
fpsyg-13-943785 September 29, 2022 Time: 6:17 # 1

TYPE Hypothesis and Theory
PUBLISHED 06 September 2022
DOI 10.3389/fpsyg.2022.943785

OPEN ACCESS

EDITED BY

Julian Kiverstein,
Academic Medical Center, Netherlands

REVIEWED BY

Karl Friston,
University College London,
United Kingdom
Philip Gerrans,
University of Adelaide, Australia

*CORRESPONDENCE

Brendan T. Hutchinson
brendan.hutchinson@anu.edu.au

SPECIALTY SECTION

This article was submitted to
Theoretical and Philosophical
Psychology,
a section of the journal
Frontiers in Psychology

RECEIVED 14 May 2022
ACCEPTED 21 July 2022
PUBLISHED 06 September 2022

CITATION

McGovern HT, De Foe A, Biddell H,
Leptourgos P, Corlett P, Bandara K and
Hutchinson BT (2022) Learned
uncertainty: The free energy principle
in anxiety.
Front. Psychol. 13:943785.
doi: 10.3389/fpsyg.2022.943785

COPYRIGHT

© 2022 McGovern, De Foe, Biddell,
Leptourgos, Corlett, Bandara and
Hutchinson. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Learned uncertainty: The free
energy principle in anxiety
H. T. McGovern1, Alexander De Foe2, Hannah Biddell1,
Pantelis Leptourgos3, Philip Corlett3, Kavindu Bandara4 and
Brendan T. Hutchinson5*
1School of Psychology, The University of Queensland, Brisbane, QLD, Australia, 2School of
Educational Psychology and Counselling, Monash University, Melbourne, VIC, Australia,
3Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States,
4School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia,
5Research School of Psychology, The Australian National University, Canberra, ACT, Australia

Generalized anxiety disorder is among the world’s most prevalent psychiatric

disorders and often manifests as persistent and difficult to control

apprehension. Despite its prevalence, there is no integrative, formal model of

how anxiety and anxiety disorders arise. Here, we offer a perspective derived

from the free energy principle; one that shares similarities with established

constructs such as learned helplessness. Our account is simple: anxiety can be

formalized as learned uncertainty. A biological system, having had persistent

uncertainty in its past, will expect uncertainty in its future, irrespective of

whether uncertainty truly persists. Despite our account’s intuitive simplicity—

which can be illustrated with the mere flip of a coin—it is grounded within

the free energy principle and hence situates the formation of anxiety within

a broader explanatory framework of biological self-organization and self-

evidencing. We conclude that, through conceptualizing anxiety within a

framework of working generative models, our perspective might afford novel

approaches in the clinical treatment of anxiety and its key symptoms.

KEYWORDS

anxiety, free energy, active inference, belief, predictive coding, perception, clinical,
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Learned uncertainty

Nature consists of dynamic and complex systems (Friston, 2010; Zednik, 2011). For a
biological system to exist, it must have the capacity to maintain its own boundaries—lest
it cannot be distinguished from other systems. A fundamental property of any biological
system is therefore the requirement that it can individuate itself from its environment.
The free energy principle asserts that to do this, biological systems model external states
and themselves within those states (Friston et al., 2006; Friston, 2010). This occurs
through a process where the system samples information from outside its boundaries,
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via its suite of sensory channels, and acts based on that sampled
information, under some world or generative model. Ultimately,
this is an iterative process in which the nature of what is
perceived of the external state (sensory impressions from the
world) informs the system’s internal state. Internally, the system
then generates a model of the external state of affairs, which
informs how the system ought to act on the world. Via action,
the system influences its external state, which leads to sensory
feedback about the system’s world model—and the “perception-
action” cycle repeats.

The free energy principle: A primer

The free energy principle describes how biological systems
resist dissipation and destruction (Friston et al., 2006; Friston,
2010). Under thermodynamic principles, all systems move
toward disorder (Schneider and Kay, 1994; Hirsh et al., 2012).
Yet, biological systems resist dissipation and instead maintain
themselves in viable states that underwrite their survival (Hirsh
et al., 2012; Ramstead et al., 2018). In fact, biological systems
restrict themselves to a relatively small set of such “attractor”
states, the spectrum of which can be thought of as equivalent
to homeostasis: a variable number of states within which the
system can feasibly sustain its own existence. The crucial insight
afforded by the free energy principle is that this process—of
continuously moving toward attractor states—is an intrinsic
property of biological systems that can be described as emerging
via modeling the “sensed” world (Friston, 2010; Hirsh et al.,
2012). Broadly then, the free energy principle is about how
biological systems self-fulfillingly define themselves as systems
per se, and in doing so move away from destruction and toward
attractor states.

What is free energy?

To “minimize free energy” is to minimize error (or surprise)
engendered by exchange with the external milieu (including
one’s own body). Free energy can be considered a proxy for
surprise, where this kind of surprise (a.k.a., self-information)
can be read as the (negative logarithm of the) evidence for the
system’s model. The system continually minimizes surprise, and
in so doing attempts to minimize uncertainty (i.e., expected
surprise) in its sensory exchanges with the world. Yet, no model
will perfectly capture the external world it is modeling and will
therefore have to deal with uncertainty. To be sure, some degree
of uncertainty is a requisite for system optimization; otherwise,
our internal representation would no longer be amenable to the
accommodation of change in a capricious and itinerant world.
However, too much uncertainty or error inherently contradicts
the system’s goal of restricting itself to its attractor states—those
that characterize the kind of thing that it is (Bruineberg and

Rietveld, 2014; Badcock et al., 2017, 2019; Bruineberg et al.,
2018; Ramstead et al., 2018). The free energy principle thus
specifies that free energy must be actively upper bounded to
ensure expected surprise (uncertainty) is minimized or model
evidence (marginal likelihood) is maximized (Friston, 2010;
Ramstead et al., 2018). Free energy is the system’s most accurate
estimation as to the uncertainty that exists “out there,” and
minimizing free energy is akin to minimizing the error in the
system’s prediction about the world. To “minimize free energy”
is thus to maximize precision in the system’s capacity to model
its own world. This can be neatly summarized as self-evidencing
(Hohwy, 2016).

Models of perception rooted in prediction are generally
considered to have stemmed from Helmholtz (1860) notion
of unconscious inference. Helmholtz (1860) proposed that we
attempt to infer our environment via unconscious cues, and
constructivist theorists including those within Jean Piaget’s
(developmental schema theory, see Piaget, 2003; Feldman, 2004;
Beard, 2013) and George Kelly’s (personal construct psychology,
see Kelly, 1955) schools of thought later posited similar notions
from the top-down cognitivist perspectives. Variations in earlier
schools of thought can be seen throughout literature, with
some models having emphasized the conceptual representation
of cognition; others focusing on the developmental impact
of learning (e.g., models following from Jean Piaget and
Lev Vygotsky); and yet others focusing on the state and
process changes that occur in one’s mental representation
(e.g., MacKay, 1956; Neisser, 1967; Gregory, 1980; Yuille
and Kersten, 2006). We focus on the latter of these here,
with an emphasis on top-down inferences about one’s
environment.

State-based predictive models have evolved over time
(McClelland and Rumelhart, 1981; Rao and Ballard, 1999)
and are generally considered under the scope of “predictive
processing.” Predictive processing equates the brain to that
of a scientist—it makes observations, collects data from the
external environment and generates and updates workable
hypotheses based on the current data available (Hohwy,
2013, 2017). From a neuroscientific standpoint, predictive
processing recasts the classic idea of the brain as an information
processor, specifying instead that top-down and bottom-up
neural networks are functionally driven toward signaling
prediction and the consequent minimization of prediction
error (Friston, 2010; Clark, 2013). Top-down neural activity
associated with reentrant loops—those that provide feedback
from higher level brain regions to sensory processing areas—
are conceptualized as propagating a prediction about a given
sensory input, given some high-level representation or prior
expectation about its cause. The bottom-up or feed-forward
activity associated with sensory input then carries the ensuing
prediction error. If the (top-down) prediction sufficiently
accounts for the (bottom-up) signal, the error is “explained
away”—for example, the signal is attenuated via inhibitory
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mechanisms (Friston, 2012b; Hohwy, 2013, 2017). If the
prediction cannot sufficiently account for the (bottom-up)
signal, the error propagates up the hierarchy and the (top-down)
predictive model is revised (Friston, 2008; Friston and Kiebel,
2009; Huang and Rao, 2011; Bastos et al., 2012; Alexander
and Brown, 2018). Formally, this can be described in terms
of Bayesian belief updating, where neuronal message passing
involves the reciprocal exchange of top-down predictions and
bottom-up prediction errors (Friston et al., 2017). In this
way, signals cascading bidirectionally throughout the cortical
hierarchy can be thought of as building (hierarchical) generative
models about the sensed world.

Predictive processing and the free
energy principle

The free energy principle and predictive accounts describe
and seek to explain the processes by which the brain
functions. Predictive processing can be read as an application
of the free energy principle—one that commits to a specific
implementation, usually in terms of the predictive coding
schemes described earlier. These applications describe the brain
as a system that continually models the world in order to
understand it. The free energy principle provides a description
of the fundamental laws underlying biological systems, whereas
predictive processing is more typically leveraged as a process
theory for psychology and situated cognition (Friston and
Kiebel, 2009; Bogacz, 2017). Simply put, the free energy principle
is concerned with systems, whereas predictive processing applies
the free energy principle—as a method—to specific systemic and
functional hierarchies in the brain.

Though primarily concerned with system dynamics, the
free energy principle can be applied to biological phenomena
at every scale—from the microscopic to the psychological. At
the level of human psychology, belief formation offers a sound
illustration: under the free energy principle, “beliefs” correspond
to probability distributions over external states parameterized
by internal representations of those states, which the individual
develops based on observing and modeling the world (and
themselves within the world, a point we return to later in the
section “Learning Uncertainty”). Belief formation is a useful
example, as it allows us to illustrate the synonymity between
the free energy principle and predictive processing—predictive
processing describes belief formation through the updating
and development of priors, in that beliefs are formed via the
brain learning about the world based upon prior observations
of the world; a classic example being a belief that water
quenches thirst is formed based on prior observations that
water quenched thirst—or put more precisely, based upon
the prediction errors of a generative model that did not
predict the thirst quenching consequences of water. As a
technical note, while debate centers on how such predictions

are optimized (see Bowers and Davis, 2012), generally Bayes’
theorem is considered a formal expression of how predictions
are optimized in terms of Bayesian belief updating. This process
of belief updating “just is” the process of self-evidencing detailed
earlier (for the mathematically minded, refer to Friston and
Kiebel, 2009; Spratling, 2016; Bogacz, 2017; Sterzer et al.,
2018).

The free energy principle and predictive processing are
therefore related in how they describe belief formation in
terms of learning and perceptual inference—the difference
is that the free energy principle provides a principle
or “method” that underlies and attempts to dissolve
disciplinary boundaries (a strength that should not be
understated, Friston (2012a, 2019); Rubin et al., 2020).
In summary, these approaches together not only explain
optimal prediction and model generation but allow us
to consider how contextual cues may lead to differing
probabilities of a given state or outcome. Crucially, we
now consider the outcomes consequent on decisions,
choices and action.

Active inference

Cognitive systems are not passive observers of the world.
Instead, cognitive agents act and sample the environment
to test their predictions about the causes of sensory data.
Derived from the free energy principle, active inference
describes how agents seek to minimize variational free
energy through testing and updating generative models
via sequences of actions predicted to result in preferred
outcomes (i.e., action policies, see Smith et al., 2022). Active
inference assumes that agents carry preferences for what
states they prefer to occupy; namely, those that minimize
uncertainty or expected surprise, where a surprising state
of being is—by definition—aversive (Smith et al., 2022).
Action policies and subsequent updating of generative
models are thus driven toward the attainment of preferred
sensory outcomes, and the avoidance of non-preferred
outcomes.

In active inference, agentic preferences over sensory
outcomes are typically leveraged as prior predictions, called
prior preferences. Insofar as the sensory outcome ultimately
diverges from preferred outcomes, this will be surprising
(Smith et al., 2022). As agents make decisions about possible
action sequences, the agents calibrate the amount of expected
surprise that should be generated by one course of action vs.
another. Once this calibration is complete, agents can then
infer what they are most likely to do. This is sometimes
described as planning or control as inference (Attias, 2003;
Botvinick and Toussaint, 2012; Millidge, 2019). In this way,
preferred outcomes are obtained with action policies via
minimizing the expected divergence between preferred sensory

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.943785
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-943785 September 29, 2022 Time: 6:17 # 4

McGovern et al. 10.3389/fpsyg.2022.943785

outcomes and those anticipated when committing to a particular
plan. The key point here is that actions will be chosen
based on the agent’s estimation of how likely they are to
generate preferred sensory outcomes, which oftentimes is those
which are consistent with the agent’s current world model
(Smith et al., 2022).

Computational approaches in
psychiatry

In recent years, there has been an increase in the
use of computational methods in psychiatry research,
both as methodological tools and for a mechanistic and
conceptual understanding. We focus on the latter. Theoretical
instantiations of the free energy principle such as predictive
processing and active inference are increasingly utilized for
understanding a range of psychiatric disorders, including Post
Traumatic Stress Disorder (Linson and Friston, 2019), stress
(Peters et al., 2017), eating disorders (Barca and Pezzulo, 2020),
obsessive compulsive disorder (Fradkin et al., 2020), anxiety
(Clark et al., 2018), and depression (Barrett et al., 2016).

Recent work has focused on belief updating in anxiety
disorders, such as social anxiety (Smith et al., 2019a; Gerrans
and Murray, 2020), and negative mood and affect (Joffily
and Coricelli, 2013; Van de Cruys, 2017; Hesp et al., 2021).
Broadly, these works interpret anxiety disorders as encoded
uncertainty: agents encode and act upon beliefs that the
world is unpredictable and uncertain, meaning that action
policies cannot sufficiently minimize expected surprise or
uncertainty (see Mathys et al., 2014; Clark et al., 2018; Smith
et al., 2019a, 2021b; Fradkin et al., 2020). For example,
Clark et al. (2018) describes anxious depression as expected
unpredictability (predictions with low precision)—that is, an
agent will act to minimize expected surprise, but cannot reliably
do so. The sense of expected unpredictability precludes the
effective resolution of uncertainty, given an agent cannot infer
how she should act.

It is important to note that uncertainty is not necessarily
linked to negative affective valence. Expected uncertainty can
elicit positive emotions such as the excitement associated
with novelty, i.e., the opportunity to learn and reduce
uncertainty (Anderson et al., 2019). Instead, as described
by Hesp et al. (2021), “agents infer their valence state
based on the expected precision of their action model” (p.
398). Thus, negatively valenced uncertainty characteristic of
anxiety occurs when the agent infers that their current action
policies are not sufficient to resolve uncertainty—a point
we expand on later (for a fuller discussion, see Anderson
et al., 2019). In what follows, we discuss traditional cognitive
accounts of anxiety, before turning to how the free energy
principle and active inference might furnish further insight on
anxiety formation.

Anxiety

Traditional models of (generalized) anxiety are underpinned
by the notion that erroneous beliefs lead to perpetuated
and often exaggerated anxiety responses to a situation
or context. Early behavioral models of anxiety relate to
conditioning or learning (Clark, 1986, 1999; Beck and
Clark, 1988). Entering a situation in which panic or
anxiety has been learned leads to subsequent anticipation
of anxiety upon re-entering that situation, which provokes
further anxiety (Clark, 1986). The work of Beck and Ellis
established common cognitive biases and filters that are
thought to skew one’s perceptions and conceptions of
various circumstances (Beck, 1970; Ellis, 1980). Common
examples include catastrophizing, dualistic thinking, and
exaggeration of anxiety-provoking stimuli (Beck and
Weishaar, 1989; Benjamin et al., 2011). The later stimulus-
response model of anxiety is compatible with the traditional
cognitive framework, as entrained behaviors may exacerbate
cognitions and vice versa. For example, Clark’s (1986)
cognitive model proposes panic attacks are a “catastrophic
misinterpretation” (p. 462) of bodily sensations that amounts
to a cyclical feedback response in instances when anxiety is
expected.

While the cognitive-behavioral model has informed clinical
practice for decades (for an excellent overview, refer to Behar
et al., 2009), it is not without its critics. One of its major
criticisms in relation to the treatment of anxiety disorders
relates to the observation that panic sensations and stress-
related responses can persist even though erroneous beliefs
have been adequately challenged (Beidel and Turner, 1986;
Cartwright-Hatton et al., 2004; Linden et al., 2005). For example,
a therapist may convincingly establish (with a client) that the
client’s thoughts about being made fun of during public speaking
are highly exaggerated and unlikely to be true, yet the client
persists with a sense of dread and anxiety when confronted with
the task of public speaking (Gerrans and Murray, 2020).

We should first point out that numerous theorists have
proposed unique means of conceptualizing beliefs centric
to anxiety that challenge traditional models such as CBT
and rational-emotive behavioral therapy. For instance, rather
than interpreting beliefs as static filters that inform one’s
perceptions in a similar manner in all situations, Kelly (1955)
proposed that erroneous beliefs have a tangible “weight”
and might be conceived of as tight/loose or brief/elaborate,
among other construct-based corollaries. Conversely, emotion-
focused therapies (EFT) argue that affect precedes belief
formation, and hence is ultimately subject to factors which
determine emotion (Greenberg, 2004). Here, we argue that a
view positioned within the free energy principle and active
inference may afford opportunities to re-conceptualize anxiety
formation within the framework of working generative models,
rather than static beliefs or filters. Our primary divergence
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from extant work is that we argue for the process of
how an agent who is initially without anxiety (i.e., believes
her actions will lead to preferred outcomes that minimize
uncertainty) may learn and update beliefs about uncertainty, and
thus form symptomology consistent with generalized anxiety.
The approach we propose therefore neither favors earlier
biological and behaviorist theories of anxiety disorders, nor
later cognitivist accounts, but aims to unify both approaches
by explaining bottom-up belief propagation within a systemic
optimization framework.

A novel perspective via the free energy
principle?

The free energy principle provides a useful framework
to understand the what and how of anxiety formation.
Under the free energy principle, anxiety can be described as
discerned uncertainty about whether actions will minimize
uncertainty, forged via sufficient exposure to surprising
outcomes (Hirsh et al., 2012). That is, within a biological system
that strives toward attracting states, anxiety is the psychological
consequence of an irreducible mismatch between the predicted
consequence of actions and the outcomes encountered, meaning
uncertainty about action policies is irreducible. Sufficiently
long-lasting and persistent uncertainty of this sort impairs the
agent’s capacity to develop adaptive models (i.e., models that
afford effective sampling and actions for the minimization of
expected free energy). When this occurs, the perception-action
cycle becomes (dysfunctionally) geared toward unpredictable
outcomes, which affirm and reinforce a world model in which
uncertainty is the norm. The system thus learns to expect
uncertainty in future iterations of the perception-action cycle.
This, we suggest, is learned uncertainty, a process that is
especially pernicious because it precludes its own “adaptive”
resolve. In other words, “if everything I do leads to uncertain
outcomes, then this is a good model for my lived world—
and there is no reason to change this model” (c.f., learned
helplessness).

Based on the free energy principle, the sustainable existence
of a biological system is tantamount to it returning to a small
number of attracting states. Despite the system developing an
uncertain model, then, its goal and action policies are still driven
toward the minimization of free energy—otherwise, as a system,
it dissolves into states that are no longer characteristic of the
system in question (e.g., death, dissipation, decay, etc.). The
biological system is thus left in a position where it is driven
toward free energy minimization, based upon the prior belief
that its behavior will resolve the uncertainty and enable the agent
to secure preferred sensory outcomes. Anxiety formation can
thus be considered learned uncertainty about the sufficiency
of the agent’s world model and action policies in bringing
about preferred sensory outcomes. This uncertainty, we argue,

is learned from feedback about the efficacy of action policies
for effectively reducing uncertainty. Despite experiencing this
uncertainty, the system must still attempt to minimize it,
but it does not have an adaptive way of doing so, given its
conviction that the world is unpredictable and there are no
policies at hand to resolve this uncertainty. Technically, this
reflects the fact that expected free energy entails an epistemic
aspect; namely, the resolution of uncertainty through expected
information gain of the kind that underwrites novelty. However,
the epistemic affordance of novelty disappears in a capricious
and unpredictable world.

Overall, then, the existence of persistent anxious states—
as a characteristic of anxiety disorder—is analogous to a
system learning uncertainty through model updating and action
policies. Put differently, given enough sampling of an uncertain
world, the system learns that this kind of uncertainty is
irreducible (also see Mathys et al., 2014). This is consistent
with experiential accounts of anxiety, in which individuals
with anxiety disorder often report the world as an unsafe and
unpredictable place; whereas those with lower anxiety levels
are more likely to report their account of the external world
as a safe and trustworthy place (Wells, 1999). A biological
system, having had persistent uncertainty in its past, will
be more likely to expect ambiguous feedback as to how
effective its world model and action policies are in reducing
uncertainty in the future. This occurs irrespective of whether
that uncertainty is reducible, meaning the expected uncertainty
will be disproportionate to the actual uncertainty that could
be resolved (given an alternative repertoire of policies). In
other words, the system learns its model (and action policies)
are insufficient for minimizing uncertainty, resulting in the
psychological experience consistent with generalized anxiety.
From the perspective of affective or emotional inference, the
psychological experience in question can be thought of as
another part of the generative model that best explains the
state of affairs: “I must be anxious because I cannot decide what
to do.” In other words, experienced anxiety reflects the fact
that particular biological systems have sufficiently expressive
generative models to recognize that they are in a state of
uncertainty.

Learned uncertainty at the flip of a
coin

An example from probability theory helps illustrate learned
uncertainty. Let us suppose an agent carries what they think is a
weighted coin, such that 9 out of 10 times it will result in heads.
Every time it lands on heads, the agent receives a reward. In this
example, the agent expects that flipping the coin 10 times will
result in sampling approximately 9 observations of heads. As
such, the agent carries a model of preferred observations (i.e.,
the coin landing on heads, given it leads to a reward), and an
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idea of what action policy will enable it to return to that state
(i.e., flipping the coin).

From here, we can imagine (very broadly) three informative
scenarios for the agents’ preferences and action policies. First,
the coin lands on heads 9 out of 10 times. In this scenario,
the agent obtains its preferred sensory observations, and thus
learns that merely flipping the coin is sufficient for obtaining
these preferred observations. Second, in a drastic departure from
what the agent expects, the coin lands on tails 9 out of 10 times,
violating both its prior preferences and precluding preferred
observations. In this scenario, the sensory feedback, being highly
antithetical to the agents preferred states, inform the agent that
they must update their world model and action policies in order
to obtain the reward in future instances (and hence minimizing
uncertainty over their world model and action policies). In
predictive processing terms, we might say that the prediction
error (elicited by the coin landing on tails) propagates upward
through the cortical hierarchy, allowing the agent to update their
expectations and action policies.

In a third scenario, we can imagine that the coin lands
on heads a random number of times. This scenario offers an
illustrative case of what we refer to as learning uncertainty.
In this scenario, the agent cannot be either sure or unsure
of the efficacy of its world model. Remember that the agent
started with the expectation that their action policy (flipping
the coin) would bring about preferred sensory outcomes (the
coin lands on heads 9 time). In this example, the agent expected
that flipping the coin would result in attainment of preferred
observations because of their action policies. However, here, this
“prior over policies” is partially supported, but also partially
refuted (depending upon the outcome). This would therefore
generate some prediction error (given that the information
sampled suggests the agent was in error in expecting 9 heads),
but the key point is that the divergence between the observed
outcome and predicted outcome is not sufficient to outright
refute the system’s model (and action policies), nor prompt its
complete reevaluation.

If the agent were to flip the coin 10 more times, they cannot
be sure whether their current world model (the coin is weighted
toward heads) or their action policies (flipping the coin) are
sufficient for reliably bringing about preferred sensory outcomes
(the coin lands on heads more often than tails). This means
that the agent is left with uncertainty regarding (a) whether
their model of the external world is sufficiently accurate and (b)
whether the actions they undertake are sufficient for obtaining
preferred sensory outcomes. If we were to, say, flip the coin
100 times, the feedback becomes clearer: “my model is right
sometimes, but wrong sometimes. No matter what I do, I cannot
be sure how the coin will land in future.” In animal studies,
rodents shocked 50% of the time (Zhang et al., 2019; or at
random, Seidenbecher et al., 2016) show higher levels of anxiety
compared with mice shocked at more predictable rates (e.g., 0
or 100% of the time). These findings are precisely what we are

referring to—agents given inconsistent sensory data regarding
the efficacy of their world model and action policies will be more
likely to generate and act upon anxiety.

One might be quick to point out that, in our example
scenario, the agent might be wise to update their “belief”
that the coin is weighted—after all, the flip of a coin is
best expressed as a discrete uniform distribution: only two
possible outcomes exist, and the probability of heads or tails
is theoretically equal. Hence, a situation in which the coin
lands on heads approximately 50 times out of 100 would fit
with the appropriate behavior of a standard unweighted coin.
We address this more explicitly below (subsection “Learning
Uncertainty”). For present purposes, keep in mind this is merely
an example—our point here is not that sometimes modeling
uncertainty is accurate, but rather that the observation has
diverged sufficiently to generate uncertainty in the system’s own
model, but not sufficiently to lead to model updating. More
generally, what we are talking about is the kind of radical
uncertainty or ambiguity that precludes “useable” or informative
data being sampled from its environment. In free energy terms,
the system’s predictions are guided by an uncertain probability
distribution in which all possibilities are approximately equal
(or otherwise cannot be differentiated), and thus the system’s
actions are guided by a model that performs at chance. We
consider this the initial “lever” for anxiety formation.

Learning uncertainty: Where
hierarchical models go wrong

To fully appreciate this process requires appeal to a higher-
order level in which the system makes predictions based on
hierarchical world models. In active inference, hierarchical
models describe the correspondence between different levels
of representations (i.e., Bayesian beliefs) that an agent may
hold about the world. These are often referred to as deep
temporal models (Friston et al., 2018; Smith et al., 2019a,b). Such
schemes demarcate between “level 1” and “level 2” models of
the world, where level 2 models store posteriors inferred by level
1 models. What this means is that level 2 models evolve over
slower timescales than level 1 and are hence more impervious
to current sensory data. An intuitive example is provided by
Friston et al. (2018), where an agent reads a passage of text.
In this example, a level 1 model makes an inference about
individual words being read, while level 2 models infer the
overall direction of the text passage. This type of hierarchical
model explains how agents infer state transitions over nested
time sequences (Smith et al., 2022), in that they consider
accumulated experiences in inferring a current context, and
how current contextual states correspond to higher levels of the
model.

Returning to our example, suppose we now have one
hundred observations cataloged into 10 sets of 10. Now imagine
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the agent continues to observe in each sequence that the coin
lands on heads an unpredictable number of times. In this case,
the agent is offered consistent sensory feedback that their model
of the world is not sufficient for reliably inducing preferred
observations, but not wholly insufficient, either (keeping in
mind that they are still expecting 9 out of 10 heads). Over
the entire sequence of flips (i.e., the 10 set of 10 flips), the
second level of the model “learns” that action policies are not
able to reliably bring about preferred sensory outcomes but
are also not insufficient to the extent that the agent must not
exhibit wholesale change to their action policies. If the agent
consistently observes feedback that their model is not sufficient
for reliably inducing preferred sensory outcomes, they will be in
a position where the second level of their model is not all that
informative for inferring the hidden causes of current sensory
states (i.e., observations at level 1). Instead, they are left in a
position where they are neither sure nor unsure on the utility of
their action policies. This, we argue, is a starting point for the
proliferation of anxiety disorder. We can understand this via
reference to Bayes rule: priors update over time in accordance
with new information, from which predictions are made about
what will be subsequently observed (refer to Westbury, 2010;
Friston, 2012b; Mathys et al., 2014). Anxiety disorder in this
example therefore forms via Bayesian learning: the system
optimally predicts that there is uncertainty, and that their action
policies cannot reliably induce preferred sensory states.

To be precise, momentary anxiety can be thought of as
generated via high entropy probability distributions within a
single perception-action cycle, whereas anxious “beliefs” form
based upon low entropy probability distributions of those
“observations of observations” (i.e., meta observations, or level
2 of the hierarchical model), the composition of which are
more uncertain probability distributions. This account shares
similarities with several previous frameworks. For example,
Chekroud (2015) suggested the formation of depression can
be Bayes optimal (i.e., learned helplessness), where depressive
beliefs form despite a match between information sampled
and the system’s empirical priors (Chekroud, 2015; Holmes
and Nolte, 2019). An agent with learned helplessness has
learnt that, irrespective of their particular action policies, they
cannot resolve their uncertainty—no matter what they do, they
will consistently find themselves in states that depart from
their preferred sensory outcomes (Seligman, 1972). Learned
uncertainty departs from learned helplessness in the sense that,
in the former, the (bayes optimal) agent does not have sufficient
evidence (i.e., useful sensory data) to conclude helplessness but
rather has modeled inconsistency in their successes in obtaining
preferred sensory outcomes. The key point is that, in the case
of learned helplessness, there exists certainty inherent in an
agent reliably finding themself in states opposed to those they
prefer.

More recently, consider Linson and Friston’s (2019)
account of the formation of PTSD. They posit that PTSD

is characterized by a reduced confidence in one’s ability
to resolve prediction errors, given the failure to resolve
these errors when experiencing a traumatic event (Linson
and Friston, 2019). In the case of anxiety, we suggest that
the traumatic event(s) is not necessary for its formation,
merely a sufficient presence of uncertainty (or prediction
error, under Linson and Friston’s model). Via this process,
the organism learns an “inability” to resolve prediction
errors. In this way, anxiety formation is approximately
analogous to PTSD formation, but without the accompanying
high precision gleaned from experiencing a traumatic event
(and hence learning its own catastrophic failure to resolve
prediction errors).

We suggest generalized anxiety forms because of the
organism’s inability to internally model information, given
some initial state of sufficient mismatch in the perception
action cycle. In essence, over time, the system models its
own priors and action policies, in a Bayesian optimal way, as
not adequately updating in a way that alters the probability
of a future outcome. In so doing, anxious priors’ form—
beliefs pertaining to the uncertainty in the system’s world
model and action policies bear disproportionate weight on
top-down processes responsible for model formation, and the
agent iteratively perceives the outside world as if it were
still uncertain, even when it becomes more certain. Despite
this, as specified by the free energy principle, the system is
driven toward minimizing free energy. The biological system
therefore expects that its own modeling and action policies are
neither sufficient nor insufficient—and yet still necessary—and
generates the belief that the inherent uncertainty will persist
across time (see Dickstein et al., 2010; Grupe and Nitschke,
2013; Fonzo and Etkin, 2016; Kannis-Dymand et al., 2020;
LaFreniere and Newman, 2020). External uncertainty therefore
generates internal uncertainty about external certainty, along
with the necessary action policies that would resolve it.
Because this occurs in a Bayesian optimal way, model precision
increases, despite clearly not being adaptive under novel
environmental conditions where certainty may now exist—and
learned uncertainty results.

It is well-established that persistent uncertainty is linked
to higher formation of anxious beliefs across both short
and enduring time periods (Epstein and Roupenian, 1970;
MacLeod and Cohen, 1993; Chorpita and Barlow, 1998; Gutman
and Nemeroff, 2003; Grillon et al., 2004; Compton et al.,
2008, 2010; Murray et al., 2009; Kendall et al., 2010; Burke
et al., 2017). For example, greater adversity in childhood is
predictive of more severe anxiety symptoms in adulthood
(Hayward et al., 2020). Broadly, this research illustrates our
point thus far—uncertainty at an early stage of the model’s
development instigates the proliferation of uncertainty at
later stages of the model’s development—the downstream
effects of which are (at a minimum) inhibition of adaptive
priors over policies from which to operate. In other words,

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.943785
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-943785 September 29, 2022 Time: 6:17 # 8

McGovern et al. 10.3389/fpsyg.2022.943785

initial uncertainty lays the groundwork for how generalized
anxiety forms.

Keep in mind that our example nulls over much of the finer
detail of how modeling might occur in biological organisms
(for example in models of active inference; Smith et al., 2022).
Our model also does not detail with any level of fidelity the
nature of the set of variables that separate the internal state
of the system from the external state, in other words how the
system differentiates the self from the environment (referred
to as a Markov blanket, see Clark, 2017; Ramstead et al.,
2018). Hence, our model does not afford (at least currently)
insights into the nature of the interoceptive aspect of anxiety
(i.e., modeling and predictions about the system’s own internal
state, Barrett and Simmons, 2015; Paulus et al., 2019), but this
will remain an important element of the model to develop
in future.

Accurate modeling of an uncertain
world vs. inaccurate modeling of a
certain world

A final point—as touched on above, it is important to
distinguish between accurately modeling an environment with
true uncertainty (as opposed to spurious prediction errors),
such as in the case of an equally weighted coin (where
modeling the outcomes as a discrete uniform distribution
might accurately represent the external state), to inaccurately
modeling an environment without true uncertainty. In some,
perhaps even many, cases, the world truly is uncertain—and
hence modeling an uncertain world accurately reflects the
true state of affairs. In our view, this is not equivalent to
anxiety, nor does it necessarily imbue the individual with the
psychological discomfort or recognition of anxiety. However,
it is a necessary step in the formation of anxiety disorder. It
is here in which the modeling of uncertainty persists for some
threshold of time that belief structures form specifying that
uncertainty will persist. These belief structures are then levied in
subsequent circumstances where environmental contingencies
may now impart certainty. Notably, and consistent with the
free energy principle, some degree of uncertainty must exist in
any given system, and a level of tolerance for that uncertainty
is anticipated—and indeed inferred in the form of predicted
precision. However, in the case of anxiety syndromes, the
individual has learned uncertainty will persist, and hence now
inaccurately models (a world of) uncertainty. Rather than
returning to the prior model’s homeostasis, a new homeostasis,
modeled on uncertainty, is thus formed (e.g., at a deeper
modeling layer). The departure point for pathological anxiety
occurs when the world returns to certainty, yet because
uncertainty is now positioned within the agent’s model and
action policies, the agent still behaves as if the world is
uncertain—and never learns otherwise.

Criticisms and limitations

Perhaps the biggest strength of our account is that it
nests anxiety within a broader framework offered by the free
energy principle and active inference, and hence allows for an
explanation of anxiety formation operating from first principles.
Crucially, this means that one can simulate the proposed
belief updating processes in silico and, in principle, use these
simulations to fit observed choice behavior in the spirit of
personalized medicine (Schwartenbeck and Friston, 2016; Smith
et al., 2021a,b). This remains a key endeavor we seek to address
in future. Despite this strength, we must stress that our proposal
is not intended to be an exhaustive account of anxiety (for
example its long-term clinical presentation). Rather, it merely
aims to describe how anxiety and anxiety disorder might form.
Still, there are several key objections that can be anticipated, and
which require addressing.

What can learned uncertainty offer
beyond other accounts of anxiety?

Possibly the most critical objection to our proposal might
be what it offers beyond other models, such as behavioral
models of association and conditioning. The key difference, and
its strength, comes from the specification of the free energy
principle that all systems are driven toward minimizing free
energy. In our account, the formation of anxiety does not
(cannot) change this. Therefore, the framework can be used
to generate predictions about future behaviors, specifically,
in relation to how anxiety will interact with the processes
laid out by active inference for how systems go about
minimizing free energy. In doing so, our model may even
point to new treatment options. The approach proposed here
is consistent with prior conceptualizations of anxiety, such
as those found in gold-standard CBT treatments, but the
difference is that we offer a predictive model of how sensory-
perceptual and cognitive models of anxiety may arise, well
beyond a static belief/filter model often applied in the former
(also see Box 1).

The free energy principle offers a foundational account of
what agents must be driven toward, given the parameters of
the physical world which they inhabit. Available free energy
thus provides a kind of “rules of the game” the organism
must play by to sustain their own existence. We can assume
the core motivation to minimize free energy will remain the
same irrespective of the anxious pathology. For example, the
fact that agents are still guided toward the minimization of
free energy may help explain the cyclical feedback response
in which anxiety can produce further anxiety, such as the
classic case in which entering a situation where panic or
anxiety has been learned leads to subsequent anticipation of
anxiety upon re-entering that situation, which provokes further
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BOX 1 Why the free energy principle?
The free energy principle specifies that the sustainable existence of a biological system is tantamount to it occupying a small number of

characteristic (attracting) states. This commitment, we argue, is the free energy principle’s strength compared with Bayesian and reinforcement
learning paradigms that do not carry such commitments. In describing the existential parameters and characteristic states to which biological
systems are driven, the free energy principle elaborates on those states that an organism would attempt to avoid in acting on their world model.
If these states cannot be met (i.e., free energy cannot be reduced) the organism’s internal model of the external must by virtue exude a higher
degree of (information theoretic) entropy (see Hirsh et al., 2012).

The application of the principle to general theories of the brain is illustrated by placing (information theoretic) entropy within a probability
distribution—in which the “flatness” of the distribution is equivalent to the organism’s model estimates of the uncertainty of its future states,
based on past and current sensory data. If the organism has a more precise prediction of its future states, and a high precision belief that these
predictions are accurate, then the distribution becomes increasingly pointed. Cognitively, this means the agent has a clear idea as to the causes
of sensory data and is confident that acting upon their current beliefs will enable them to minimize uncertainty. On the other hand, if the
probability distribution is flat then the agent has a less precise prediction of its future states (see Clark et al., 2018).

By way of example, we can state that sufficiently long-lasting surprise necessarily leads organisms to anticipate a greater degree of
surprise. In other words, if we are wrong about what action to take to minimize free energy all of the time, we will form a posterior belief of
expected future error (i.e., learned helplessness) whereas if we are right all of the time, we are left with the expectation of no future error;
neither of these hypotheticals are tenable in real-world cognition; however. If we are right half of the time and wrong half the time, our model is
not left with clear directionality for future prediction, laying the path for potential uncertainty at a meta-prediction level. This necessarily leads
to a flat distribution regarding both future predictions and the expected error of those predictions. Given a 50-50 (or overly variable)
distribution, we are left with a lack of precision as to what to act on, regardless of prior preferences. Predictions regarding the future can be
neither expectant nor non-expectant of error states. Recast as informational (Shannon) surprise, we are left with the most anticipated
uncertainty for the future. In this way, we can state that even in individual iterations in which one outcome is clearer than others, that if given a
particular period of uncertainty, the model can still learn to expect uncertainty in its future, given past volatility.

anxiety (Clark, 1986). An arguably radical interpretation of
our view would suggest that this core motive toward the
minimization of free energy manifests as a literal fear of
dissipation and destruction, similar to what is specified in
psychological theories of mortality aversion such as terror
management theory (Greenberg et al., 1986). Note that our
account does not make this claim. Still, the notion that learned
uncertainty and the fear of death may interact in interesting
and important ways may be an area worthy of future conceptual
clarification.

With uncertainty equated, why doesn’t
anxiety develop in everyone?

Why should anxiety disorder develop in some, but
not all, when uncertainty is equated between individuals
(Zuckerman, 1999)? We agree that not all individuals will
have the same likelihood of developing anxiety disorder,
even in the face of an equally uncertain environment.
The diathesis stress model provides a popular account to
explain such variability, suggesting pathologies arise via
mutual feedback between genetic predispositions combined
with environmental stressors (Zuckerman, 1999). This implies
that an individual with any given genetic “set” will interact
differently with their environment (Schiele and Domschke,
2018), and thus differing degrees of uncertainty (or stressor
events) will be needed for pathological anxiety to form
(Frank et al., 2006). Further, protective environmental factors
such as a stable and safe family environment, supportive
relationships, facets of culture and religion, and the presence
of role models can offset or “buffer” against the experienced
uncertainty which would otherwise result in subsequent

pathology (Tyler et al., 2018). We suggest that these factors
will protect against the formation of those internalized
metacognitive beliefs regarding the individual’s inability to alter
the probability of a future outcome. Because our account
specifies that this metacognitive belief formation is intrinsic
to the development of pathological anxiety, this provides a
tentative rationale for why anxiety disorder will develop in
some—but not all—when uncertainty is equated. Despite this,
the experience, modeling, and learning of uncertainty itself,
remains what underpins the development of anxiety disorder
between individuals.

In a way, then, our response to this question is that its
premise—namely, that uncertainty can be equated between
individuals—is fundamentally flawed: given said background
factors, we argue no two situations are ever truly equal. If it
were possible to measure the internal entropy or free energy
of a biological system, then this may actually be testable.
It turns out that central nervous system arousal is one of
several candidate markers of the physiological equivalent to
entropy (Quinkert et al., 2011; Carhart-Harris et al., 2014).
Notably, arousal and other candidate markers are readily
measurable, for example via electroencephalogram and near-
infrared spectroscopy (Keshmiri, 2020). Hence, a “measure” of
the internal entropy or free energy of relevant biological systems
(i.e., clinical patients) may—at least theoretically—be possible,
which would provide a means to test between-subject differences
in uncertainty tolerance.

Summary and Conclusion

In this paper, we have endeavored to account for how anxiety
forms via the free energy principle. From principles derived
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from the free energy framework, the formation of anxiety and
anxiety disorder can be understood as a process of learned
uncertainty. Conceptualizing anxiety formation in this fashion
situates its genesis at a fundamental principles level and provides
a solid grounding to understand the necessary conditions for
how and why anxiety develops in the first place. Humans
must be psychologically motivated toward characteristic states—
those attracting states that sustain existence. When the degree
of uncertainty within these states persists for long enough,
the organism’s generative world model specifies that this
uncertainty is inherent to the perceived world. The agent is left
with expecting uncertainty in actively updating its world model,
which may cascade to the detriment of the agent’s psychological
health. We invite researchers to build on our speculations,
with specific reference to questions yet unanswered regarding
protective factors, vulnerability factors, and possible treatment
and remediation options.
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