0), (+, 1, 0), (+, 2, 0), (+, 0, 1), (+, 1, 1), (+, 0, 2), then B is of the form

B =
(
B1 0
B2 B3

)
,

with the Bi being 6 × 6 matrices. B1 describes the transitions between − states:

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(B1)11 σ + μ 0 σ + μ 0 0
2ρF− (B1)22 2(σ + μ) 0 σ + μ 0
0 ρF− (B1)33 0 0 0

2ρF+ βΛ− 0 (B1)44 σ + μ 2(σ + μ)

0 ρF+ 2βΛ− ρF− (B1)55 0
0 0 0 ρF+ βΛ− (B1)66

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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10 K. Y. Leung et al.

with (B1) j j = −∑6
i=1((B1)i j + (B2)i j ), and where B2 describes the transitions from

− to + states:

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 β 0 0
0 0 0 0 β 0
0 0 0 0 0 2β

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and B3 describes the transitions between + states:

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(B3)11 σ + μ 0 σ + μ 0 0
2ρF− (B3)22 2(σ + μ) 0 σ + μ 0
0 ρF− (B3)33 0 0 0

2ρF+ βΛ+ 0 (B3)44 σ + μ 2(σ + μ)

0 ρF+ 2βΛ+ ρF− (B3)55 0
0 0 0 ρF+ βΛ+ (B3)66

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with (B3) j j = −∑6
i=1(B3)i j . So in thisway, one can construct thematrix B explicitly.

3.2 Bookkeeping on the p-level and feedback

We have now specified the i-level dynamics. In this section we consider the p-level (p
for population) and the feedback to the i-level via the variables F± and Λ±.

3.2.1 Bookkeeping

In a deterministic description of a large population

P
(t) =
∞∫

0

μe−μa p
(t − a, a)da =
t∫

−∞
μe−μ(t−α) p
(α, t − α)dα, (12)

is the fraction of the population that is in state 
 at time t . In Sect. 3.3 we rewrite these
identities as differential equations.

3.2.2 Feedback

It remains to provide the feedback relations that express the individual level input
variables F±(t) andΛ±(t) in terms of output variables at the population level. Directly
from the interpretation it follows that we should take

F±(t) = 1

n

n∑
k+=0

n−k+∑
k−=0

(n − k− − k+)P(±,k−,k+)(t). (13)
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The only unknown terms left are the mean field at distance one rates Λ±(t). In the
remainder of this section we define these rates and explain why our description is not
exact.

Consider a transition of an individual u, with u in state (±, k−, k+) → (±, k− −
1, k+ + 1). This transition occurs when a susceptible partner v of the focus individual
u in state (±, k−, k+) gets infected. The rate at which v gets infected depends on the
number of infectious partners v has. However, we only know that v is a susceptible
partner of u.

Note that we can not distinguish between two susceptible partners v1 and v2 of
an individual u and that the states of v1 and v2 are correlated in the same way with
the state of u. In particular, the probability that v1 is in state (−,m−,m+) is equal
to the probability that v2 is in that state. Therefore, we are interested in probabilities
λ(m+|(±, k−, k+)), whereλ(m+|(±, k−, k+))denotes the conditional probability that
a susceptible partner of an individual in state (±, k−, k+) has itself m+ infectious
partners. The force of infection on a susceptible individual with m+ partners is βm+.
Therefore, by averaging over all possibilities, we obtain the following rates for the
corresponding transitions:

(−, k−, k+) → (−, k− − 1, k+ + 1) with rate k−
n−1∑
m+=0

βm+λ(m+|(−, k−, k+)),

(+, k−, k+) → (+, k− − 1, k+ + 1) with rate k−
n∑

m+=1

βm+λ(m+|(+, k−, k+)).

We now make the simplifying assumption that the probability that a susceptible
partner of u has m+ infectious partners does not depend on the exact state of u but
only on u being susceptible or infectious. More precisely, we assume that we can
approximate λ(m+|(±, k−, k+)) by

λ±(m+),

where λ−(m+) is the conditional probability that v has m+ infectious partners, given
that v is susceptible and v is a partner of susceptible individual u and λ+(m+) is that
same conditional probability when v is a partner of infectious individual u. In fact, as
we explain in Appendix B, the probabilities λ±(m+) are really an approximation of
λ(m+|(±, k−, k+)) as these probabilities ignore correlations of u and v, i.e. between
the states of two individuals that are in a partnership. Note that for certain static
networks one can actually justify the mean field at distance one assumption for SI and
SIR infection (but presumably not for SIS), see (Decreusefond et al. 2012; Barbour
and Reinert 2013).

Assuming a two-type version of (8) we define

λ−(m+) =
∑n−m+

m−=1 m−P(−,m−,m+)(t)
∑n−1

l+=0
∑n−l+

l−=1 l−P(−,l−,l+)(t)
, (14)
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12 K. Y. Leung et al.

with the convention that λ−(m+) = 0 if the denominator equals zero, and

λ+(m+) =
∑n−m+

m−=0 m+P(−,m−,m+)(t)
∑n

l+=1
∑n−l+

l−=0 l+P(−,l−,l+)(t)
, (15)

with the convention that λ+(1) = 1 and λ+(m+) = 0 for m+ > 1, if the denominator
equals zero. The explanation of (14) and (15) is as follows. In both cases, we consider
the probability that the state of v is (−,m−,m+), given that v is susceptible and v has
a partner u. In the case of (14), u is susceptible, so, if we also take into account that u is
one of the m− susceptible partners of v, the probability that v is in state (−,m−,m+)

is

m−P(−,m−,m+)(t)∑n−1
l+=0

∑n−l+
l−=1 l−P(−,l−,l+)(t)

cf. Lemma 2. Similarly, in the case of (15), we ‘arrive’ at v via its link to the infectious
u, so then the probability that v is in state (−,m−,m+) is

m+P(−,m−,m+)(t)∑n−1
l+=0

∑n−l+
l−=1 l+P(−,l−,l+)(t)

.

In both cases, the denominator serves to normalize.
The mean field at distance one terms Λ± in (9) are now specified by

Λ−(t) =
n−1∑
m+=1

m+λ−(m+) (16)

with λ−(m+) given by (14), and

Λ+(t) =
n∑

m+=1

m+λ+(m+) = 1 +
n∑

m+=2

(m+ − 1)λ+(m+), (17)

with λ+(m+) given by (15). (For mean field at distance one terms also see Lindquist
et al. 2011.)

Note that, from an individual-based perspective, (16) and (17) are the only formulas
consistent with our assumption that u’s susceptible partners are subject to a force of
infection βΛ± depending only on t and u’s infection status ± (and not on the number
of susceptible and infectious partners of u cf. Appendix B). Hence our choice of the
term ‘mean field at distance one’ for the latter assumption.
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3.3 The p-level differential equations

In a deterministic description of a large population, P(±,k−,k+) denotes the fraction of
the population in state (±, k−, k+)We take as the convention that the P(±,k−,k+) should
be interpreted as zero when k− + k+ > n, k− < 0, or k+ < 0. By differentiation
of (12) and using (10)–(11) for p, we obtain the following set of (n + 1)(n + 2)
differential equations:

dP(−,0,0)

dt
= μ − (ρ F̄n + μ)P(−,0,0) + (σ + μ)(P(−,1,0) + P(−,0,1))

dP(−,k−,k+)

dt
= − (

ρ F̄(n − k− − k+) + (σ + μ)(k− + k+)

+βk+ + βΛ−k− + μ) P(−,k−,k+)

+ ρF−(n − k− − k+ + 1)P(−,k−−1,k+)

+ ρF+(n − k− − k+ + 1)P(−,k−,k+−1)

+ (σ + μ)
(
(k− + 1)P(−,k−+1,k+) + (k+ + 1)P(−,k−,k++1)

)

+ βΛ−(k− + 1)P(−,k−+1,k+−1)

dP(+,k−,k+)

dt
=− (

ρ F̄(n − k− − k+) + (σ + μ)(k− + k+)+βΛ+k− + μ
)
P(+,k−,k+)

+ ρF−(n − k− − k+ + 1)P(+,k−−1,k+)

+ ρF+(n − k− − k+ + 1)P(+,k−,k+−1)

+ (σ + μ)
(
(k− + 1)P(+,k−+1,k+) + (k+ + 1)P(+,k−,k++1)

)

+ βΛ+(k− + 1)P(+,k−+1,k+−1) + βk+P(−,k−,k+).

Choose the same ordering of the 
’s as before with the i-states in Sect. 3.2 and let P
denote the corresponding vector of the variables P
. In matrix notation, we have

dP

dt
= μ1(−,0,0) + B (F±,Λ±) P − μP, (18)

where 1(−,0,0) is the indicator function of (−, 0, 0), and B is the matrix corresponding
to the rates of the state transitions described in Sects. 3.1.1 and 3.1.2.

3.3.1 Consistency relations

The P
 are related to each other by:

n∑
k+=0

n−k+∑
k−=0

k+P(−,k−,k+)(t) =
n∑

k+=0

n−k+∑
k−=0

k−P(+,k−,k+)(t), (19)

This is evident from the interpretation, since both terms denote the number of SI
partnerships, i.e. the number of partnerships involving an infectious and a susceptible
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14 K. Y. Leung et al.

individual. The proof of (19) starts by differentiating both left- and right hand side
with respect to t and continues by inserting components of (18); this is worked out
for a similar situation in (Lindquist et al. 2011, Appendix B).

We have assumed that the infectious disease has no influence on the partnership
formation and separation or on the probability per unit of time of dying. Therefore, the
disease-free partnership network is embedded in (18) and the fraction of individuals
in the population in state k at time t is equal to

Pk(t) =
∑

k−+k+=k

(
P(−,k−,k+)(t) + P(+,k−,k+)(t)

)
. (20)

Furthermore, the dynamics of partnerships in the population are governed by the
sum of the fraction of free susceptible and the fraction of free infectious binding sites,
which is equal to the total fraction of free binding sites, i.e. F−(t) + F+(t) = F(t).
As a consequence, the set characterized by

F−(t) + F+(t) = F̄ (21)

is invariant and attracting. Therefore, also in the network with infection superimposed,
we consider F(t) constant and equal to F̄ (see Lemma 1). Likewise, we can consider
the left hand side of (20) as constant in time and given by (6).

4 Linearisation and the map L

In this section we linearise system (18) around the disease-free equilibrium. Next
we show that we can reduce the dimension of the linearised system and consider
only the variables P(−,k−,1) and P(+,k−,k+). In Sect. 6 we will use this reduced lin-
earised system to prove that the basic reproduction number R0, that we characterize
in Sect. 5, indeed provides a threshold value of 1 for the disease free steady state of
system (18) to become unstable. To this end we define a map L in Sect. 4.2, which
allows us to relate, in the linearisation, population-level fractions of individuals (that
we consider in the present section) to fractions of binding sites (that we consider in
Sect. 5).

4.1 Linearisation

Note that the disease-free equilibrium is given by

P(−,k,0)(t) = Pk,

0 ≤ k ≤ n, and P
(t) = 0 for all triplets 
 not of the form (−, k, 0).
Next, note that we can use relationship (21) in order to replace F− by F̄ − F+

(note that this last expression does not involve any variable of the form P(−,k,0)).
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SI infection on a dynamic partnership network: ... 15

Next, we can reduce the dimension of the system by n+1 by eliminating the P(−,k,0),
k = 0, . . . , n, from the system using relation (20).

Consider the differential equations for P(−,k−,1), 0 ≤ k− ≤ n − 1, explicitly given
by

dP(−,k−,1)

dt
= − (

ρ F̄(n − k−−1) + (σ + μ)(k− + 1) + β + βΛ−k− + μ
)
P(−,k−,1)

+ ρ(F̄ − F+)(n − k−)P(−,k−−1,1) + ρF+(n − k−)P(−,k−,0)

+ (σ + μ)
(
(k− + 1)P(−,k−+1,1) + 2P(−,k−,2)

)

+ βΛ−(k− + 1)P(−,k−+1,0)

(as one can verify by writing out the relevant part of (18)).
Then the only nonlinear terms are those that involve F+ or Λ± as a factor. In these

differential equations we find, among the nonlinear terms,

ρF+(n − k−)P(−,k−,0) (22)

and
βΛ−(k− + 1)P(−,k−+1,0). (23)

Trusting that it does not lead to confusion we will denote the variables in the
linearisation of (18) by the same symbols as the variables in the nonlinear system.

Linearisation of (22) yields

ρF+(n − k−)Pk−

where Pk− is the fraction of the population in state k− in the disease-free network and
F+ is defined as in (13), only now for the variables of the linearised system. For (23),
similarly replace P(−,k−+1,0) by Pk−+1 but next use the identity

(k− + 1)Pk−+1 = Qk−+1

∑
m

mPm

(cf. (8)). In the definition (16) of Λ− we take linearisation into account by adapting
the denominator of the expression for λ− in (14). More precisely, we replace that
denominator by

∑
m

mPm .

Note that this cancels the identical factor in the numerator. The upshot is that this sum
leads to the linearisation of (23) being equal to
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16 K. Y. Leung et al.

βQk−+1

n−1∑
j+=0

n− j+∑
j−=1

j+ j−P(−, j−, j+). (24)

In all other nonlinear terms, whenever F+ or Λ± multiplies P
 and P
 is zero in
the disease free steady state, simply put F+ respectively Λ± equal to their values in
the disease-free equilibrium, i.e.

F+ = 0

Λ− = 0

Λ+ = 1,

to obtain the corresponding term for the linearised system.
Thus we deduce that the linearised system is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(−,k−,1)

dt
= − (

ρ F̄(n − k− − 1) + (σ + μ)(k− + 1) + μ + β
)
P(−,k−,1)

+ ρF+(n − k−)Pk− + ρ F̄(n − k−)P(−,k−−1,1)

+ 2(σ + μ)P(−,k−,2) + (σ + μ)(k− + 1)P(−,k−+1,1)

+ βQk−+1

n−1∑
j+=0

n− j+∑
j−=1

j+ j−P(−, j−, j+),

dP(+,k−,k+)

dt
= − (

ρ F̄(n − k− − k+) + (σ + μ)(k+ + k−) + μ + βk−
)
P(+,k−,k+)

+ ρ F̄(n − k− − k+ + 1)P(+,k−−1,k+)

+ (σ + μ)(k− + 1)P(+,k−+1,k+) + (σ + μ)(k+ + 1)P(+,k−,k++1)

+ βk+P(−,k−,k+) + β(k− + 1)P(+,k−+1,k+−1),

and for k+ ≥ 2,

dP(−,k−,k+)

dt
= − (

ρ F̄(n − k− − k+) + (σ + μ)(k− + k+) + μ + βk+
)
P(−,k−,k+)

+ ρ F̄(n − k− − k+ + 1)P(−,k−−1,k+) + (σ + μ)(k− + 1)P(−,k−+1,k+)

+ (σ + μ)(k+ + 1)P(−,k−,k++1).

(25)

Remark 1 In Lemma 3 below we will show that we can simplify expression (24) to

βQk−+1

n−1∑
j−=0

j−P(−, j−,1).

Intuitively, one would expect that, in the linearisation, for k+ ≥ 2, P(−,k−k+)(t) =
0 for all t if P(−,k−k+)(0) = 0. Indeed, in the beginning of an epidemic very few
individuals in the population are infectious. It is already very unlikely for a susceptible
individual to have an infectious partner, so the probability that a susceptible individual
has more than one infectious partner should be negligible. That this is indeed the case,
is established in the following lemma.
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Lemma 3 In the linearised system (25), if P(−,k−k+)(0) = 0, then

P(−,k−,k+)(t) ≡ 0,

for k+ ≥ 2.

Proof We prove the lemma in four steps

Step 1. Observe first that the differential equations for P(−,k−,k+), k+ ≥ 2, form a
closed system, i.e. they do not depend on the remaining variables (see (25)).

Step 2. Observe that this closed system has a certain hierarchical structure, viz. the
subsystem for the variables

P(−, j,n−k),

0 ≤ j ≤ k, depends on the variables of the subsystems with a lower value
of k, but not on the variables of any subsystem with a higher value of k (the
reason is that both F+ and Λ− were put equal to zero to derive the equations
that we consider; recall that we focus on n − k ≥ 2).

Step 3. For k = 0 we have

dP(−,0,n)

dt
= − ((σ + μ)n + μ + βn) P(−,0,n)

so, if P(−,0,n)(0) = 0, then P(−,0,n) ≡ 0.
Step 4. Consider k = 1. The diagram in Fig. 1 shows at once that the zero state is

globally stable, i.e. if P(−, j,n−1)(0) = 0, then P(−, j,n−1) ≡ 0, j = 0, 1. For
k = 2, we have the diagram in Fig. 2, which shows that if P(−, j,n−2)(0) = 0,
then P(−, j,n−2) ≡ 0, j = 0, 1, 2.

By continuing in this way we establish that for all k with 0 ≤ k ≤ n − 2, if
P(−, j,n−k)(0) = 0, then P(−, j,n−k) ≡ 0, j = 0, 1, . . . , k. 	


Fig. 1 Diagram that shows that,
if P(−, j,n−1)(0) = 0, then
P(−, j,n−1) ≡ 0, j = 0, 1

j = 0 j = 1

σ + µ

ρ F
_

(β + σ + µ)(n-1) (β + σ + µ)(n-1)
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18 K. Y. Leung et al.

j = 0 j = 1

σ + µ

2 ρ

(β + σ + µ)(n-2) (β + σ + µ)(n-2)

j = 2

2(σ + µ)

   ρ

(β + σ + µ)(n-2)

 F
_

 F
_

Fig. 2 Diagram that shows that, if P(−, j,n−2)(0) = 0, then P(−, j,n−2) ≡ 0, j = 0, 1, 2

It follows that we are left to deal with the stability of the following linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(−,k−,1)

dt
= − (

ρ F̄(n − k− − 1) + (σ + μ)(k− + 1) + μ + β
)
P(−,k−,1)

+ ρF+(n − k−)Pk− + ρ F̄(n − k−)P(−,k−−1,1)

+ (σ + μ)(k− + 1)P(−,k−+1,1)

+ βQk−+1

n∑
l−=1

l−P(−,l−,1)

dP(+,k−,1)

dt
= − (

ρ F̄(n − k− − 1) + (σ + μ)(k− + 1) + μ + βk−
)
P(+,k−,1)

+ ρ F̄(n − k−)P(+,k−−1,1) + (σ + μ)(k− + 1)P(+,k−+1,1)

+ 2(σ + μ)P(+,k−,2) + β(k− + 1)P(+,k−+1,0) + βP(−,k−,1)

and for k+ = 0 and k+ ≥ 2,

dP(+,k−,k+)

dt
= − (

ρ F̄(n − k− − k+) + (σ + μ)(k− + k+) + μ + βk−
)
P(+,k−,k+)

+ ρ F̄(n − k− − k+ + 1)P(+,k−−1,k+) + (σ + μ)(k− + 1)P(+,k−+1,k+)

+ (σ + μ)(k+ + 1)P(+,k−,k++1) + β(k− + 1)P(+,k−+1,k+−1).

(26)

Recall definition (13) of F+. In the reduced linearised system (26) we are left with
variables P(−,k−,1) and P(+,k−,k+), k−, k+ ≥ 0, 0 ≤ k− + k+ ≤ n. Therefore, (26)
is a closed system. Furthermore, note that the dimension of the system is n + 1

2 (n +
1)(n + 2) = 1

2 (n
2 + 5n + 2) (where the contribution n comes from the P(−,k−,1) and

the 1
2 (n + 1)(n + 2) from the P(+,k−,k+)).

4.2 The map L

Order the P
 in some appropriate way, and denote the corresponding vector by P . We

define a linear map L from R
1
2 (n2+5n+2) to Rn+2 as follows:

L(P) =
⎛
⎜⎝

∑n
k+=0

∑n−k+
k−=0(n − k− − k+)P(+,k−,k+)(

P(−, j−1,1)
)n
j=1∑n

k+=0
∑n−k+

k−=0 k+P(+,k−,k+)

⎞
⎟⎠ . (27)
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Note that L maps the positive P-cone to the positive cone in R
n+2. In fact, if P is in

the interior of the positive cone, i.e. all vector elements are strictly positive, then

n∑
k+=0

n−k+∑
k−=0

(n − k− − k+)P(+,k−,k+) > 0,

since n − k− − k+ ≥ 0 for all k− + k+ < n, and P(+,k−,k+) > 0 for all k− and k+,

P(−, j,1) > 0,

and

n∑
k+=0

n−k+∑
k−=0

k+P(+,k−,k+) > 0,

since P(+,k−,k+) > 0 for all k− and we sum over k+ = 0, 1, 2, . . . , n. In particular it
follows that if L(P) = 0, then P = 0. We shall use this linear operator L in Sect. 6.

5 Dynamics of the binding sites of an infectious individual: characterization
of R0

By exploiting that an individual can be considered as a collection of n binding sites that
behave independently from one another as far as separation or acquiring a new partner
is concerned and by using our mean field at distance one assumption, we are able to
characterize R0 in terms of binding sites. In this section we only use the interpretation
of the model and we do not use the system (18) or its reduced linearisation (26). We
characterize R0 as the dominant eigenvalue of a next-generation matrix (NGM) that
we construct using the interpretation of the model.

The entries in the NGM can be viewed as expected offspring values for a multi-
type branching process (Jagers 1975; Haccou et al. 2005), with the two matrix-indices
specifying the type at birth of, respectively, offspring and parent. Several slightly
different branching processes may yield the same NGM and for the deterministic
theory (which is what we deal with here) there is no need to choose one of these as
‘the’ underlying process. A branching process corresponding to theNGM is subcritical
when R0 < 1 and supercriticalwhen R0 > 1.But does such abranchingprocess indeed
correspond to the linearisation of (18) in the disease free steady state? Especially for
n > 1 this is a nontrivial question. In Sect. 6 we will therefore prove that R0, as
computed from the NGM, is indeed a threshold parameter with threshold value one
for (18).

First, in Sect. 5.1, we consider the case n = 1. In Sect. 5.2 we generalize the
transition and transmission scheme to n > 1, and in Sect. 5.3 we characterize R0 on
the level of binding sites. We conclude this section by showing in Sect. 5.4 that R0
also has an interpretation in terms of individuals. The explicit expression for R0 and
the remainder of its derivation is left for Appendix C.
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CBA

σ + µ

σ + µ

 β

ρ µµµ  F
_

Fig. 3 Flow chart describing the possible transitions between states A, B and C and their corresponding
rates. Note that, in the beginning of the epidemic, only a few individuals in the population are infectious.
Therefore the probability that an infectious individual acquires an infectious partner is zero. This is repre-
sented in the flowchart where there is no direct arrow from A to C

Consider the usual setting for determining R0, i.e. suppose thatwe have a population
in which only a few individuals are infectious and all others are susceptible. We are
interested in the expected number of secondary cases caused by one ‘typical’ infectious
case.

5.1 The case n = 1

First, consider a population of individuals with partnership capacity n = 1. Then each
individual has exactly one binding site. If we now consider an infectious individual,
then its binding site can be in one of three states:

– A—free
– B—occupied by a susceptible partner
– C—occupied by an infectious partner

Please note that we recycle symbols: the A here has nothing to do with the matrix A of
Sect. 2 and the B here has nothing to do with the matrix B in (10) of Sect. 3. In Fig. 3
the possible state transitions and corresponding rates for an infectious individual are
given. Note that it is highly unlikely that an infectious individual acquires an infectious
partner in the beginning of an epidemic, and therefore there is no transition from A to
C .

We can characterize R0 by constructing an NGM K1 that involves a transmission
part T1 and a transition part Σ1.

Recall that we use the convention that, for a transition matrix M = (mi j ), mi j

denotes the probability per unit of time at which a transition from j to i occurs (instead
of the transition from i to j , as it is common in the stochastic community).

The matrices T1 and Σ1 are obtained as follows. Consider an infectious individual,
and order the states as A, B, C . Then the transitions of the individual’s binding site
are described by the following matrix Σ1 (see Fig. 3 for its graphical representation):

Σ1 =
⎛
⎝

−(ρ F̄ + μ) σ + μ σ + μ

ρ F̄ −(β + σ + 2μ) 0
0 β −(σ + 2μ)

⎞
⎠. (28)
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Here (Σ1)xy is the rate at which a transition from a binding site in state y to state x
occurs, x, y ∈ {A, B,C}, x �= y, and for the diagonal elements we have (Σ1)xx =
−(μ + ∑

y �=x (Σ1)yx ).
Consider an infectious individual u with its binding site in state B. If u infects its

susceptible partner v, then the binding site of u transits from B to C . This transition is
represented by (Σ1)CB = β > 0. In addition to this transition, an additionalC binding
site is created. Indeed, v is now also an infectious individual who has a binding site
occupied by an infectious partner (namely u). This shows that one transition from B
to C always creates one additional C binding site in the population. Accordingly we
define the transmission matrix T1:

T1 = β

⎛
⎝
0 0 0
0 0 0
0 1 0

⎞
⎠ . (29)

Using T1 and Σ1 we can construct the NGM K1:

K1 = T1(−Σ1)
−1.

The basic reproduction number R0 is defined as the dominant eigenvalue of K1 (Diek-
mann et al. 2013, Section 7.2).

In the present case we can, quite easily, give an explicit expression for R0. Note that
T1 has one-dimensional range spanned by the vector (0, 0, 1)′. Therefore (0, 0, 1)′ is
the eigenvector corresponding to the dominant eigenvalue R0. We find K1 applied to
this vector by first constructing (−Σ1)

−1 applied to this vector. This can be done by
either treating it as a linear algebra problem or we can use the interpretation for it:
(−(Σ1)

−1(0, 0, 1)′)x is the mean time spent in state x when starting in stateC , x = A,
B, C (in fact we only use x = B). We find that

(−Σ1)
−1

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎜⎜⎜⎝

σ+μ

μ(ρ F̄+σ+2μ)

ρ F̄(σ+μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

β(ρ F̄+μ)+μ(ρ F̄+σ+2μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

⎞
⎟⎟⎟⎠,

and subsequently,

K1

⎛
⎝
0
0
1

⎞
⎠ = βρ F̄(σ + μ)

μ(β + σ + 2μ)(ρ F̄ + σ + 2μ)

⎛
⎝
0
0
1

⎞
⎠,

from which we conclude that

R0 = βρ F̄(σ + μ)

μ(β + σ + 2μ)(ρ F̄ + σ + 2μ)
. (30)

Alternatively, we can characterize R0 by first step analysis; see Appendix A for the
details or Diekmann et al. (2013, Section 7.8) or Miller et al. (2012, formula (3.1.9))
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or Inaba (1997, Section 4.1). However, this does not have such a nice generalization
to n > 1 as the ABC scheme does.

5.2 Generalization of the transition and transmission matrix: n > 1

Now consider the case n > 1. In this case, an individual is a collection of n binding
sites. These binding sites may be free, occupied by a susceptible or occupied by an
infectious individual, i.e. in states A, B, or C , respectively. An infectious individual
can infect a susceptible individual in the population if it has a binding site that is
occupied by a susceptible individual. In that case, that binding site becomes occupied
by an infectious individual. Similar to the n = 1 situation we observe that if a binding
site makes a transition from ‘occupied by a susceptible individual’ to C , it creates a
new infectious individual in the population. However, we need to know in which states
the n binding sites of this new infectious individual are. Obviously, one new infectious
binding site is in state C , viz. the binding site still occupied by its epidemiological
parent. In order to know the states of the other n − 1 binding sites, we need to know
the number of (susceptible) partners of this individual at epidemiological birth.

Naively, motivated by Lemma 2, one would think (as we did at first) that the number
of partners of a newly infected individual is k (i.e. 1 binding site in stateC , k−1binding
sites in state B and n−k binding sites in state A) with probability Qk . The computation
of the corresponding R0 is rather straightforward (using the method explained in
Appendix A for n = 1). However, one can check numerically that the stability switch
of the disease free steady state of (18) does not coincide with R0 = 1 when R0 is
defined in this manner.We conclude that the premise is wrong. In retrospect this makes
sense. First of all, we know that q differs from Q, where q and Q are defined by (7)
and (8), respectively. In our model description we keep track of the number of partners
of an individual. We use mean field at distance one for the partners of partners of this
individual (and this shows up in the Λ± in the transmission events). So we need to do
the same when characterizing R0 and also take into account the partners of susceptible
partners. Therefore, we need to extend the information that is tracked in the scheme.

We generalize the ABC scheme of Sect. 5.1 as follows. Consider an infectious
binding site. Then this binding site can be in one of n + 2 states:

– A—free
– Bj—occupied by a susceptible partner that has j partners in total, j = 1, . . . , n
– C—occupied by an infectious partner.

Let B denote the collection of all states Bj . We denote the transition matrix of the
states A, Bj , j = 1, . . . , n, and C by Σ (see Fig. 4 for the corresponding flowchart),
where

Σ =
⎛
⎝

−(ρ F̄ + μ) σ + μ σ + μ

ρ F̄q ΣB 0
0 β −(σ + 2μ)

⎞
⎠ , (31)

where 0 denotes the n dimensional zero vector, σ + μ and β both denote an n-
dimensional row vector, namely
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Fig. 4 Flow chart describing
the possible transitions between
states A, B j , j = 1, . . . , n, and
C and their corresponding rates
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σ + μ = (σ + μ)
(
1 1 · · · 1),

β = β
(
1 1 · · · 1).

The vector q is the probability vector with elements qk given by (7), and ΣB is an
n × n matrix describing the transitions between the states B1, . . ., Bn and out of B;
see Fig. 4 for the corresponding flowchart.

Let’s describeΣB more carefully. The matrixΣB describes the transitions between
the Bj and out of B. Thus ΣB is an n × n tridiagonal matrix with negative diagonal
entries and positive off-diagonal entries. More specifically,

(ΣB) j−1, j = (σ + μ)( j − 1),

(ΣB) j, j = −(β + ρ F̄(n − j) + (σ + μ) j + μ),

(ΣB) j+1, j = ρ F̄(n − j).
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u          v
w

u          v
w

infectious individual
susceptible individual
free binding site
partnership

infection of v

Fig. 5 Illustration of the construction of T for n = 3. Suppose we start with an individual with two binding
sites in A and one binding site in B2. Then u has one susceptible partner v. If u infects v, then v will have
one binding site in C , one binding site in A, and one binding site will be occupied by a susceptible partner
w. In the example, w has three partners in total and therefore the binding site of v would be in state B3.
However, information about the partners of w is not incorporated in our model description and therefore
we assume that w has three partners with probability Q3

Indeed, a susceptible individual with 1 infectious and j −1 susceptible partners loses
one of these susceptible partners at rate (σ + μ)( j − 1), acquires a new susceptible
partner at rate ρ F̄(n − j), and, since it can also become infectious, lose its infectious
partner, or die (these last threemark transitions out ofB), the rate out of Bj is (ΣB) j, j =
−(β + ρ F̄(n − j) + (σ + μ) j + μ).

The other elements of Σ have the following interpretation. Note that, in the begin-
ning of an epidemic, a binding site in state A acquires a susceptible partner at rate ρ F̄ .
The probability that, just after the moment of acquisition, this susceptible partner has
in total j partners is q j in accordance with (7). Therefore, the rate at which a bind-
ing site in state A transits to state Bj is (Σ)Bj ,A = ρ F̄q j . In a similar way one can
use the interpretation (and the flowchart in Fig. 4) to find the other entries for the
matrix Σ .

Finally,we need to construct the transmissionmatrix T . A transmission corresponds
to a transition Bj → C , i.e. if an infectious individual u with a binding site in Bj

infects its partner v. This is included in the matrix Σ since (Σ)C,Bj = β > 0.
The transmission matrix T includes the binding sites of the newly infected partner
v. Concerning the binding sites of v, since it is now infectious, we observe that it
has one binding site in C , n − j binding sites in A and j − 1 binding sites will be
occupied by susceptible individuals, i.e. j − 1 binding sites will be in the set B (see
Fig. 5 for an illustration where u has a binding site in B2 that changes state to C
and v is the newly infected individual with one binding site in C , one binding site
in A and one binding site occupied by a susceptible individual). All that is left to
specify are the states of the j − 1 binding sites in B, i.e. we need to know how many
partners these susceptible partners of v have (in Fig. 5: how many partners does w

have).
The probability that a partner w of v has k partners depends on the state of v,

where v is in state (+, j − 1, 1) immediately after infection by u. However, as
another manifestation of the mean field at distance one assumption, we approximate
this probability by only taking into account that the susceptible individual w has at
least one partner v. Therefore, we assume that w has k partners with probability Qk

(cf. Lemma 2). In other words, we assume that a binding site of v occupied by a
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susceptible partner, i.e. a binding site in the set B, is in state Bk with probability
Qk .

Accordingly, we define the transmission matrix T as follows:

T = β
(
0 φ1 · · · φn 0

)
, (32)

where φ j is the n + 2 vector

φ j =
⎛
⎝

n − j
( j − 1)Q

1

⎞
⎠ = (n − j)ψA + ( j − 1)ψB + ψC , (33)

j = 1, . . . , n, where

ψA =
⎛
⎝
1
0
0

⎞
⎠, ψB =

⎛
⎝

0
Q
0

⎞
⎠, ψC =

⎛
⎝
0
0
1

⎞
⎠, (34)

and Q is the probability vector with components Qk given by (8). Note that the φ j

are a linear combination of the ψx , x ∈ {A,B,C}. We conclude that the range of T is
spanned by ψA, ψB, ψC .

In Sect. 5.4 we shall show that we can identify the φ j with an individual in state
(+, j − 1, 1), which allows us to interpret R0 in terms of individuals. But first, in
Sect. 5.3, we focus on the interpretation in terms of binding sites.

5.3 R0 in terms of binding sites

Now that we have defined the transition matrix Σ and the transmission matrix T ,
we are ready to define the basic reproduction ratio R0 for n > 1 as the dominant
eigenvalue of the matrix

T (−Σ)−1.

In order to underpin this, consider variables XA, XBj , and XC , where XA, XBj ,
and XC are the fractions of the total binding-site population in states A, Bj , and C ,
respectively. Then, based on the interpretation, XA, XBj , and XC should satisfy the
following system of differential equations:

d

dt

⎛
⎜⎜⎜⎜⎜⎝

XA

XB1
...

XBn
XC

⎞
⎟⎟⎟⎟⎟⎠

= (T + Σ)

⎛
⎜⎜⎜⎜⎜⎝

XA

XB1
...

XBn
XC

⎞
⎟⎟⎟⎟⎟⎠

. (35)
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It follows that the zero state (XA, XB1 , . . . , XBn , XC )′ = 0 switches stability at R0 =
1. We formulate this as

Theorem 1 R0, defined as the dominant eigenvalue of T (−Σ)−1, is a threshold para-
meter with threshold value one for the zero state of (35).

Note that T (−Σ)−1 is an (n + 2) × (n + 2) matrix. Also, elements (T (−Σ)−1)xy
can be interpreted as the expected number of binding sites in x created by one binding
site in y, where x, y ∈ {A, B1, . . . , Bn,C}. This gives us an interpretation of R0 in
terms of binding sites A, B1, . . . , Bn,C . However, we can reduce the characterization
of R0 to a problem involving a 3× 3 matrix by averaging the Bj in the right way (and
this allows us to consider binding sites in A,B,C only). We show this in the remainder
of this subsection.

Consider the 3 × 3 matrix K = (kx,y) where the kx,y , x, y = A,B,C , are defined
by

T (−Σ)−1ψy =
∑

x=A,B,C

kx,yψx . (36)

Then R0 is also the dominant eigenvalue of K . We formulate this in a theorem.

Theorem 2 R0, defined as the dominant eigenvalue of K , where K is defined by (36),
is a threshold parameter with threshold value one for the zero state of (35).

Proof We have defined R0 as the dominant eigenvalue of T (−Σ−1) and this R0 is a
threshold parameter of the linear system corresponding to the matrix T +Σ according
to Theorem 1.Wewill show that T (−Σ−1) and K have the same dominant eigenvalue.

The range of T is spanned by three linearly independent vectors ψA, ψB, ψC . If
T (−Σ)−1v = λv, with λ �= 0, v �= 0, then v lies in the range of T , i.e. v = ∑

y wyψy ,
with at least one of the wy �= 0. Therefore,

T (−Σ)−1v = T (−Σ)−1

(∑
y

wyψy

)

=
∑
x

∑
y

kx,ywyψx ,

where the summation is over x or y ∈ {A,B,C}. On the other hand, this is equal to

λv = λ
∑
x

wxψx .

Since the ψx are linearly independent, it follows that

∑
y

kx,ywy = λwx ,

for all x = A,B,C . In matrix notation:

Kw = λw,
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where w = (wx ) is a three-dimensional vector, not equal to the zero vector. We
conclude that if λ is a nonzero eigenvalue of T (−Σ)−1, then λ is also a nonzero
eigenvalue of K . To find the dominant eigenvalue R0 of T (−Σ)−1, we can focus on
the 3 × 3 matrix K = (kx,y). 	


Consider the definition of K given by (36). This definition allows for an interpre-
tation of the elements kx,y . Indeed, kx,y can be interpreted as the expected number of
binding sites in x created by one binding site in y, with x, y ∈ {A,B,C}. Therefore,
we call K the NGM on the level of binding sites, and R0 can be interpreted as the
expected number of secondary cases caused by a typical newly infected binding site in
the beginning of an epidemic. Note that when x or y equals Bwe specify a probability
distribution rather than a specific state.

The relation (36) completely characterizes the matrix K . However, using the inter-
pretation, we can give explicit expressions for the entries of K ; see Appendix C. In this
appendix it is also shown that, in order to find R0, we can reduce K to a 2× 2 matrix
and calculate the dominant eigenvalue of this smaller matrix. By combining (55)–
(57), (59), and (61)–(63) we then find R0 given as an explicit function of the model
parameters.

We have characterized R0 in terms of binding sites, both by considering all possible
states {A, B1, . . . , Bn,C} and by considering {A,B,C}. This allows for an interpre-
tation of R0 in terms of binding sites. As we next show, we may also interpret R0 in
terms of individuals.

5.4 R0 in terms of individuals

The model description is on the level of individuals, so it is only sensible that, in this
section, we concern ourselves with the interpretation of R0 in terms of individuals, i.e.
the interpretation of R0 as the expected number of secondary cases caused by a typical
newly infected individual (rather than binding site) in the beginning of an epidemic.

Individuals can be considered as collections of n binding sites. We find the relation
between the binding site level and the individual level as follows. Recall (33), where
we see in the second equality that the φ j are a linear combination of the ψA, ψB,
and ψC . Note that φ j is a collection of n infectious binding sites, n − j in state A,
1 in state C , and j − 1 in states Bl , l = 0, . . . , n (and where the infectious binding
site is in state Bl with probability Ql ). We can identify φ j with an individual in state
(+, j − 1, 1). Note that the (+, j − 1, 1) are the possible states of an individual at
epidemiological birth. For the case n = 1, we have φ1 = ψC only (which corresponds
to the only state-at-epi-birth (+, 0, 1) since an infectious individual at epi-birth is in
a partnership with its epidemiological partner).

This observation allows us to also give an interpretation to R0 for individuals.
Indeed, consider K ind = ((kind)i j ), where the (kind)i j are characterized by

T (−Σ−1)φ j =
n∑

i=1

(kind)i jφi . (37)
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Element (kind)i j is then the expected number of secondary cases in state i caused
by one infectious individual in state j . Here i and j are of the form (+,m, 1), m =
0, . . . , n−1. To arrive at the interpretation of R0 on the individual-level, we can prove
that the dominant eigenvalue of K ind (which is the NGM on individual level) equals
the dominant eigenvalue R0 of K ; see Appendix E for the details.

The matrix K ind is completely characterized by the identity (37). But, as in the case
of K , we can use the interpretation to give a more explicit expression for the entries
of K ind; see Appendix F.

5.5 R0: equivalence of different interpretations

In Sect. 5.3 R0 is defined as the dominant eigenvalue of T (−Σ)−1. Theorem 2 states
that R0 is also the dominant eigenvalue of the ABC-NGM K , where K is defined
by (36), and in Appendix C we show that, in order to find the dominant eigenvalue of
K , we can reduce K to a 2 × 2 matrix K̃ . Finally, in Appendix E, we show that R0
is also the dominant eigenvalue of the NGM K ind on individual level. We summarize
this in (38), where ⇔ refers to ‘has the same dominant eigenvalue’.

T (−Σ−1) ⇐⇒ K ⇐⇒ K ind (38)

�
K̃

In the next section we prove that R0 defined in this way is indeed a threshold for
the stability of the disease-free steady state of the nonlinear system (18), by using L
defined in (27) to relate the linearisation of (18) to (35).

6 Proof that R0 is a threshold parameter

Recall that, using the mean field at distance one assumption, we have written down a
system of differential equations to describe the transmission of the infectious disease
across the dynamic network. We will refer to the system (18) of differential equations
for the fractions of the population of individuals in states 
, 
 = (±, k−, k+) as the
P-system. In Sect. 4 we have linearised this system around the disease-free steady
state and we were able to restrict this linearised system to the fractions P(−,k,1) and
P(+,k−,k+). In Sect. 5 we considered binding sites of an infectious individual (in the
linearisation!) and these binding sites could be in A, B, and C . This led to the ABC-
system (35). R0, defined as the dominant eigenvalue of K , is a threshold for the stability
of the zero state of (35); this was formulated in Theorem 2. In this section we will
prove that R0 is also a threshold for the stability of the disease-free steady state of
system (18). We do so by relating the reduced linearisation (26) of the P-system to
the ABC-system (35).
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6.1 The case n = 1

For n = 1 the proof is relatively easy, since there is no distinction between ‘individual’
and ‘binding site’. As the proof provides guiding lines for the general case, we present
it first.

If we write out (26) for n = 1 we obtain the system of four ODE:

dP(−,0,1)

dt
= −(σ + 2μ + β)P(−,0,1) + ρF+P0

dP(+,0,0)

dt
= −(ρ F̄ + μ)P(+,0,0) + (σ + μ)P(+,1,0) + (σ + μ)P(+,0,1)

dP(+,1,0)

dt
= −(σ + 2μ + β)P(+,1,0) + ρ F̄ P(+,0,0)

dP(+,0,1)

dt
= −(σ + 2μ + β)P(+,0,1) + βP(+,1,0) + βP(−,0,1).

The consistency relation (19), which for n = 1 reduces to

P(−, 0, 1) = P(+, 1, 0), (39)

is reflected in the fact that the first and third equation of the system of ODEs are
identical (recall that, for n = 1, F̄ equals P0 and F+ equals P(+,0,0)). Using (39) we
reduce to the three-dimensional system

dP(+,0,0)

dt
= −(ρ F̄ + μ)P(+,0,0) + (σ + μ)P(+,1,0) + (σ + μ)P(+,0,1)

dP(+,1,0)

dt
= −(σ + 2μ + β)P(+,1,0) + ρ F̄ P(+,0,0)

dP(+,0,1)

dt
= −(σ + 2μ + β)P(+,0,1) + 2βP(+,1,0) + βP(−,0,1).

To finish the proof, we only need to observe that the corresponding matrix is exactly
Σ1 + T1, with Σ1 defined in (28) and T1 in (29).

Indeed, recall the three states A, B, and C that we defined for the binding site of
an infectious individual in Sect. 5.1 and the population level fractions XA, XB , XC

in states A, B, and C . Since individuals have exactly one binding site we identify the
fractions of binding sites with fractions of individuals:

XA = P(+,0,0)

XB = P(+,1,0)

XC = P(+,0,1).

With this identification, the linearisation of the P-system equals the (linear) ABC-
system. Therefore, not only is there a stability switch of the disease-free state of the
ABC-system at R0 = 1 (see also Theorem 2), but in fact there is also a stability switch
for the disease-free state of the system at R0 = 1.
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P(+,0,1)P(+,1,0)P(+,0,0)

σ + μ
σ + μ

β

μμμ

P(-,0,1)

β

ρ F
_

Fig. 6 Flow chart representing part of the linearised system of ODEs (26) for the p-level fractions

P(+,0,1)P (+,1,0)P (+,0,0)

σ + μ
σ + μ

2β

μμμ ρ F
_

Fig. 7 Flow chart of Fig. 6 with P(−,0,1) eliminated. Note that this figure does not allow for an individual-
level interpretation; the rate at which an individual in state (+, 1, 0) infects its susceptible partner is β

(compare with Fig. 3). But the flow from population-level fraction P(+,1,0) to P(+,0,1) is with rate 2β since
it implicitly captures the inflow from P(−,0,1)

To enhance the understanding, we present the main ingredients of the proof
once more, but now by way of pictures. Figure 3 depicts the possible states and
state transitions for an infectious individual. The corresponding part of the transi-
tion matrix is Σ1. The corresponding p-level variables are P
 with indices 
 =
(+, 0, 0), (+, 1, 0), (+, 0, 1). This + part of the P-vector does not form a closed
system. Indeed, an individual in state (−, 0, 1) has probability per unit of time β to
jump to (+, 0, 1), as indicated in Fig. 6.

When this jumpoccurs, the responsible partner (the ‘epidemiological parent’) jumps
from (+, 1, 0) to (+, 0, 1). The interpretation underlying this last statement is math-
ematically reflected in the consistency relation (39). Using (39) we reduce the flow
chart of Fig. 6 to the one depicted in Fig. 7. The corresponding matrix is Σ1 + T1.

6.2 Generalization: n > 1

In general, for n > 1, we can express XA, XBj , and XC in terms of the linearised
P-system by:
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XA =
n∑

k+=0

n−k+∑
k−=0

(n − k− − k+)P(+,k−,k+)

XBj = P(−, j−1,1)

XC =
n∑

k+=0

n−k+∑
k−=0

k+P(+,k−,k+).

The explanation is as follows. An individual in state (+, k−, k+) is infectious and has
n − k− − k+ free binding sites and k+ binding sites occupied by infectious partners.
Summing over all possible states (+, k−, k+) we obtain the number of binding sites
in, respectively, states A andC . For the number of binding sites in state Bj we observe
that an individual in (−, j − 1, 1) has j partners in total and one infectious partner.
This infectious individual therefore has a binding site occupied by a susceptible partner
who has j partners in total, i.e. a binding site in state Bj . The total number of binding
sites in state Bj is therefore P(−, j−1,1).

So the map L defined in (27) maps the P-variables to the XABC -variables, i.e. we
have the linear transformation ⎛

⎜⎜⎜⎜⎜⎝

XA

XB1
...

XBn
XC

⎞
⎟⎟⎟⎟⎟⎠

= LP. (40)

By differentiating LP and using (26), we obtain the linear system of differential
equations (35) for XA, XBj , and XC .

It remains to prove that the stability switch of the zero state of the ABC-system
occurs if and only if the disease-free state of the P-system (18) switches stability. This
will be shown in the remainder of this section.

We know that R0 is a threshold parameter for the zero state of the ABC-system
(see Theorem 2), i.e.

sign(R0 − 1) = sign(rABC ), (41)

where rABC is the spectral bound of T +Σ , i.e. rABC = sup{Re(λ) : λ ∈ σ(T +Σ)},
and σ(T + Σ) is the spectrum of T + Σ .

So in order to show that R0 is a threshold for the disease free state of the P-system,
it suffices to show that

sign(rABC ) = sign(rP ). (42)

Here rP is the spectral bound of MP where MP is the matrix corresponding to the
right-hand side of (26). In fact we will show that rABC = rP .

We will proceed as follows. First we shall prove that rABC and rP are dominant
eigenvalues of the matrices T + Σ and MP , respectively, in the sense that these
eigenvalues are uniquely characterized by the positivity of the eigenvector (up to a
multiplicative positive constant).

We show in Lemmas 4 and 5 that T + Σ and MP are irreducible matrices. This
then allows us to conclude that the dominant eigenvalues of MP and T + Σ are real
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and uniquely characterized by a positive eigenvector (see e.g. Theorem 2.5 of Seneta
1973). In other words, there exists a real eigenvalue rP for MP for which it holds
that rP > Re λ for any eigenvalue λ �= rP of MP and rP is uniquely defined by the
positivity of the corresponding eigenvector (and similarly with rABC replacing rP and
T + Σ replacing MP ).

In Lemmas 4 and 5 below we use that a matrix M = (mxy) is irreducible if and
only if variable x communicates with variable y (x ↔ y) for all variables x and y, i.e.
there is a path from x to y (x → y), i.e. there are variables y1, y2, . . ., yn such that
my,yn · · ·my2,y1my1,x > 0, and a path from y to x (y → x), i.e. there are variables
x1, x2, . . ., xk such that my,xk · · ·mx2,x1mx1,y > 0. Note that the somewhat unusual
notation is due to our convention that mxy denotes the transition from y to x (instead
of the transition from x to y, as it is common in the stochastic community).

Lemma 4 T + Σ is an irreducible matrix.

Proof The flowchart describing the matrix Σ is presented in Fig. 4. We immediately
see from this figure that from any state x there is a path to any other state y, with
x, y ∈ {A, B1, B2, . . . , Bn,C}. It follows thatΣ is irreducible. Since T is nonnegative,
also T + Σ is irreducible. 	

Lemma 5 MP is an irreducible matrix.

Proof With respect to a splitting of P into − components and + components, MP is
a block matrix that consists of four matrices M1, M2, M3, M4:

MP =
( − +

− M1 M3
+ M2 M4

)
.

ThematricesM2 andM3 are non-negative matrices, not equal to the zeromatrix, while
M1 and M4 are positive off-diagonal. We show that M1 and M4 are irreducible, and
that this implies that MP is irreducible.

ConsiderM1. Thismatrix consists of the rates corresponding to the possible flows of
the− variables, i.e. population-level fractions of the form P(−,k,1) (and ratesβ+σ+2μ
out of the − states, that we do not need to consider here). In Fig. 8 part of the possible
flows and corresponding rates are represented graphically. FromFig. 8we immediately
see that, from any variable P(−,k,1), one can find a path to any other variable P(−,l,1),

   (n-k-1)

(σ+µ)(k+1)

    (n-1)

(σ+µ)kσ+µ (σ+µ)(n-1)

0 1 k-1 k k+1 n-2 n-1ρ F
_

    (n-k)ρ F
_

ρ F
_

ρ F
_

Fig. 8 Graphical representation of part of matrix M1 (point k represents fraction P(−,k,1)) showing that
x → y for all x, y = P(−,l,1), i.e. M1 is irreducible. Part of M1 that is being ignored is e.g. the rates
β + σ + 2μ out of each variable P(−,k−,1) leaving the − system

123



SI infection on a dynamic partnership network: ... 33

Fig. 9 Graphical representation
of the possible flows
incorporated in the matrix M4
(coordinate (k−, k+) represents
fraction P(+,k−,k+)), ignoring
the death rate μ out of each
fraction

n

n

k+

_k
0

Fig. 10 Rates corresponding to
the flows of Fig. 9, ignoring the
death rate μ out of each variable

k

k

+

_k _-1

β

(σ + µ)k_

(σ + µ)k

ρ F(n-k+1)

k _
+

_

or in other words, P(−,k,1) → P(−,l,1) for all k, l = 0, . . . , n − 1. Therefore M1 is an
irreducible matrix.

Consider the matrix M4. This matrix consists of the rates corresponding to the
possible flows of the+ variables. i.e. population-level fractions of the form P(+,k−,k+).
In Fig. 9 a graphical representation of part of the possible flows are given and in Fig. 10
the rates corresponding to these flows are given. These figures show (literally) that M4
is irreducible.

Finally, consider two variables x− = P(−,k,1), x+ = P(−,l−,l+) of the matrix MP .
We show that x− ↔ x+.

Since M2 and M3 are non-negative and non-zero, there are variables y−, y+, z−, z+
such that y− → y+ and z+ → z−. Note that, in terms of interpretation, the nonzero
elements of M2 correspond to infection of − individuals by one of their + partner, i.e.
transitions with rate β from fractions P(−, j−,1) to P(+, j,1). The nonzero elements of
M3 correspond to the feed into the P(−, j−,1) category via the F+ terms from fractions
P(+,k−,k+).

We find a path from x− → x+ through y− and y+, i.e.

x− → y− → y+ → x+,
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and a path from x+ → x− through z+ and z−, i.e.

x+ → z+ → z− → x−.

Note that the paths x− → y−, y+ → x+, x+ → z+, and z− → x− exist since M1
and M4 are irreducible.

Since any two variables x− and x+ of MP communicate, i.e. x− ↔ x+, MP is
irreducible. 	


We now have all the ingredients to prove that R0 is a threshold parameter for the
disease free state of (18).

Since MP is an irreducible positive off-diagonal matrix, we know that MP has a
real dominant eigenvalue rP with corresponding positive eigenvector v, i.e.

MP v = rP v.

Then how does this relate to T + Σ? On the one hand we find that

d

dt
L P = L

dP

dt
= LMP P,

on the other hand LP = x and (35) holds. Therefore

LMP P = (T + Σ)LP, (43)

and it follows that

rP Lv = LMP v = (T + Σ)Lv.

We have seen in Sect. 4 that if v is strictly positive then so is Lv. Furthermore, since
T + Σ is an irreducible positive off-diagonal matrix (see Lemma 4), the Malthusian
parameter of T + Σ is uniquely characterized by a positive eigenvector. Therefore rP
is also the Malthusian parameter of T + Σ with corresponding eigenvector Lv, i.e.

rP = rABC . (44)

Finally, (42) together with Theorem 2 shows that R0 is a threshold parameter of the
P-system.

6.3 Characterization of the Malthusian parameter r (= rABC = rP )

In this section we characterize the initial exponential growth rate r = rABC = rP
(recall (44)). The Malthusian parameter r satisfies

(T + Σ)v = rv ⇔ T v = (r I − Σ)v.
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So (r I − Σ)v lies in the range of T , i.e.

(r I − Σ)v = w

with
w = dAψA + dBψB + dCψC , (45)

where the dx are some constants, not all equal to zero, and the ψx are defined in (34),
x = A,B,C . This is equivalent to

v = (r I − Σ)−1w.

Therefore

T (r I − Σ)−1w = w,

where w is defined by (45), so

∑
x

dx T (r I − Σ)−1ψx =
∑
x

dxψx . (46)

Since the range of T is spanned byψx , we also have that, for certain constants (mr )yx ,

T (r I − Σ)−1ψx =
∑
y

(mr )yxψy . (47)

The Malthusian parameter r then needs to satisfy

Mrd = d,

where Mr = ((mr )xy) is a 3 × 3 matrix characterized by (47), with matrix elements
(mr )xy depending on the unknown r . Identity (47) fully characterizes elements (mr )xy ,
but, as in the case of K and K ind, we can use the interpretation to give explicit expres-
sions for the entries of Mr , in the last paragraph of Appendix C we outline how this
can be done.

Finally, consider the case n = 1, then r satisfies

T1(r I − Σ1)
−1w = w, (48)

where Σ1 and T1 are defined in (28) and (29), respectively. Since the range of T1 is
spanned by ψC , we see that w = ψC . We find that

T1(r I − Σ1)
−1

⎛
⎝
0
0
1

⎞
⎠ =

⎛
⎜⎝

0
0

βρ F̄(σ+μ)

(r+μ)(r+β+σ+2μ)(r+ρ F̄+σ+2μ)

⎞
⎟⎠ .
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It then follows from (48) that we find r by solving the following third-order polynomial
in r :

βρ F̄(σ + μ) = (r + μ)(r + β + σ + 2μ)(r + ρ F̄ + σ + 2μ).

7 Looking back and ahead

The overall aim of our research is to formulate and analyse models for the spread of an
infectious disease across a network that is dynamic in the double sense that individuals
come (by birth) and go (by death) and that links/partnerships are formed and broken.
In particular our aim is to investigate the role of concurrency in the spread of sexually
transmitted infections.

In Leung et al. (2012) we introduced a class of doubly dynamic network models
that are relatively simple to describe, that involve just a few parameters, and for which
one can calculate many statistics exactly in explicit detail. The next step, taken here,
is superimposing the spread of an infection. In order to retain the simplicity, we again
characterize individuals by their dynamic degree (i.e. the current number of their
partners), but now include the disease status (S versus I ) of the individual itself and
of its partners. In this bookkeeping scheme we need to account for the infection of a
partner by one of its other partners, but the scheme itself does not provide information
about partners of partners. Thuswe faced a closing problem. Themean field at distance
one assumption provided a natural solution.

Originally we thought that this was an assumption because we had not yet found
a way to prove it. In a late stage Pieter Trapman pointed the way to the current
AppendixB, showing that the assumption is inconsistent with themodel itself.We then
realised that, in essence, our bookkeeping scheme constitutes a first order description
that we close by making the (inconsistent) mean field at distance one assumption. So
the deterministic system studied here provides at best an approximation to the large
system size limit of a stochastic model.

The great advantage of the deterministic system of dimension (n + 1)(n + 2)
is that it is amenable to analysis. The fact that binding sites operate to some extent
independently fromeach other enables a reduction of the dimension from (n+1)(n+2)
to 2 in the characterization of R0. Indeed, we characterized the basic reproduction
number R0 as the dominant eigenvalue of a 3× 3 matrix with elements describing the
expected numbers of newly infected binding sites of three different types generated
by one infected binding site of either type during its life time. We could then further
reduce the 3 × 3 matrix to a 2 × 2 matrix which lead to an explicit expression for
the dominant eigenvalue R0. We also verified that the basic reproduction number R0
defined in this way is indeed a threshold parameter for the stability of the disease free
steady state of the nonlinear system of model equations. This is done by establishing
a relationship between the exponential growth rate r of the epidemic in the linearised
system and the quantity R0 on the level of binding sites.

The characterization of r and R0 opens up the route for investigating the impact of
concurrency on the transmission of the SI infection in the dynamic network. We can
now study how r and R0 depend on the capacity n when fixing all other parameters at
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constant values. Furthermore, the relationship between concurrency measures on the
one hand and R0, r , and the endemic steady state on the other, can be analysed. This
will be explored in a follow-up paper. (Concerning the endemic steady state, we will
need to derive the equations that characterize it, to investigate the uniqueness and to
prove that existence requires R0 > 1.)

There are a number of generalisations of the network model that are both useful
and feasible. The extension to a heterosexual population requires only the distinction
between males and females and some assumptions on the symmetry or asymmetry
in rates and partnership capacity between the two sexes. We expect that all results
presented here carry, mutatis mutandis, over to that situation. No doubt the model
can also be extended to the situation that n is a random variable with a prescribed
distribution.

Other generalisations pertain to the description of infectiousness. An obvious exam-
ple is a model with two consecutive stages I1 and I2, where infectiousness is charac-
terised by βi in stage Ii . Other compartmental epidemic models could be considered
as well, such as SIR and SIS. Inclusion of the impact of the disease on mortality is
very relevant in the context of HIV. Unfortunately it might turn out to be very hard.

The most stringent limitation of our framework is the assumption that having a
partner does not influence an individual’s propensity to enter into a new partnership
or its contact rate in other ongoing partnerships. This is clearly at odds with reality
(although equally clearly it is an impossible task to disentangle the manifold ways in
which dependence ‘works’ in reality). Dependence destroys the basis on which our
analytic approach rests.

Be that as it may, we view the work presented here as a first step towards a frame-
work for studying the impact of dynamic network structure on the transmission of an
infectious disease.
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Appendix A: R0 for n = 1: alternative method

We can also characterize R0 for the case n = 1 in the following way. An individual at
epidemiological birth is in stateC with probability one (since it has its epidemiological
parent as partner) and each time it visits C (which is only possible by jumping from B
toC since the probability to encounter an infectious individual is zero at the beginning
of an epidemic) a new infectious individual is created; recall Fig. 3. So, for R0, we
simply need to count the expected number of times to visit C when starting in C . This
can be done by exploiting the Markov property:

R0 = πCC (1 + R0), (49)
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where πCC is the probability to ever enter state C when starting in state C . Let πxy

denote the probability to ever enter state x when starting in y, x, y ∈ {A, B,C}. We
find πCC by first-step analysis:

πCC = σ + μ

σ + 2μ
πCA

πCA = ρ F̄

ρ F̄ + μ
πCB

πCB = β

β + σ + 2μ
+ σ + μ

β + σ + 2μ
πCA.

Solving for πCC we find

πCC = βρ F̄(σ + μ)

(σ + 2μ)
(
ρ F̄(β + μ) + μ(β + σ + 2μ)

) .

This yields the same expression (30) as the ABC scheme does.

Appendix B: Correlation between the states of two partners

Consider a randomly chosen partnership. For convenience we call the individuals in
the partnership u and v. Then, without knowing anything about v, the probability that
u is in state k, k ≥ 1, is given by Qk (Lemma 2), i.e.

P(u in state k) = Qk .

In other words, Qk is the probability that an individual is in state k given that it has at
least one partner.

Let’s study this partnership in more detail. The states of u and v are independent
of each other at the moment t = 0 when the partnership uv is formed, i.e.

P(u in state k and v in state l at t = 0)

= P(u in state k at t = 0)P(v in state l at t = 0)

= qkql ,

cf. assumption (7).
As long aswe condition on the existence of the partnership uv the remaining binding

sites of u behave independently of the remaining binding sites of v and consequently
there is independence of the states of u and v at any time t = s in the partnership, i.e.

P(u in state k and v in state l at t = s)

= P(u in state k at t = s)P(v in state l at t = s).

However, if we do not specify the duration so far of the partnership, then we find
dependence between the states of u and v:
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Fig. 11 The three possible
configurations for the
partnership uv concerning
additional partners when n = 2

u

u

u

u

v

v

v

v

x 11

x 12

x 22

P(u in state k and v in state l)

=
∞∫

0

(σ + 2μ)e−(σ+2μ)s P(u in state k at t = s and v in state l at t = s)ds

=
∞∫

0

(σ + 2μ)e−(σ+2μ)s P(u in state k at t = s)P(v in state l at t = s)ds

�= P(u in state k)P(v in state l) = QkQl .

Here the density (σ + 2μ)e−(σ+2μ)s accounts for the conditioning on the uv part-
nership remaining in existence. We show the inequality with explicit calculations for
n = 2. In this case, individuals can have 0, 1, or 2 partners. Choose a partnership at
random from the population and label the partners u and v. Since n = 2, u and v both
have one additional binding site that can be either free or occupied. This gives us three
possible states for the partnership uv, we denote these states by x11, x12, and x22; see
Fig. 11.

Let π(t) denote the probability distribution for the configuration of the partnership
uv at time t given that uv exists for the period under consideration.

At t = 0 the probability distribution of the different configurations is given by

π(0) =
⎛
⎜⎝

q21
2q1q2

q22

⎞
⎟⎠ .

Given that the partnership uv exists for the time interval under consideration, the
transitions and the corresponding rates are represented by the flowchart in Fig. 12. We
denote the corresponding transition matrix by M .

Note that the ‘age’ of the partnership uv is exponentially distributed with parameter
σ + 2μ. Therefore the probability distribution for the configuration of partnership uv

at the moment we pick the partnership from the pool of partnerships is
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Fig. 12 The flowchart for the
three possible configurations for
the partnership uv concerning
additional partners given that uv

exists for the period under
consideration

X11 X12 X22

2ρF

σ+µ

ρF

2(σ+µ)

(σ + 2μ)

∞∫

0

e−t (σ+2μ)Iπ(t)dt = (σ + 2μ)
∫ ∞
0 et (M−(σ+2μ)I )π(0)dt

= −(σ + 2μ)(M − (σ + 2μ)I )−1π(0) (50)

=
⎛
⎝

Q2
1 + c

2Q1Q2 − 2c
Q2

2 + c

⎞
⎠, (51)

where

c = (ρFμ)2

(σ + 2μ)(2ρF + 3σ + 4μ)(2ρF + 2σ + 3μ)2
.

The states of u and v are independent of one another iff c = 0
Note that c = 0 if μ = 0 and μ = 0 corresponds to a dynamic network without

demography. One should, however, not conclude that demography necessarily leads
to correlation. We assumed that individuals are born single. One can think of other
ways of incorporating demography, e.g. individuals having k partners at birth with
probability equal to the degree distribution (Kamp 2010). Adopting this rule creates
a partnership network where, when disease is not considered, the correlation is zero
between the degrees of two partners [in essence this rule makes ‘death’ the same as
rewiring of partnerships after an exponentially distributed amount of time and then
basically a dynamic network in a closed population is considered (Miller et al. 2012)].

Appendix C: The matrix elements kx, y of K and a characterization of R0 by a
2× 2 matrix

In this appendix we use the interpretation to guide us in deriving explicit expressions
for the kx,y and in that way we derive an explicit expression for R0.

First of all, as explained below, the following equalities hold:

(−Σ)−1ψA =
⎛
⎝

σ+2μ
μ(ρ F̄+σ+2μ)

ρ F̄(σ+2μ)

μ(ρ F̄+σ+2μ)
(−ΣB)−1q

β
(β+σ+2μ)(σ+2μ)

ρ F̄(σ+2μ)

μ(ρ F̄+σ+2μ)

⎞
⎠ , (52)
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(−Σ)−1ψB =
⎛
⎝

0
(−ΣB)−1Q

0

⎞
⎠ +

⎛
⎜⎜⎜⎝

σ+μ

μ(ρ F̄+σ+2μ)
ρ F̄(σ+μ)

μ(ρ F̄+σ+2μ)
(−ΣB)−1q

β(ρ F̄+μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

⎞
⎟⎟⎟⎠, (53)

(−Σ)−1ψC =

⎛
⎜⎜⎜⎜⎝

σ+μ

μ(ρ F̄+σ+2μ)

ρ F̄(σ+μ)

μ(ρ F̄+σ+2μ)
(−ΣB)−1q

β(ρ F̄+μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)
+ 1

β+σ+2μ

⎞
⎟⎟⎟⎟⎠

. (54)

Indeed, if we multiply the right-hand side of each of these equalities with the matrix
Σ , where Σ is defined in (31), we obtain −ψx , x = A,B,C.

The elements −Σ−1ψx , x = A,B,C , also have an interpretation. The interpreta-
tion of (−Σ−1ψA)Bk is as follows. Consider a binding site in state A. The probability
for the binding site to be in state A in the time interval [0, τ ] is

⎡
⎣eτΣ1

⎛
⎝
1
0
0

⎞
⎠

⎤
⎦

A

,

where Σ1 is defined in (28). It enters the set B at rate ρ F̄ . The probability that the
binding site is in state Bk upon entering B is qk . The probability to remain in Bk in
the time interval [τ, s] is the kth component of

e(s−τ)ΣBq.

By integrating over all possible s we find the expectation:

∞∫

0

s∫

0

⎡
⎣eτΣ1

⎛
⎝
1
0
0

⎞
⎠

⎤
⎦

A

ρ F̄e(s−τ)ΣBq dτ ds

= ρ F̄

⎡
⎣−Σ−1

1

⎛
⎝
1
0
0

⎞
⎠

⎤
⎦

A

(−ΣB)−1q

= ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
(−ΣB)−1q.

The kth component is then the mean time a binding site that starts in state Awill spend
in state Bk . Similarly, one can interpret (−Σ−1ψC )Bk .

Finally, we show how to derive (53) by exploiting the interpretation of −Σ−1ψB
(this is the most complicated case and it involves all building blocks for the other
cases).

First note that (esΣψx )y is the probability to be in state y at time s when one starts
life in state x , so ((−Σ)−1ψx )y , x, y = A,B,C is the mean time spent in state y
when the binding site starts its life in state x . Therefore
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∞∫

0

esΣψxds = (−Σ)−1ψx ,

There are flows out of B to A and C with rates σ + μ and β, respectively. There is
also a flow in to B from A with rate ρ F̄ . Note that the transition matrix between state
A, set B, and state C is exactly Σ1, where Σ1 is defined in (28).

We shall use the inverse (−Σ1)
−1 in the following calculations.Using linear algebra

or interpretation, we obtain

(−Σ1)
−1 =

⎛
⎜⎜⎜⎝

σ+2μ
μ(ρ F̄+σ+2μ)

σ+μ

μ(ρ F̄+σ+2μ)

σ+μ

μ(ρ F̄+σ+2μ)

ρ F̄(σ+2μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

(ρ F̄+μ)(σ+2μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

(ρ F̄+μ)(σ+2μ)

μ(β+σ+μ)(ρ F̄+σ+2μ)

βρ F̄
μ(β+σ+2μ)(ρ F̄+σ+2μ)

β(ρ F̄+μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

β(ρ F̄+μ)+μ(ρ F̄+σ+2μ)

μ(β+σ+2μ)(ρ F̄+σ+2μ)

⎞
⎟⎟⎟⎠ .

The mean time a binding site born in one of the states Bj in the set B, spends in
state A is given by

⎡
⎣(−Σ1)

−1

⎛
⎝
0
1
0

⎞
⎠

⎤
⎦

A

= σ + μ

μ(ρ F̄ + σ + 2μ)
,

while the mean future time a binding site presently in B spends in state C is

⎡
⎣(−Σ1)

−1

⎛
⎝
0
1
0

⎞
⎠

⎤
⎦
C

= β(ρ F̄ + μ)

μ(β + σ + 2μ)(ρ F̄ + σ + 2μ)
.

To determine the mean time spent in the set B, when starting life in B, is a bit
more complicated. First of all, a binding site that starts life in B starts life in state Bj

with probability Q j , j = 1, . . . , n. The mean time it then spends in state Bk without
leaving the set B is given by

((−ΣB)−1Q)k .

Next, the binding site in B leaves B and enters A with probability

σ + μ

β + σ + 2μ
.

If that is the case, then the mean future time it spends in Bk is, by first step analysis,

((−Σ)−1ψA)Bk = ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
((−ΣB)−1q)k .
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Similarly, the probability to enter state C from B is

β

β + σ + 2μ

and the mean time it will spend in Bk is

((−Σ)−1ψC )Bj = ρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

(
(−ΣB)−1q

)
j
.

Therefore, the mean time spent in state Bk after leaving B is

σ + μ

β + σ + 2μ

ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
[(−ΣB)−1q]k

+ β

β + σ + 2μ

ρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)
[(−ΣB)−1q]k

= ρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)
((−ΣB)−1q)k .

This explains (53).
The matrix T is given by (32). By multiplying with (52), (53), and (54), we obtain

the first column of K

⎛
⎝
kAA
kBA

kCA

⎞
⎠ = βρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)

⎛
⎝

∑n
k=1(n − k)[(−ΣB)−1q]k∑n
k=1(k − 1)[(−ΣB)−1q]k∑n

k=1[(−ΣB)−1q]k

⎞
⎠ , (55)

the second column of K is given by

⎛
⎝
kAB
kBB
kCB

⎞
⎠ = β

⎛
⎝

∑n
k=1(n − k)[(−ΣB)−1Q]k∑n
k=1(k − 1)[(−ΣB)−1Q]k∑n

k=1[(−ΣB)−1Q]k

⎞
⎠

+ βρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

⎛
⎝

∑n
k=1(n − k)[(−ΣB)−1q]k∑n
k=1(k − 1)[(−ΣB)−1q]k∑n

k=1[(−ΣB)−1q]k

⎞
⎠ , (56)

and the third column is

⎛
⎝
kAC
kBC
kCC

⎞
⎠ = βρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

⎛
⎝

∑n
k=1(n − k)[(−ΣB)−1q]k∑n
k=1(k − 1)[(−ΣB)−1q]k∑n

k=1[(−ΣB)−1q]k

⎞
⎠ . (57)

Note that the elements kxy , x, y = A,B,C involve the vectors (−ΣB)−1q and
(−ΣB)−1Q.
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We can simplify the sums
∑n

k=1[(−ΣB)−1q]k and∑n
k=1[(−ΣB)−1Q]k . Note that

n∑
k=1

[(−ΣB)−1]kl = 1

β + σ + 2μ
,

since (−ΣB)kl is the mean time to spent in state k when starting life in state l, by
summing over all possible states k ∈ B, we obtain the mean time to spent in B when
starting in some state l ∈ B (this is of course equal to 1 over the rate of leaving B).
Therefore, for any probability distribution P,

n∑
k=1

[(−ΣB)−1
P]k =

n∑
l=1

(
n∑

k=1

[(−ΣB)−1]kl
)
Pl

= 1

β + σ + 2μ

n∑
l=1

Pl

= 1

β + σ + 2μ
,

where the last equality holds since P is a probability distribution. So

n∑
k=1

[(−ΣB)−1q]k =
n∑

k=1

[(−ΣB)−1Q]k = 1

β + σ + 2μ
, (58)

which we can use to simplify K .
Observe that the sum of the first and second row of K is n − 1 times the third row

of K , i.e.

kA,y + kB,y = (n − 1) · kC,y,

and the third column is a multiple of the first column, i.e.

kx,C = σ + μ

σ + 2μ
kx,A.

So we find that, of the three eigenvalues that K has, at least one equals zero. Moreover,
using (58),

kCA = βρF(σ + 2μ)

μ(β + σ + 2μ)(ρF + σ + 2μ)
,

and

kCB = β

β + σ + 2μ

(
1 + ρF(σ + μ)

μ(ρF + σ + 2μ)

)
.
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To find the dominant eigenvalue of K we can therefore reduce K to the 2 × 2 matrix
K̃ :

K̃ =
(
kAA + σ+μ

σ+2μkCA kAB + σ+μ
σ+2μkCB

kBA kBB

)

=
(
kAA + βρF(σ+μ)

μ(β+σ+2μ)(ρF+σ+2μ)
kAB + β(ρF+μ)(σ+μ)

μ(β+σ+2μ)(ρF+σ+2μ)

kBA kBB

)
. (59)

Note that

∑
k

(n − k)[−Σ−1
B P]k = (n − 1)

∑
k

[−Σ−1
B P]k −

∑
k

(k − 1)[−Σ−1
B P]k

= n − 1

β + σ + 2μ
−

∑
k

(k − 1)[−Σ−1
B P]k, (60)

where P is the probability distribution q or Q, and we have used (58) in the second
equality. Therefore, the only ingredients left in order to arrive at a completely explicit
expression for the dominant eigenvalue R0 of the 2×2matrix K̃ are explicit expressions
for the sums

∑n
k=1(k − 1)[(−ΣB)−1q]k and ∑n

k=1(k − 1)[(−ΣB)−1Q]k .
In the remainder of this appendix we show that

∑
k

(k−1)[−Σ−1
B q]k = (n − 1)ρ F̄

(ρ F̄ + σ + μ)(β + σ + 2μ)
− (n − 1)Y

ρF + 2σ + 3μ + β
, (61)

and

∑
k

(k − 1)[−Σ−1
B Q]k = (n − 1)ρ F̄

(ρ F̄ + σ + μ)(β + σ + 2μ)

− (n − 1)Y (σ + 2μ)

(ρ F̄ + 2σ + 3μ)(β + ρ F̄ + 2σ + 3μ)
, (62)

where

Y = ρ F̄μ(ρ F̄ + 2σ + 3μ)

(σ + 2μ)(ρ F̄ + σ + μ)(2ρ F̄ + 2σ + 3μ)
. (63)

We obtain an explicit expression for R0 by using (60) and plugging (61) and (62)
(together with (63)) into (55) and (56). Next, plug these into (59) and use that the
dominant eigenvalue of a 2 × 2 matrix is

tr + √
tr2 − 4 det

2

(where tr and det denote the trace and determinant of K̃ , respectively).
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Fig. 13 State transitions and
corresponding rates between
states B1, . . . , Bn ; the
corresponding transition
matrix is denoted M B1 B2 Bn-1 Bn. . .

ρ F (n-1)

 σ+µ

ρ F 

 (σ+µ)(n-1)

Finally, in the remainder of this appendix we will show (61) and (62) by straight-
forward computations that we divide up in four lemma’s (for the first of these we only
sketch the proof).

We need the following ingredients. Let M be the matrix corresponding to the state
transitions between the states Bk , k = 1, . . . , n; see Fig. 13. Then

ΣB = M − (β + σ + 2μ)I.

Furthermore, etM denotes the fundamental solution of

dπ

dt
= Mπ. (64)

We also use the relationship between q and Q:

Q = (σ + 2μ)

∞∫

0

e−(σ+2μ)t etMqdt (65)

(see proof Leung et al. 2012, Lemma 2).
We need the probability distribution q for n = 2: q(2) = (q(2)

1 , q(2)
2 )t where the

superscript (2) is to distinguish the n = 2 probabilities from general n > 2.

q(2)
1 = ρ F̄μ + (σ + 2μ)(2σ + 3μ)

(σ + 2μ)(2ρ F̄ + 2σ + 3μ)
,

q(2)
2 = ρ F̄(2σ + 3μ)

(σ + 2μ)(2ρ F̄ + 2σ + 3μ)
.

(66)

Finally, we use two probabilities for binding sites. Consider one binding site. Con-
ditioning on the individual staying alive till at least time t , ε0(t) and ε1(t) denote the
probabilities that the binding site is occupied at time t , given that, respectively, it was
free or occupied at time t = 0. So εi , i = 0, 1, satisfies

dεi

dt
= ρ F̄εi − (σ + μ)(1 − εi )

with initial conditions ε0(0) = 0 and ε1(0) = 1. Solving these, we find
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ε0(t) = ρ F̄

ρ F̄ + σ + μ
− ρ F̄

ρ F̄ + σ + μ
e−(ρ F̄+σ+μ)t ,

ε1(t) = ρ F̄

ρ F̄ + σ + μ
+ σ + μ

ρ F̄ + σ + μ
e−(ρ F̄+σ+μ)t .

(67)

Lemma 6
n∑

k=2

(k − 1)(etM )k j = (n − j)ε0(t) + ( j − 1)ε1(t), (68)

Sketch of proof Consider a randomly chosen partnership between two individuals u
and v. Then (etM )k j is the probability for u to be in state k given that it starts life in
j (here: ‘life starts’ at the moment uv is formed). Then

∑n
k=2(k − 1)(etM )k j is the

expected number of partners of u, minus partner v, at time t given that u started life
in j . Conditioning on the existence of uv, the other n − 1 binding sites of u behave
independently of one another.

Since u starts life in state j , there are j − 1 binding sites that have probability
ε1(t) to be occupied at time t and n − j binding sites that have probability ε0(t) to
be occupied at time t . Therefore, the expected number of occupied binding sites of u
minus the binding site occupied by v at time t is exactly the right hand side of (68).

	

We now consider the expected number of ‘other’ partners of an individual that just

acquired a new partner in the following lemma.

Lemma 7

n∑
k=1

(k − 1)qk = (n − 1)q(2)
2 ,

with q(2)
2 given by (66).

Proof The probability qk is given by (7) with

Pk−1 =
(

n

k − 1

) ∞∫

0

μe−μa(1 − ε0(a))n−k+1ε0(a)k−1da.

Then

(k − 1)(n − k + 1)Pk−1

= n!
(k − 2)!(n − k)!

∞∫

0

μe−μa(1 − ε0(a))ε0(a)(1 − ε0(a))n−kε0(a)k−2da

= n(n − 1)

∞∫

0

μe−μa(1 − ε0(a))ε0(a)

(
n − 2

k − 2

)
(1 − ε0(a))n−kε0(a)k−2da
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If we now take the sum
∑

k(k − 1)qk , then we obtain

n∑
k=2

qk = n(n − 1)

nF̄

∞∫

0

μe−μa(1 − ε0(a))ε0(a)da

= n − 1

2F̄
P(2)
1

= (n − 1)q(2)
2 ,

which we wanted to show. 	

Lemma 8

n∑
k=2

(k − 1)(etMq)k = (n − 1)

(
ρF

ρF + σ + μ
− Ye−t (ρ F̄+σ+μ)

)
,

where Y is the positive constant (63).

Proof We combine Lemmas 6 and 7.

n∑
k=2

(k − 1)(etMq)k =
n∑

k=2

(k − 1)
n∑
j=1

(etM )k j q j

=
n∑
j=1

q j

n∑
k=2

(k − 1)(etM )k j

(Lemma 6) =
n∑
j=1

q j ((n − j)ε0(t) + ( j − 1)ε1(t))

(Lemma 7) = (n − 1)(1 − q(2)
2 )ε0(t) + (n − 1)q(2)

2 ε1(t)

= (n − 1)
(
q(2)
1 ε0(t) + q(2)

2 ε1(t)
)

.

Finally, one can use (66) and (67) in the last step to arrive at the explicit expression. 	

Lemma 9 The equalities (61) and (62) hold.

Proof Putting all the pieces together, we obtain

n∑
k=2

(k − 1)[−Σ−1
B q]k =

∑
k

(k − 1)

⎛
⎝

∞∫

0

e−(β+σ+2μ)t etMqdt

⎞
⎠

k

=
∑
k

(k − 1)

∞∫

0

e−(β+σ+2μ)t (etMq)kdt

123



SI infection on a dynamic partnership network: ... 49

=
∞∫

0

e−(β+σ+2μ)t
∑
k

(k − 1)(etMq)kdt

(Lemma 8) =
∞∫

0

e−(β+σ+2μ)t (n−1)

(
ρF

ρF + σ + μ
− Ye−t (ρ F̄+σ+μ)

)
dt

= (n − 1)ρ F̄

(ρ F̄ + σ + μ)(β + σ + 2μ)
− (n − 1)Y

ρF + 2σ + 3μ + β
.

and for the sum involving Q, we use (65), and then find

n∑
k=2

(k − 1)[−Σ−1
B Q]k

=
∑
k

(k − 1)

⎛
⎝

∞∫

0

e−(β+σ+2μ)t etM Qdt

⎞
⎠

k

=
∑
k

(k − 1)

⎛
⎝

∞∫

0

e−(β+σ+2μ)t etM (σ + 2μ)

∞∫

0

e−(σ+2μ)τ eτMqdτdt

⎞
⎠

k

= (σ + 2μ)
∑
k

(k − 1)

⎛
⎝

∞∫

0

∞∫

0

e−(β+σ+2μ)t e−(σ+2μ)τ e(t+τ)Mqdτdt

⎞
⎠

k

= (σ + 2μ)

∞∫

0

∞∫

0

e−(β+σ+2μ)t e−(σ+2μ)τ
∑
k

(k − 1)
(
e(t+τ)Mq

)
k
dτdt

(Lemma 8) = (σ + 2μ)

∞∫

0

∞∫

0

[
e−(β+σ+2μ)t e−(σ+2μ)τ

(n − 1)

(
ρF

ρF + σ + μ
− Ye−(t+τ)(ρ F̄+σ+μ)

)]
dτdt

= (n − 1)ρ F̄

(ρ F̄ + σ + μ)(β + σ + 2μ)
− (n − 1)Y (σ + 2μ)

(ρ F̄ + 2σ + 3μ)(β + ρ F̄ + 2σ + 3μ)
.

	


Finally,wenote thatwe canuse themethoddescribed in this appendix tofind explicit
expressions for the matrix entries of the 3 × 3 matrix Mr , that are characterized by
identity (47). Note that we can find expressions for the T (r I −Σ)−1ψx , x = A,B,C
by simply replacing−ΣB by r I −ΣB in the calculations in this appendix. This allows
us to characterize (mr )xy . We refrain from elaborating the details.

123



50 K. Y. Leung et al.

Appendix D: Mean field at distance one—bounds for R0

As explained in the main text, the mean field at distance one assumption is a moment
closure approximation as we ignore certain correlations between the states of two
individuals in a partnership. One may wonder how well ‘the real R0’ (presuming
it can be defined, when no assumption is made about the degree distribution of the
partners of an individual at epi-birth) is approximated by R0 as derived under the mean
field at distance one assumption. Note that here we focus on the mean field at distance
one assumption in the linearised system only.

In this appendix we provide lower- and upper bounds for ‘the real R0’ for the case
n = 2 with numerical values presented in Fig. 14.

Consider a randomly chosen partnership with partners u and v. Assume that the
partnership is formed at time t = 0. Then, as long as we condition on the existence of
partnership uv, the states of u and v are independent from one another at time t = s
(as also explained in Appendix B). The probability that u is in state 1 or 2 at time s is
given by the probability distribution

esMq,

s ≥ 0, where

M =
(−ρ F̄ σ + μ

ρ F̄ −(σ + μ)

)
.

For s = 0, this yields initial condition q, for s → ∞we obtain probability distribution

q∞ =
( σ+μ

ρ F̄+σ+μ
ρ F̄

ρ F̄+σ+μ

)
.

0.96

0.98

1.00

1.02

1.04

Fig. 14 For different values of parameters ρ, σ , μ, β, the basic reproduction number R0 is determined
together with a lower and an upper bound for ‘the real R0’. We focus here on parameter values for which
R0 lies around threshold value 1
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Then

q2 ≤ P(v has degree 2 at time s | u has degree k at time s) =
(
esMq

)
2

≤ q∞
2

(note that the equality holds since the degrees of u and v are independent of one another
as long as we specify the duration of the partnership uv). Therefore

q2 ≤ P(v has degree 2 | u has degree k) ≤ q∞
2 , (69)

k = 1, 2 (recall that we condition on the existence of partnership uv). Under the mean
field at distance one assumption, we say that

P(v has degree 2 | u has degree k) = Q2.

As we will explain now, (69) provides us with a bandwidth for ‘the real R0’ (in which
the mean field at distance one R0 also falls).

The mean field at distance one assumption manifests itself in the distribution
Q, which plays a role in elements kAB and kBB. For n = 2, we find

∑n
k=1(n −

k)[−Σ−1
B Q]k = [−Σ−1

B Q]1 and ∑n
k=1(k − 1)[−Σ−1

B Q]k = [−Σ−1
B Q]2.

If we replace Q by a probability distribution P in (59) (and keep all other elements
equal) then we deal with [−Σ−1

B P] j , j = 1, 2. Using (58) we find that [−Σ−1
B P]1 +

[−Σ−1
B P]2 = 1/(β + σ + 2μ) holds so we can eliminate [−Σ−1

B P]1. (All other
elements in (59) do not concern the mean field at distance one assumption, so for
any assumption on the degree distribution of the partners of an individual at epi-birth,
these will be the same.) We can then express the dominant eigenvalue λ of K̃ as a
function of [−Σ−1

B P]2 using the explicit formula for the dominant eigenvalue of a
2 × 2 matrix. This is then a monotonically increasing function of [−Σ−1

B P]2.
Furthermore, one can check that

[−Σ−1
B P]2 = [−Σ−1

B ]21(1 − P2) + [−Σ−1
B ]22 P2

= [−Σ−1
B ]21 + ([−Σ−1

B ]22 − [−Σ−1
B ]21)P2,

where [−Σ−1
B ]22 ≥ [−Σ−1

B ]21 (note that ΣB = M − (β + σ + 2μ)I ), so [−Σ−1
B P]2

is a monotonically increasing function of P2. Using (69) we then find

[−Σ−1
B q]2 ≤ [−Σ−1

B Q]2 ≤ [−Σ−1
B q∞]2,

and we find a lower (upper) bound by replacing P by q (q∞) for ‘the real R0’ which we
can compare with the dominant eigenvalue R0 of (59). We evaluate this numerically
in Fig. 14 to get some indication of how well the mean field at distance assumption
performs.

We believe that this can be generalized to obtain a bandwidth for R0 for n > 2 by
considering expected values but we have not elaborated the details.
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Appendix E: The dominant eigenvalue of K equals the dominant
eigenvalue of K ind

We have defined R0 on the binding-site level as the dominant eigenvalue of a NGM K .
In this section we prove that K and K ind, the NGM on the individual level, have the
same dominant eigenvalue R0. Therefore, R0 has an interpretation on both the binding
site and the individual level.

Lemma 10 K ind and K have the same dominant eigenvalue R0.

Proof With the 3 × n matrix G given by

G =
⎛
⎝
n − 1 n − 2 · · · 1 0
0 1 · · · n − 2 n − 1
1 1 · · · 1 1

⎞
⎠ (70)

the identity
GK ind = KG (71)

holds. Since T ≥ 0, T �= 0, −Σ−1 >> 0, ψ, φi ≥ 0, ψ, φ �= 0, we know that
(kind)xy > 0 and ki j > 0 for all x, y. Therefore K ind and K are primitive matrices.

Nowsuppose thatv is the eigenvector corresponding to eigenvalue R0, then K indv =
R0v implies that

K (Gv) = R0(Gv).

Since v can be chosen as a strictly positive vector (as it belongs to the dominant
eigenvalue of a primitive matrix) and G is non-negative and non-zero, Gv is also
strictly positive. Therefore, Gv is the (strictly positive) eigenvector corresponding to
the eigenvalue R0 of K . Since K is primitive, it must also be the dominant eigenvalue
of K .

On the other hand, suppose w is the eigenvector corresponding to the dominant
eigenvalue λ of K t (where t denotes the transpose of K ), so K tw = λw. Then we can
choose w strictly positive, as K is primitive. Then

(K ind)t (Gtw) = λ(Gtw).

So we see that λ is an eigenvalue of (K ind)t (and therefore also of K ind) with strictly
positive eigenvectorGtw. Therefore,λ is the dominant eigenvalue of K ind, i.e.λ = R0.

	


Appendix F: Characterizing the matrix elements (kind)i j

The matrix elements (kind)i j of the matrix K ind are uniquely characterized in (37).
However, as in the case with K , we can give more explicit expressions for (kind)i j
using the interpretation.
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Indeed, (kind)i j can be interpreted as the expected number of secondary cases in
state i caused by one individual in state j , where i and j are of the form (+,m, 1),
m = 0, . . . , n−1.Anewly infected individual in state j = (+,m, 1) hasm susceptible
partners, where each of these partners is in state k = (−, l, 1) with probability Ql

(as a consequence of the mean field at distance one assumption). The probability
that an individual in state k gets infected and has state-at-epi-birth i = (+,m′, 1) is
[β(−ΣB)−1]ik . On top of the secondary cases caused by infecting existing partners,
the newly infected individual can also cause secondary cases among the partners that
it acquires after epi-birth. A newly acquired partner is in state k = (−, l, 1) with
probability ql , and the probability that this individual gets infected and has state-at-
epi-birth i is again [β(−ΣB)−1]ik . The expected additional lifetime number of partners
of an individual in state j = (+,m, 1) is n−m−1 times the expected lifetime number
of partners of a free binding site plus m + 1 times the expected additional lifetime
number of partners of an occupied binding site, where the expected lifetime number
of partners of a free binding site is

ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
,

while the expected additional lifetime number of partners of an occupied binding site
is

σ + μ

σ + 2μ

ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
= ρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)
.

Using this interpretation of the matrix elements (kind)i j we find

K ind = β(−ΣB)−1(Qrt + qst ), (72)

with s = (sk) and r = (rk) are n-dimensional vectors, where r is the second row of
the matrix G defined in (70), i.e.

rk = k − 1,

k = 1, . . . , n, and

sk =
(

(n − k) + k
σ + μ

σ + 2μ

)
ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
.

In order to prove that K ind, definedby (37), satisfies (72),weuse results fromAppen-
dix C. First of all, φ j can be written as
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φ j = (n − j)ψA + ( j − 1)ψB + ψC .

Therefore,

T (−Σ)−1φ j = (n − j)T (−Σ)−1ψA + ( j − 1)T (−Σ)−1ψB + T (−Σ)−1ψC

= (n − j)
∑
x

kx Aψx + ( j − 1)
∑
x

kx,Bψx +
∑
x

kxCψi

= ((n − j)kAA + ( j − 1)kAB + kAC ) ψA

+ ((n − j)kBA + ( j − 1)kBB + kBC ) ψB

+ ((n − j)kCA + ( j − 1)kCB + kCC ) ψC .

Now, we can expand this using the characterization of the kxy of Appendix C. The
coefficient of ψC is

(n − j)kCA + ( j − 1)kCB + kCC

= (n − j)
βρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)

n∑
i=1

[(−ΣB)−1q]i + ( j − 1)
n∑

i=1

[(−ΣB)−1Q]i

+ ( j − 1)
βρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

n∑
i=1

[(−ΣB)−1q]i

+ βρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

n∑
i=1

[(−ΣB)−1q]i

= β

(
(n − j)

ρ F̄(σ + 2μ)

μ(ρ F̄ + σ + 2μ)
+ j

ρ F̄(σ + μ)

μ(ρ F̄ + σ + 2μ)

) n∑
i=1

[(−ΣB)−1q]i

+ β( j − 1)
n∑

i=1

[(−ΣB)−1Q]i

=
n∑

i=1

β
(
[(−ΣB)−1q]i s j + [(−ΣB)−1Q]i r j

)

=
n∑

i=1

β
[
(−ΣB)−1(qst + Qrt )

]
i j

.

On the other hand,

T (−Σ)−1φ j =
n∑

i=1

(kind)i jφi

=
n∑

i=1

(n − i)(kind)i jψA +
n∑

i=1

(i − 1)(kind)i jψB +
n∑

i=1

(kind)i jψC .
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Therefore

(kind)i j = β
[
(−ΣB)−1(qst + Qrt )

]
i j

.
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