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Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restor-

ing volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal

Injury Association Impairment Scale A) using a portable fully implanted brain–computer interface within the home environment.

The brain–computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to

a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity.

Movement-intent was used to trigger functional electrical stimulation of the dominant hand during an initial 29-weeks laboratory

study and subsequently via a mechanical hand orthosis during in-home use. Movement-intent information could be decoded con-

sistently throughout the 29-weeks in-laboratory study with a mean accuracy of 89.0% (range 78–93.3%). Improvements were

observed in both the speed and accuracy of various upper extremity tasks, including lifting small objects and transferring objects to

specific targets. At-home decoding accuracy during open-loop trials reached an accuracy of 91.3% (range 80–98.95%) and an ac-

curacy of 88.3% (range 77.6–95.5%) during closed-loop trials. Importantly, the temporal stability of both the functional outcomes

and decoder metrics were not explored in this study. A fully implanted brain–computer interface can be safely used to reliably de-

code movement-intent from motor cortex, allowing for accurate volitional control of hand grasp.
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Introduction
Spinal cord injury (SCI) is a devastating disease, which

exerts a disproportionate medical, social and economic toll

on those injured and society. Despite many exciting pre-

clinical studies underway, to date, no therapeutic interven-

tion has been demonstrated to definitively improve neuro-

logical outcomes or mitigate the effects of secondary neural

injury. Neural interface research has been strongly moti-

vated by the need to restore the ability to communicate or

improve motor function to the more than 5.4 million indi-

viduals in the USA suffering from various neurological dis-

orders and diseases of the central and peripheral nervous

system, which result in paralysis, such as stroke (33.7%),

SCI (27.3%) and multiple sclerosis (18.6%).1–6 The long-

term use of rehabilitative neuroprosthetics could significant-

ly improve the quality of life of paralyzed individuals with

neurotechnology to reanimate non-functional limbs, replace

missing limbs with neuroprosthetics, and enable new

modes of direct neural communication.1,4

Over the last 20 years, there has been a surge in the num-

ber of successful applications of brain–computer interfaces

(BCIs) for upper extremity control involving reaching and

grasping.7–12 Translating this technology into patients’

homes and communities is an important step to enable

patients to benefit from this research. However, fully

implanted and portable BCIs for reanimating motor move-

ments have yet to be successfully implemented and have

never been deployed in an at-home setting. Successful trans-

lation of BCIs into a home environment has been possible

in some cases; however, these studies have generally relied

on signals recorded non-invasively from the scalp via elec-

troencephalography (EEG).13–16 Scalp EEG recordings suffer

from low signal-to-noise ratio, are prone to artefacts, and

require assistance from caretakers for setup. Many home

implementations of non-invasive BCIs focused on smart

home integration17–22 or communication ability in patients

who have lost it, such as those with amyotrophic lateral

sclerosis.23–27 For subjects with SCI, however, restoring

hand function is a top priority,28,29 and a few non-invasive

home implementations of motor BCIs have been demon-

strated.30–32 While much progress continues to be made for

non-invasive BCIs,30,33–35 reliable signal acquisition, com-

plex donning and doffing of equipment and lengthy
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caretaker training continue to impede convenience at-home

use.36–39

BCI systems using implanted electrodes have shown

promise in controlling cursors or robotic arms, though

these systems usually require subjects to be constantly

tethered to non-portable equipment, such as external

power sources and recording hardware, which limit their

application to a laboratory setting.7,9,40,41 Recently, high

band-width telemetry enabled a subject with an intracort-

ical BCI to control a computer cursor at home,42 how-

ever, the portability of this system remains limited to the

wireless short-range area where the processing equipment

is located. Although, current intracortical BCIs provide

high resolution neural data, users must have a pedestal

mounted to their head yielding an increased risk of infec-

tion and a cosmetic concern that user surveys indicate

discourage device acceptance.1 Still, reanimating hand

grasp using invasive BCI in the home has yet to be

studied. Additionally, BCIs using implanted electrodes

generally rely on single-neuron activity,8,10,12 the record-

ing quality of which is known to decline over time in

animals and humans.43

Other studies have instead utilized more stable electro-

corticographic (ECoG) signals recorded from the brain

surface.15 However, until recent technological develop-

ments, these attempts have been limited to temporary

implantations due to the nature of the clinical scenarios

where ECoG is typically used, that is, seizure localization

in epilepsy. Recently, two bilateral wireless epidural

implants with 64 channels were shown to allow control

of a four-limb neuroprosthetic exoskeleton in a labora-

tory setting in a subject with tetraplegia with stable

decoding function over 24 months.44 In the home setting,

patients with amyotrophic lateral sclerosis have success-

fully used ECoG BCIs to control a computer cursor45 or

enable communication,46 but reanimating hand grasp in

the home remains an unmet need for those with paraly-

sis. Table 1 summarizes published BCI studies where the

device was used in the home setting.17–27,30–32,42,45–57

In this study, we sought to evaluate the safety, efficacy

and long-term stability of a fully implanted BCI for con-

trol of a volitional hand grasp in a subject suffering from

cervical quadriplegia via functional electrical stimulation

(FES) orthosis in the acute post-operative phase within a

laboratory setting and then via a motorized hand orthosis

in the home environment. The final system was imple-

mented so that it could be mounted on the subject’s

wheelchair to provide continuous use outside the labora-

tory environment without the need for clinician assistance

via a patient-controlled smart phone application. This

case report has been reported in line with the SCARE

criteria.58

Materials and methods

Screening protocol

All study procedures were approved by the University of

Miami Institutional Review Board and the US FDA

(ClinicalTrials.gov: NCT02564419). A total of 21 sub-

jects (4 female) with C5/C6 motor complete SCI, accord-

ing to the International Standards for Neurological

Classification of Spinal Cord Injury (ISNSCI), provided

written informed consent for screening with an EEG-

based protocol (see Supplementary methods) to test their

ability to trigger a FES device based on EEG signals pro-

duced while performing motor imagery of dominant hand

movement and rest.59 Subjects had to be 18–50 years old

and have a chronic injury (>1-year post-injury) with a

C5 or C6 motor level according to the ISNCSCI60 and

had to achieve sufficient hand opening/closing with FES

to allow grasping (Supplementary Tables 1 and 2). A

total of 17 subjects participated in the EEG screening

over 1–10 weeks. One subject, 5 years post-injury, quali-

fied for and consented to the surgical implantation and

completed all 16 sessions of EEG screening.

Table 1 Summary of BCI studies where device used in

the home setting

Citation Input Output Patient

Serruya2021 MUA Orthosis Stroke

Simeral2021 MUA Cursor 2 SCI

Zulauf-Czaja2021 EEG FES SCI

Oxley2021 ECoG Cursor ALS

Dekleva2020 MUA Cursor SCI

Sun2020 EEG Home appliances

Weiss2019 MUA Cursor SCI

Al-Taleb2019 EEG Pain control 20 SCI

(with CNP)

Kober2019 EEG Cognitive Modulation 7 MS

Pels2019 ECoG Speller ALS

Shahriari2019 EEG Speller 9 ALS

Muller-Putz2019 EEG FES SCI

Gao2018 EEG Speller-like home appliances 8 healthy

Wolpaw2018 EEG Speller 27 ALS

Martin2018 EEG Cognitive modulation

Bundy2017a EEG Exoskeleton 10 stroke

Speier2017 EEG Speller 6 ALS

Kosmyna2016 EEG Smarthome

Vansteensel2016 ECoG Speller ALS

Brennan2015 EEG Home appliances Healthy

Aydin2015 EEG Smarthome Healthy

Holz2015 EEG Speller ALS

Wang2014 EEG Smarthome

Leeb2013 EEG Robot ALS/SCI/cerebral

palsy/þ
Goodrich2015 EEG Speller ALS

Vernon2011 EEG Cursor (phone) SMA

Sellers2010 EEG Speller ALS

Vaughan2006 EEG Speller ALS

An extended version of this table can be found in Supplementary Table 7.

ALS ¼ amyotrophic lateral sclerosis; CNP ¼ central neuropathic pain; ECoG ¼ elec-

trocorticography; EEG ¼ electroencephalography; ERD ¼ event-related desynchron-

ization; FES ¼ functional electrical stimulation; MS ¼ multiple sclerosis; MUA ¼ multi-

unit activity (e.g. spikes); SMA ¼ spinal muscular atrophy; SCI ¼ spinal cord injury.
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Surgical protocol

Pre-operative evaluation with functional magnetic reson-

ance imaging was used to map the site of cortical activa-

tion during imagined dominant (right) hand movements

and actual shoulder movements. Diffusion tensor imaging

was used to identify the location of the corticospinal tract

fibres that had previously controlled the dominant hand

movement in the subject. The merged pre-operative

Figure 1 Pre-operative imaging used for electrode placement, laboratory and home system setups and illustration of ECoG ERDs. (A) Shows

pre-operative sagittal MRI (top) showing post-traumatic cyst centred at C4. Stereotactic navigation was used to plan a small craniotomy over the

region of increased fMRI signal during imagined right hand movements, which coincided with the hand/arm area of the precentral gyrus on the

left hemisphere. (B) Shows relative location of electrodes on brain surface and configuration of data channels with respect to surface electrode

contacts. (C) Shows the upper extremity laboratory setup. Real-time ECoG recordings from hand motor cortex are obtained via an antenna

placed over the implanted transmitter. The antenna is connected to a receiver that then connects to laptop computer. The subject is prompted

to think about resting or moving his right hand during a computer task and the signals recorded from the channels shown in B are processed to

build classifiers that can be used to classify when the subject is thinking about move or rest. When a move state is correctly decoded, FES of the

right hand is applied to the subject using a FES orthosis. (D) Shows the portable BCI system setup. Note that the FES orthosis has been replaced

by a motorized hand orthosis. (E) Centre shows the average spectrogram for the continuous time channels (1 and 3) over all upper extremity

task along with corresponding average power as well as the average PSD for move and rest states for each channel. All PSDs have confidence

intervals calculated by the standard error of the mean. As can be clearly seen by the central spectrogram, motor imagery causes a decrease in

the power in the beta and low gamma frequencies of the ECoG.
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imaging, as shown in Fig. 1A, was used to plan a small

craniotomy over the left motor cortex with the assistance

of frameless stereotaxy (Stealth S7, Medtronic,

Minneapolis, MN). Intraoperative electrical stimulation

via the NicoletV
R

Cortical Stimulator (Natus Neuro,

Middleton, WI) and electromyogram (EMG) monitoring

was used to definitively identify motor cortex by evoking

EMG activity in muscles proximal to the level of SCI. As

determined from the pre-operative imaging and intraoper-

ative stimulation, two four-contact electrodes (Resume II

leads, Medtronic, Minneapolis, MN) were approximately

centred on the hand/arm area on the left hemisphere with

the long-axis of the leads oriented in the anterior–poster-

ior direction. The leads were tunnelled subcutaneously to

the left subclavicular region where they were connected

to the implanted transmitter (Activa PCþS, Medtronic,

Minneapolis, MN). Surgical implantation occurred on 30

November 2018 at the University of Miami Hospital,

and consistent with deep-brain stimulation implantation

reports of low infection and adverse event rates,61,62 no

complications occurred and the patient was discharged

home on post-operative day 2.

Device

The Activa PCþS (Medtronic, Minneapolis, MN) is a

deep-brain stimulation system that allows for real-time

sensing and recording of brain activity. In this study, two

four-contact electrodes were used for real-time sensing of

the ECoG. The eight contacts were configured in bipolar

mode (Fig. 1B) resulting in a total of four EcoG chan-

nels. Channels 1 and 3 output the real-time EcoG at a

sample frequency of 200 Hz whereas channels 2 and 4

output the average power between 4 and 36 Hz com-

puted on-board the transmitter at sample frequency of

5 Hz (Supplementary Table 3). Packets of data were

transmitted every 0.4 s.

Data collection

Laboratory

The subject came to the laboratory 2–3 times per week

for 1–2 h at a time. A timeline of the 29-weeks labora-

tory trial is included in the Supplementary methods

(Supplementary Fig. 1). From study weeks 9–19, ‘closed-

loop’ upper extremity experiments were conducted where

the decoded motor imagery state from the online classi-

fier was used to drive FES of the right upper extremity

via an external orthosis (Bioness H200, Bioness,

Valencia, CA) (Video 1). The details of the in-laboratory

testing including development of initial decoders are

included in the Supplementary methods. Figure 1C sum-

marizes the laboratory setup.

To assess the ability of ECoG to discriminate between

move and rest motor states, the subject was asked to

think about rest for 3 s, followed by thinking about dom-

inant hand movement for 3 s. Synchronization between

the displayed message (Fig. 1C) and the recorded ECoG

was achieved by application of a small pulse to the sub-

ject’s scalp (below sensation threshold) that would cause

an artefact in the recorded ECoG. The recorded data

were segmented using transition pulse and labelled

according to the displayed desired motor state to create

dataset for classifier training.

Home

Beginning in July 2020, the continuous decoding system

was deployed in the subject’s home with the ability to

control and calibrate the system via a custom smart-

phone-based application (Video 2 and Supplementary Fig.

5). The at-home system was constructed using an external

battery (50 000 mAh power bank, Krisdonia, China), a

nano computer (m90n Nano, Lenovo, China) and housed

in a custom 3D-printed case. This casing was mounted to

the back of the subject’s wheelchair as shown in

Video 1 Laboratory decoding of motor imagery. The

subject is presented with prompts to think about moving

their hand or relaxing. When a move signal is correctly

decoded, the FES sleeve is triggered to initiate extension of the

patient’s digits.

Video 2 BCI setup and use at home. The BCI equipment is

easily setup and configured by the subject and a family member or

caregiver, this includes donning the mechanical glove and external

telemeter. Using the mobile phone application enables data

collection at home. Upon deployment, the subject was able to use

the BCI to pick up common objects at home.
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Fig. 1D. Hand grasp was actuated by a Bluetooth-

enabled battery powered mechanical hand orthosis

(Neomano, Neofect, South Korea) instead of FES.

In-home training data were collected in 5-min trials

where epochs of ‘move’ (close hand) and ‘rest’ (open

hand) instructions were delivered to the subject via the

subject’s smartphone while ECoG data were recorded.

Motor instructions were randomly chosen to last between

6 and 10 s (in 0.4-s intervals corresponding to packet

transmission frequency) before transitioning to the other

motor state in order to capture the random transition be-

tween motor states that would occur during real-time

use. A total of 33 trials performed in this manner were

collected for at-home decoding algorithm training. Held-

out open-loop validation data were collected in the same

fashion, without actuating the mechanical glove, and was

not used for training. Finally, held-out closed-loop valid-

ation data were collected in the same fashion, but the

decoded motor state was used to control the mechanical

glove online, giving the subject visual feedback of the de-

coder output.

Feature extraction

For operation of the decoder in both laboratory and

home settings, we sought to map the power spectral

density (PSD) of the EcoG recording to the binary move/

rest state of the hand. In the laboratory, the power spec-

trum of the signals was estimated based on 2.8 s (7 pack-

ets) worth of data for the continuous time channels

(Channels 1 and 3). Spectral frequencies from Channels 1

and 3 from each window of 2.8 s were binned into eight

pre-specified segments (Supplementary Fig. 3). For

Channels 2 and 4, the average spectral power was calcu-

lated. The averages from each channel and each bin were

made up the feature vector for that window.

In the home, data from each channel were divided into

overlapping windows and the PSD was computed for

each window. A window size of 3.2 s was selected with a

window step of 0.4 (Supplementary Fig. 6). For each win-

dow, spectral estimates from Channels 1 and 3 were

obtained from frequency bands ranging from 0 to 100 Hz,

computed using a multitaper method (Supplementary

methods). For Channels 2 and 4, the median spectral esti-

mate was calculated and included in the feature vector for

that window.

Decoding model architecture

In-lab decoding

Five commonly applied machine-learning classifiers were

tested: bagged trees, k-nearest neighbours, linear discrim-

inant, linear support vector machine and an artificial

neural network. All in-laboratory classifiers were trained

in Matlab 2018b, and online experiments were conducted

in Matlab 2015a. Offline classifiers were selected as out-

lined in Supplementary Table 4.

At-home decoder

In order to build a robust decoder used in the home,

using training data with random transitions between

move and rest instruction, we revised the decoder archi-

tecture to model the temporal dynamics of switching be-

tween states. A two-step decoder architecture first used

linear discriminant analysis for supervised learning and a

Hidden Markov Model to capture patterns in the time

domain.

In-home training data were collected in 5-min trials

where epochs of ‘move’ (close hand) and ‘rest’ (open

hand) instructions were delivered to the subject via the

subject’s smartphone while ECoG data were recorded.

Motor instructions were randomly chosen to last between

6 and 10 s (in 0.4 s intervals corresponding to packet

transmission frequency) before transitioning to the other

motor state in order to capture the random transition be-

tween motor states that would occur during real-time use.

A total of 33 trials performed in this manner were col-

lected for at-home decoding algorithm training. Held-out

open-loop validation data were collected in the same fash-

ion, without actuating the mechanical glove, and was not

used for training. Finally, held-out closed-loop validation

data were collected in the same fashion, but the decoded

motor state was used to control the mechanical glove on-

line, giving the subject visual feedback of the decoder out-

put. A detailed description of the at-home decoder

architecture and other architectures that were explored in

cross-validation are found in the Supplementary methods.

Functional tasks

From study weeks 11–19, during the in-laboratory test-

ing, several tasks were performed alongside the upper ex-

tremity trials to quantify any improvements in upper

extremity function. Starting on Week 11, whenever a cor-

rect move state was decoded and the subject was receiv-

ing FES to open and close the hand, he was asked to

Video 3 Functional task to transfer light object. The

subject successfully used the BCI to trigger FES allowing

the subject to grasp and transfer a cup between targets

placed in front of the subject.
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pick up and move a small cup (or a checker introduced

from Week 13) from one side of the table to the other at

the centre of a target. The placement accuracy was meas-

ured as a function of the distance of the cup/checker to

the target (Video 3). Additionally, during Weeks 8–29 a

modified version of the Jebsen–Taylor Hand Function

Test (JHFT)63 was performed once per week to quantify

functional improvement. Passive and active range of

Figure 2 Upper extremity decoding performance. (A) Shows the accuracy of different types of classifiers to decode rest/move states

during the hand task in the laboratory. Best online and offline in-laboratory performance was seen with bagged-tree classifier—89.0% (median

88.75%, range 78–93.3%). (B) Shows that the decoding accuracy remained relatively stable over the 10 weeks of upper extremity tasks.

(C) Shows the performance of the at-home decoder under open-loop and closed-loop settings. (D) Shows the distribution of at-home decoding

accuracies under open-loop (N¼ 13) and closed-loop (N¼ 12) settings. (E) Shows a sample at-home time series during an accuracy assessment

demonstrating the movement state being displayed to the subject, the decoder movement state probability, and the decoded state.
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motion was also measured each week. Pinch force be-

tween the index finger and thumb during FES was meas-

ured each week using a digital pinch gauge (Baseline

digital pinch gauge, Fabrication Enterprises, USA). Due

to the Covid19 pandemic, functional assessments were

unable to be performed during the at-home testing.

Clinical assessments

During the in-laboratory portion of the study, the subject

underwent weekly interviews to assess for adverse events

and was also surveyed for changes in self-perceived func-

tional independence. Changes in health status were

assessed with the MOS 36-item short-form health survey

(SF-36).64 Perceived changes in functional independence

were assessed with the spinal cord independence measure

(SCIM)65 version III, which ranges from 0 to 100 and

higher score indicates increased independence. Detailed

neurological evaluation for documentation of level and

severity of SCI was conducted monthly according to the

ISNCSCI.60 During home use, the SCIM and SF-36 were

administered once per week.

Statistical analysis

Data were tested for normality using the Lilliefors test.

Where multiple groups where involved, Levene’s test for

equal variance was used to evaluate homoscedasticity

across. In case of single comparisons, the Student’s t-test

was used for data that was normally distributed other-

wise the ranked sum test was used. For testing differences

between multiple groups, we used One-way ANOVA or

Kruskal–Wallis tests.

Data availability

Individual participant data that underlies the results

reported in this article after de-identification, study proto-

col, statistical analysis plan and analytic code will be

made available upon request to researchers who provide

a methodologically sound proposal. Requests should be

made to corresponding author.

Results

Decoder performance

Figure 2A summarizes decoding performance across all

in-laboratory upper extremity sessions (open loop and

closed loop) for Weeks 9–19 for different classifier types.

For offline analysis of the closed-loop experiments, a

total of 80–240 trials were used with half of the data set

used for training and the other half for testing. The accu-

racies presented represent the average of 100 random

split cross-validation iterations. Mean online decoding ac-

curacy per week was 89.0% (median 88.75%, range 78–

93.3%), which was not significantly different from offline

performance across the 5 types of classifiers tested

(Kruskall–Wallis test with Tukey–Kramer adjustment for

multiple comparisons, P> 0.06). Online decoding during

Weeks 9–19 remained relatively stable for upper extrem-

ity tasks across weeks as shown in Fig. 2B.

The decoder trained for the at-home setting performed

very well on non-ambiguous windows of data, i.e. those

that did not contain mixed move/rest signals, in both

open-loop and closed-loop trials (Fig. 2C and D). Using

the decoded probability of motor intent, the area under

Figure 3 Cross-validation overview. (A) Summarizes the structure of the grid search for leave-one-trial-out cross-validation depicted for

33 trials of motor instruction. Selected hyper-parameters are summarized in Table 2. (B) Shows the impact of each hyper-parameter plotted

over all other hyper-parameterizations. Window size, lag and decoder architecture had large impacts on performance, but label aggregation

method had a similar distribution of performance over all other hyper-parameterizations.
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the receiver-operator characteristic curve (AUC) was cal-

culated for each window of non-ambiguous data. Open-

loop and closed-loop trials had similar decoding perform-

ance with AUC of 0.98 and 0.97, and accuracy with a

mean of 91.3% (median 90.8%) and 88.3% (median

90.3%), respectively. During state transitions, in which

windows contained changes in motor intent, there was an

average delay of 2.3 s to transition to the intended motor

state. These delays in time to motor intent are seen in a

time series data sample (Fig. 2E) where the change in

the decoded state lags changes in the prompt. This delay

contributes to a slightly decreased accuracy (0.69) when

analysing data across windows where motor intent

changes for both open-loop (AUC¼ 0.78) and closed-

loop (AUC¼ 0.77) trials.

Cross-validation

The cross-validation results for the at-home decoder are

summarized in Fig. 3. Selected hyper-parameters are

summarized in Table 2. Window size, lag and decoder

architecture had large impacts on performance, but label

aggregation method had a similar distribution of per-

formance over all other hyper-parameterizations.

Functional improvement

The subject showed improvement in the accuracy of plac-

ing a small cup, 60.1% 6 7.8% (mean 6 SD) at Week

11 versus 82.8% 6 4.7% at week 19 (two-tailed t-test,

P¼ 0.03) or a checker (64.5% 6 7.3% at week 13 ver-

sus 88.8% 6 4.8% at Week 19, two-tailed t-test,

P¼ 0.03) at the centre of a target as summarized in

Fig. 4A and B.

Functional improvement was quantified as the reduc-

tion in the average time taken to perform specific compo-

nents of the JHFT (Fig. 4C). Significant improvements

were observed in lifting small objects, lifting light cans

and lifting heavy cans through orthotic-assisted tasks.

Along with a trend towards improvement in writing

speed (32.3–26.4 s, two-tailed t-test, P¼ 0.15), clarity of

the handwriting also improved throughout the course of

the study (Fig. 4D). Further, pinch force increased from

1 to 3 lb within 10 weeks.

Clinical assessments

While there was no change in ISNCSCI American Spinal

Injury Association impairment scale from a C5 motor

level, there was an unexpected slight increase in the

motor zone of partial preservation (defined as the myo-

tomes below the level of injury with residual innervation)

on the left from C6 to C8. Additionally, after study week

23, the subject began to be able to extend his right

thumb volitionally with motor strength 2/5 in the absence

of the FES orthosis (Video 4). During the laboratory por-

tion of the study, there was no change in the SCIM from

a baseline score of 26. The SF-36 indicated a 32.5% im-

provement in pain, a 5% increase in energy and an 8%

decrease in emotional well-being. Interestingly, during the

in-home portion of the study, there was a 22.5% increase

in pain (from 100% down to 77.5% in the setting of a

newly diagnosed and treated urinary tract infection) and

a one-point increase in the SCIM [from 26 to 27 due to

improvement in self-care (see Supplementary Tables 5

and 6 for a breakdown of scores)].

Discussion
Successive continuous movement of the hands were first

noticed by Jasper and Penfield in 1949 to produce a

blocking of the beta rhythm in the pre- and post-central

hand area as measured in ECoG.66 Interestingly, the

reductions in the beta power band observed in the

ECoG, called event-related desynchronizations (ERDs),

are also observed during imagined movements of the

limb. Therefore, it is not surprising that ERDs and other

changes in the frequency characteristics of the EEG and

ECoG have been investigated by numerous researchers

as potential control signals to trigger stimulation of par-

alyzed muscles59 or to control the position of a cursor

on a computer screen.16 A fully implanted ECoG-based

BCI using ERDs within the ECoG signals, has been

developed to allow typing in a fully locked-in patient

with amyotrophic lateral sclerosis.46 However, to our

knowledge, no prior fully implanted and portable motor

BCI has been successfully deployed in a home environ-

ment to allow volitional restoration of hand grasp.

Our results demonstrate that a fully implanted BCI can

be safely and reliably used to decode movement-intent

from motor cortex allowing for volitional control of

hand grasp by a patient with SCI in laboratory and

home environment. In closed-loop experiments, move-

ment-intent was decoded from real-time ECoG recordings

obtained from electrodes placed on the hand/arm motor

cortex and the output of the classifier was used to trigger

an external assistive device with a high degree of accur-

acy. The performance of the decoder has remained stable

for the 22 months since initial device implantation with

median accuracy around 90%. Additionally, there was

significant improvement in both the accuracy and speed

of several functional hand tasks, though stability of these

improvements overtime was not experimentally assessed.

We also observed improvements in self-perceived pain

and energy scores during the initial laboratory testing

Table 2 Final at-home decoder hyper-parameters

selected via leave-one-out cross-validation

Hyper-parameter Selected

value

Window size, w (s) 3.2

Label scheme, y yð3Þ

Decoder architecture LDA-HMM

Lag l (s) 0.0
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period and, interestingly, there was a slight increase in

the SCIM during home use within the area of self-care as

well as changes in pain perception with the laboratory

and home setting. The clinical significance and stability

of these perceived changes remains unclear at this time

but will ultimately be crucial to understand in order to

maximize the utility of BCIs to patients with SCI.

Though we only demonstrate this work in one subject,

previous studies have successfully used ERD to provide a

valuable control signal for motor imagery.13,14,59,67–72

Though the magnitude of ERD may change after SCI,69

it has continued to be used successfully to detect motor

imagery in both healthy subjects13,14,67,70–73 and subjects

with SCI,59,68 as well as other neurological conditions.74

Additionally, the Activa PCþS has been used to detect

ERD in other patient populations,46,75 further supporting

the possibility that fully implanted systems can reliably

detect ERD for use in the home.

The subject demonstrated an increase in volitional

control of their right thumb towards the end of the la-

boratory phase of the study. While previous work using

FES in patients with stroke has shown improvement in

volitional control,30,76,77 without further evaluation of

EMG, whether the improvement can be attributed to the

use of the BCI or another mechanism is unknown.

Figure 4 Functional task structure and performance. (A) Shows the setup for the checker and cup task. The subject was instructed to

try to place the corresponding object at the centre of the target (n¼ 20) and this task was repeated three times during a study week visit.

(B) Shows significant improvement in accuracy from Week 11 to study Week 19. (C) Shows comparison of times between study Weeks 9 and

19 for different components of the JHFT. Each JHFT task was repeated a total of five times per session. Bar height corresponds to mean times

6SD; P-values computed with two-tailed t-test. (D) Shows the best handwriting sample from each week from Weeks 10–29 along with average

time to write each of the words. Each word was written a total of five times per week.

Video 4 Volitional abduction of the first digit. During the

study, the patient noticed that they were able to slightly abduct the

first digit on their dominant right hand without the use of the BCI

system or an assistive device.
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Our results show that a BCI that allows control of one

degree of freedom (namely hand grasp) may be a helpful

tool for patients with paralysis to gain functional inde-

pendence by allowing them to exert volitional control of

external devices. Although this study did not use function-

al independence measures aside from that captured in the

SCIM, we envision that as these technologies transition

out of the laboratory setting, the potential improvements

in ability to perform activities of daily living will drive

functional independence. Additionally, the system can be

easily adapted to allow volitional control of a wide range

of external devices (e.g. as a trigger for robotic assisted

stepping within an exoskeleton as shown in the

Supplementary methods), which may open the door for fu-

ture development of assistive devices within a home envir-

onment that can be controlled with the implanted BCI.

For our BCI system at home, the use of implanted

ECoG electrodes, asynchronous signal decoding, wireless

communication and a simplified user-centred interface

helped reduce caretaker setup times to a few minutes,

requiring no technical training other than simply position-

ing the telemeter and turning the components on. While

restoring hand grasp might be accomplished using other

non-invasive methodologies, including mechanical devi-

ces,78 orthoses79 or electrically-powered devices driven by

functioning movements or EMG,80 the implant allowed

for an unobtrusive design, minimizing both the visible ex-

ternal components that collect the neural data as well as

minimizing system maintenance. Additionally, coupling

motor imagery from neural signals with an asynchronous

decoder eliminated that need for a synchronizing stimulus

and enabled the subject to engage the device in a more

natural way. These aspects highlight how some of the

barriers36–39 that hold back BCIs from further transition-

ing into the clinic and community can be overcome. Still,

invasive procedures for BCI may be concerning,36 how-

ever, some surveys suggest that this does not affect inter-

est of some potential beneficiaries.81 As pointed out by

Waldert,82 other neural implant procedures, such as DBS,

rarely result in complications, suggesting that procedures

for BCIs will have similar outcomes and success, where

the benefits of invasive BCIs out-weigh the surgical risks.

The main limitation of this work, the ability to decode

only one degree of freedom, is driven by currently avail-

able technology. As newer devices with increased record-

ing capabilities (increased number of channels and spatial

density, and higher sampling frequency), such as the one

recently developed by Benabid et al.44 become available

within the US market, we anticipate that the techniques

presented here-in will be generalizable to the restoration

of a larger number of degrees of freedom in patients with

SCI. Particularly, the development of these new devices in

parallel with advanced mobile robotic exoskeleton tech-

nology may in the near future allow for the restoration

of both upper and lower extremity function for patients

with SCI.

Supplementary material
Supplementary material is available at Brain

Communications online.
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