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ABSTRACT The ballistocardiogram (BCG), a signal describing the reaction forces of the body to cardiac
ejection of blood, has recently gained interest in the research community as a potential tool for monitoring
the mechanical aspects of cardiovascular health for patients at home and during normal activities of daily
living. An important limitation in the field of BCG research is that while the BCG signal measures the forces
of the body, the information desired (and understood) by clinicians and caregivers, regarding mechanical
health of the cardiovascular system, is typically expressed as blood pressure or flow. This paper aims to
explore, using system identification tools, the mathematical relationship between the BCG signal and the
better-understood impedance cardiography (ICG) and arterial blood pressure (ABP) waveforms, with a series
of human subject studies designed to asynchronously modulate cardiac output and blood pressure and with
different magnitudes. With this approach, we demonstrate for 19 healthy subjects that the BCG waveform
more closely maps to the ICG (flow) waveform as compared with the finger-cuff-based ABP (pressure)
waveform, and that the BCG can provide a more accurate estimate of stroke volume (r = 0.73, p < 0.05) as
compared with pulse pressure changes (r = 0.26). We also examined, as a feasibility study, for one subject,
the ability to calibrate the BCG measurement tool with an ICG measurement on the first day, and then track
changes in stroke volume on subsequent days. Accordingly, we conclude that the BCG is a signal more closely
related to blood flow than pressures, and that a key health parameter for titrating care—stroke volume—can
potentially be accurately measured with BCG signals at home using unobtrusive and inexpensive hardware,
such as a modified weighing scale, as compared with the state-of-the-art ICG and ABP devices, which are
expensive and obtrusive for use at home.

INDEX TERMS Ballistocardiogram, hemodynamics, cardiovascular health, home monitoring.

I. INTRODUCTION
Cardiovascular disease is the leading cause of death in
the U.S., claiming more than 2,000 lives every day,
and heart-related healthcare expenditures total more than
$320 billion annually [1]. Moreover, both incidence and
cost related to CVD are projected to increase further in
the coming decades, leading to an imbalance between the
number of healthcare providers and patients with CVD [2].
One way to address this pressing problem would be to
enable in-depth monitoring of cardiovascular health at home
with inexpensive and connected technologies; this could

ultimately allow care to be automatically optimized to the
needs of the patient with proactive, feedback-controlled
therapies, and could thereby reduce the burden on the
healthcare system by reducing the need for costly reactive
measures such as emergency room visits. For monitoring
CVD at home in particular, many technologies are avail-
able for sensing and assessing the electrophysiology of the
heart [3], [4]; however, few monitoring methods provide
information about the equally important mechanical aspects
of cardiac function related to left ventricular function and
hemodynamics [5].
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Ballistocardiography (BCG), which is a measure of the
reactionary forces of the body in response to the ejection
of blood and movement of blood throughout the arterial
tree, has recently re-emerged as a promising methodology
for assessing the mechanical health of the heart [5]. Recent
research has shown that the BCG signals can be measured
accurately using modified chairs and beds [6]–[9], weigh-
ing scales [10], [11], miniature accelerometers [5], [12]
and force plates [13]. The BCG derived signal features
have been shown to correlate well with the pre-ejection
period–the isovolumetric contraction period of the cardiac
cycle [14], [15]–a surrogate measure of myocardial
contractility [10], [16]. Other empirical studies have also
shown BCG features to be related to cardiac output
changes [17]. However, since the BCG is a measure of body
forces, the understanding of the precise origin of the BCG
signal, and in particular how the signal mathematically relates
to arterial blood pressure and aortic blood flow, is limited.
This limitation represents a fundamental scientific gap that
must be addressed for the BCG to be adopted in clinical use.

Ideally, one would directly measure the arterial blood
pressure (ABP) or blood flow (i.e., cardiac output, CO)
in the home rather than measure the BCG in the first
place, then attempt to relate the BCG to these parameters.
However, state-of-the-art tools for measuring the ABP and
CO continuously are obtrusive, expensive and require a med-
ical professional to administer the measurement; accord-
ingly, they are not feasible for use at home. The ABP is
measured using volume-clamping finger-cuffs [18], requir-
ing expensive equipment and bulky, cumbersome hardware.
The CO, which is the product of stroke volume (SV) and
heart rate (HR), can be estimated from impedance cardio-
gram (ICG) signals [19], [20], also requiring expensive equip-
ment, and eight electrodes to be placed precisely (typically
by a medical professional or researcher) on the neck and
thorax. Nevertheless, significant research efforts over the past
several decades have led to a strong understanding of the
physical origin of both finger-cuff based continuous ABP
and thoracic ICG waveforms. If the BCG waveform – which
can be measured by unobtrusive, inexpensive, and simple
hardware readily deployable in home settings – could be
anchored to either of these better-understood measurement
modalities, then at-home accurate measurement of ABP or
CO could be feasible for myriad CVD monitoring needs.

The objective of this study is to investigate if the BCG
signal is more in accord with the pressure of the blood or
its flow, as shown in Fig. 1. Note that while pulse pres-
sure (PP), defined as the difference between systolic (SP) and
diastolic (DP) blood pressure, is closely related to CO, the
dependence changes significantly throughout the day (or even
on a second-by-second basis, for example during exercise
or with fluctuations in ambient temperature) with changes
in total peripheral resistance (TPR) due to modified auto-
nomic state or vasomotor tone. To better understand the origin
of the BCG, we extract features from the weighing-scale
BCG heartbeats and assess correlations of these features with

FIGURE 1. Physical phenomena associated with the action of heart. The
forced ejection of blood into the aorta (represented by FH in the
illustration) is characterized by blood pressure (as derived from arterial
blood pressure, ABP, waveforms), blood flow (as derived from impedance
cardiogram, ICG, waveforms) and whole body movement (as derived from
ballistocardiogram, BCG, waveforms). Analyzing the relationship between
BCG and ABP/ICG waveforms can provide insight into the origin of the
BCG and thereby improve the ability to derive cardiovascular health
parameters from this signal.

corresponding features from the ABP and ICG heartbeats.
Next, we compare the BCG waveform to the ABP and ICG
waveforms, with the blood pressure and CO of the subjects
being modulated asynchronously. Finally, based on our find-
ings, we provide a preliminary methodology for using ICG
calibration to estimate serial changes in CO from patients
at home. This work, if successful, could provide a tool, for
example, for monitoring heart failure (HF) patients at home
following discharge from the hospital, with the goal of poten-
tially predicting exacerbations and thus reducing unnecessary
re-hospitalizations.

II. METHODS
A. PROTOCOL
This study was conducted under a protocol reviewed and
approved by the Georgia Institute of Technology Institu-
tional Review Board (IRB). All subjects provided written
consent before experimentation. Nineteen healthy subjects
were recruited for the study (demographics: 5 females and
14males, 24.4±4.8 years old, 175±8.8 cm tall and weighing
71 ± 12.5 kg). The protocol aimed to create changes in
the stroke volume and blood pressure through perturbations
as shown in Fig. 2. The protocol consisted of five phases
involving two perturbations separated by recovery time. Each
subject was asked to stand on the BCG weighing scale in
resting state for 60 seconds. Then a Valsalva maneuver was
performed for 15 seconds during which the subjects were
asked to bear down. This was followed by a recovery period
of 60 seconds. Finally, each subject performed a handgrip
challenge for 30 seconds in the form of an isometric con-
traction against a fixed resistance that was also followed by
30 seconds of recovery. The purpose of these perturbations
was to cause a change in the parameters related to cardiac
function and hemodynamics, and to modulate the degree
to which each parameter changed (stroke volume as com-
pared to pulse pressure) differently to examine whether the
BCG captured more of the variability in stroke volume or
pulse pressure. All the measurements were taken while the
subject stood in an upright posture and the ICG, ECG and
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FIGURE 2. (a) Experimental setup and processing steps for the BCG, ICG
and ABP. (b) Protocol showing different phases of data collection for each
subject along with time intervals and also the mean and standard
deviation of the change in stroke volume and systolic blood pressure
during perturbations compared to values in resting state for all subjects.
The values are shown for post-Valsalva recovery, handgrip and
post-handgrip recovery phases.

ABP measurements were collected simultaneously with the
BCG from each subject. The ABP measurements were taken
non-invasively and continuously from a volume-clamping
finger-cuff device that provides continuous blood pressure
waveforms as compared to arm-cuff device, which only gives
estimates of systolic and diastolic blood pressure values.

B. HARDWARE DESIGN
The ECG and ICG signals weremeasured using the BN-EL50
and BN-NICO wireless measurement modules (BIOPAC
Systems, Inc., Goleta, CA) and then transmitted wirelessly
to the data acquisition systems (MP150WSW, BIOPAC Sys-
tems, Inc., Goleta, CA). The BCG was measured with a
modified weighing scale using the strain gauge bridge and an
analog amplifier [21]. The arterial blood pressure was mea-
sured non-invasively and on a continuous beat-by-beat basis
with the A2SYS Nexfin Monitor (Edwards Lifesciences,
Irvine, CA) that uses the volume-clamping technique on one
finger [18]. The ECG, ICG, BCG and the ABP signals were
all sampled at 1 kHz.

C. DATA PROCESSING
The BCG, ICG and ECG signals were filtered with finite
impulse response (FIR) Kaiser window band-pass filters (cut-
off frequencies: 0.8-15 Hz for the BCG, 0.8-35 Hz for the
ICG and 2.5-40 Hz for the ECG) while the ABP signals were
low-pass filtered (FIR, Kaiser window, cut-off: 20Hz). The
ABP signals were low-pass filtered to preserve the DC value
for accurate estimation of systolic and diastolic blood pres-
sure. After filtering, the R-peaks in the ECG signal, denoted
by Ri (i represented the peak index), were detected using a
simple peak detection algorithm and results were manually
verified to make sure all peaks were detected correctly.

FIGURE 3. The annotated BCG, ICG and ABP waveforms. The features
extracted from these are shown in grey.

Specifically, a constant threshold of 50% of the maximum
amplitude of the band-pass filtered ECG was computed for
each subject; local maxima greater in amplitude than this
threshold were then located automatically and annotated
as R-waves; R-waves found to be closer than 300 ms to
each other were discarded as false positives. The minimum
R-R interval was calculated in each phase of the data collec-
tion protocol for each subject. Let the minimum R-R inter-
val in each phase be denoted by winp (p represents the
phase, i.e., p ∈ [rest, Valsalva, recovery, handgrip, recov-
ery]). With the ECG R-peaks as reference, the BCG, ICG
and ABP signals were segmented into individual heart-
beats or frames [22]. The data from the 15-second Valsalva
period were not analyzed as these included noise caused
by subject-induced movement during the Valsalva maneu-
ver. The length of each extracted heartbeat or frame was
Ri – 300ms to Ri + winp, i.e., each frame contained 300ms
before the Ri peak and winp samples after Ri as shown in
Fig. 2(a). We shall refer to the first 300ms in the extracted
heartbeats as pre-R samples. All the beats extracted in each of
the phases were ensemble averaged [23] to reduce noise and
features were extracted from the ensemble-averaged traces.
Hence for each subject, four ensemble-averaged traces corre-
sponding to rest, post-Valsalva recovery period, handgrip and
post-handgrip recovery period were obtained from the BCG,
ICG and ABP signals.

D. EXTRACTION OF FEATURES
To understand the BCG-to-ICG and BCG-to-ABP relation-
ship, a number of features were extracted from the BCG
heartbeats and correlated (Pearson’s correlation) with fea-
tures obtained from the ICG and ABP. The annotated BCG,
ICG and ABP heartbeats are shown in Fig. 3. Three fea-
tures were extracted from the BCG heartbeats: (1) the
I-J amplitude normalized by root mean square energy in the
heartbeat, i.e., I-J/ERMS, where ERMS represented the root
mean square energy in the BCG heartbeat / frame and is given

by ERMS =

√
(1/n)

∑n
i=1 b

2
i (n is the total number of sam-

ples in a BCG heartbeat b), (2) the R-J interval, i.e., the time
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interval between the ECG R-peak and the J-peak on the BCG
heartbeat, and (3) the (M-K interval × I-J amplitude)/ERMS,
where M corresponded to the point of maximum slope. The
motivation behind multiplying the BCG amplitude and time
feature was to design a feature that captures the energy of the
main BCG complex. The idea was to quantify the mechanical
energy in each heartbeat, which can potentially increase with
increased stroke volume.

Three features were extracted from the ICG heartbeats
which included: (1) the maximum peak value i.e., the
dz/dtmax value which represents the maximal speed of blood
ejection, (2) the pre-ejection period (PEP) or the R-B interval,
i.e., the time difference between the ECG R-peak and the
B-point on the ICG, and (3) the time difference between
the X- and the B-point, i.e., the left ventricle ejection
time (LVET). These features characterized the blood flow in
the vessels and were required for estimation of stroke volume
from the ICG.

The features from the ABP heartbeats included: (1) the
maximum peak value of the beat representing systolic blood
pressure Sp, (2) the foot value Dp before the maximum peak,
denoting the diastolic blood pressure, and (3) the difference
between Sp and Dp called the pulse pressure PP [24].

E. MAPPING THE BCG HEARTBEATS TO ICG AND ABP
USING SYSTEM IDENTIFICATION
In order to further analyze the relationship between the BCG
and ICG and also between the BCG and ABP, the BCG
heartbeats were separately mapped to the corresponding ICG
and ABP heartbeats using subject-specific FIR system identi-
fication methods: i.e., an impulse response was estimated for
an FIR filter that converted the BCG heartbeats to the ICG
heartbeats and another impulse response for the BCG to ABP
conversion.

In general, the output y of a linear filter of orderQ operating
on an input u is obtained by convolving the impulse response
w of the filter with the input (u, y ∈ <N and w ∈ <Q).
In least squares terminology, the output is given by the
equation y = Uw, where U is the convolution matrix whose
entries are made up of elements of u. If the input vector
is zero-padded to account for unavailable data during the
convolution operation, then this method is called the Auto-
correlation method [25]. If the desired output signal is y′, then
the optimum solution ŵ can be obtained by minimizing the
expression

min
w

∥∥Uw− y′∥∥2 + λ ‖w‖2, (1)
where λ is the regularization constant to avoid over-fitting.
The least squares solution is now given as

ŵ = (UTU + λI )−1UT y′. (2)

In this study, the heartbeats from the BCG, ICG and ABP
data in the 60-second resting phase for each subject were used
to train the systems using 5×2-fold cross-validation [26] and
the performance of the trained systems was checked on the
remaining phases as shown in Fig. 4. The objective was to
find the optimum filter length, number of samples before the

FIGURE 4. FIR system identification: the filters were trained on the
heartbeats during rest and tested at perturbations.

Ri peak in each frame and the value of the regularization con-
stant λ that provided the least error inmapping the BCGheart-
beat (one frame) to the ICG heartbeat or the BCG heartbeat to
the ABP heartbeat. This was achieved by sweeping through
filter lengths from 1 to 500 samples, 0 to 300 pre-R samples
and values of λ(10−6 to 10−1) using 5×2 cross-validation.

In subject-specific BCG to ICG mapping, for each combi-
nation of the above mentioned three parameters, the BCG and
ICG heartbeats in the resting phase of a subject’s recording
were each randomly partitioned into 2-folds respectively.
One fold from each modality was used in training while the
other in validation phase. The ensemble-averaged traces were
calculated for each of the 2-folds of the BCG and the ICG. In
the training phase, one ensemble-averaged BCG trace, corre-
sponding to one of the two BCG-folds, was selected as the
input u and one ICG ensemble-averaged trace corresponding
to one of the two ICG folds was selected as output y. The
impulse response ŵ of the system was then estimated accord-
ing to equation (2). The estimated ŵ was then used to convert
the ensemble-averaged BCG trace, from the remaining fold,
to an ICG trace and validation error was derived by calculat-
ing the Euclidean distance between the resulting waveform
and the desired output, i.e., the ensemble-averaged ICG trace
from the remaining ICG fold. The above process was repeated
5 times, hence giving the name 5×2-fold cross-validation and
mean cross-validation error was computed. The combination
of filter length, pre-R samples and value of λ that resulted in
the lowest validation error were chosen as the three required
parameters for that subject. A similar process was carried out
for mapping the BCG to ABP waveforms.

Once subject-specific FIR filters were generated, they
were used to convert the ensemble-averaged traces in the
post-Valsalva recovery, handgrip and post-handgrip recovery
phases into the corresponding ICG and ABP waveforms. For
the ICG, the points of interest that include the B-, dz/dtmax
and the X-point as shown in Fig. 3(a), were detected on the
true ICG traces and also on the waveforms obtained from the
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FIR filters. The stroke volume SV was then calculated using
the Sramek’s equation [27]

SV =
(0.17H )3

4.25Zo
· (

dz
dtmax

) · LVET , (3)

where H represents the subject’s height and Zo denotes the
base impedance. The Zo value was estimated as the foot
of the ensemble averaged heartbeats of the raw impedance
signal obtained from the ICG [20]. The value of Zo was
estimated in the resting phase for each subject and the
same value was used during the perturbation phases. Let
the stroke volume during the first 60-seconds of rest be
represented by SVrest and during the other phases be
denoted by SVp. The percentage change in stroke volume
during phase p was then calculated using the equation
1SV = (SVp – SVrest )/SVrest . A linear regression/correlation
analysis (Pearson’s) was done between the values 1SVICG
obtained from the ICG waveforms and 1SVSys values
obtained from the trained filters from all subjects. The
outliers were detected using the minimum-covariance dis-
tance (MCD) estimator [28] and were removed before cor-
relation analysis. Similarly, the points corresponding to the
systolic and diastolic blood pressures were detected in the
true ABPwaveforms and the ABPwaveforms estimated from
the FIR filters trained for mapping the BCG to ABP. The
pulse pressure, PP, was calculated as the difference between
the systolic and diastolic blood pressure values. The percent-
age change in pulse pressure for phases other than resting
state was calculated as 1PP = (PPp – PPrest )/PPrest and
correlation analysis was done for 1PP data points obtained
from the true and converted ABP waveforms for all subjects.
The outliers were detected using the MCD approach [28] and
removed from the analysis.

F. PROOF-OF-CONCEPT SINGLE-SUBJECT MULTI-DAY
HEMODYNAMIC ASSESSMENT
In addition to the main protocol, data were collected from one
subject (24 years, 58kg, 162cm height) for five consecutive
days. The objective was to assess the feasibility of training
a filter on the first day and then assessing its performance
on the remaining days for estimation of stroke volume from
the BCG. The subject was asked to stand still on the BCG
weighing scale for 2 minutes on each of the 5 days. The
signals collected consisted of the ICG, ECG and ABP in
addition to the BCG on each day. An impulse response to map
the BCGheartbeat to the ICG heartbeat was obtained from the
first day using the method described earlier. The data on each
of the remaining 4 days was ensemble averaged and used as
input for the trained filter from the first day.

III. RESULTS
A. CORRELATION RESULTS FROM WAVEFORM FEATURES
The features estimated from the BCG heartbeats of 19 sub-
jects in all the data collection phases showed good correlation
with the corresponding features from the ICG heartbeats
while none of the BCG-derived features correlated well with

FIGURE 5. (a) Correlation results for stroke volume values obtained from
the BCG mapped waveforms and the ICG waveforms. The relationship is
statistically significant (p < 0.05) (b) Correlation results for change in
pulse pressure from the BCG mapped and original ABP waveforms.
N represents the total number of data points while n denotes the number
of data points considered in the analysis after outlier rejection.

theABP-derived features. TheBCG I-J amplitude normalized
by the root mean square energy showed a correlation value of
r = 0.61 (p < 0.05) with the ICG maximum peak dz/dtmax
and also a value of r = 0.58 (p < 0.05) with the LVET from
the ICG. The ICG maximum peak dz/dtmax also showed a
good correlation (r = 0.71, p < 0.05) with (M-K interval×
I-J amplitude)/ERMS. The R-J intervals obtained from the
BCG heartbeats displayed a correlation of 0.75 (p < 0.01)
with the pre-ejection period from the ICG. This is in agree-
ment with a previous study [10]. The BCG derived features
based on amplitude and timing intervals showed poor corre-
lation with systolic and diastolic blood pressure values and
also with pulse pressure and hence are not explicitly reported
here. The correlation values for all such comparisons were
less than 0.05, i.e., r < 0.05.

B. BCG MAPPING RESULTS
The subject-specific FIR filters for mapping the BCG wave-
forms to the ICG, obtained from the resting phase heart-
beats, were tested on the ensemble-averaged BCG traces
from the post-Valsalva recovery period, handgrip and post-
handgrip recovery phases for each subject. Hence, three
data points were obtained for each subject. The correlation
results for percentage change in stroke volume are summa-
rized in Fig. 5(a), which shows a correlation value of 0.73
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FIGURE 6. Single subject stroke volume estimation from the FIR system
trained on Day 1 and tested on the data on the remaining days.
ErrorSV (ml) represents the error between the estimated stroke volume
from the system and the stroke volume obtained from the ICG.

(p < 0.05) for all subjects. Similarly, the BCG ensemble-
averagedwaveforms in the perturbation phases, except during
Valsalva, were also converted to corresponding ABP wave-
forms using the subject specific FIR filter trained to convert
the BCG into the ABP. The percentage change in the pulse
pressure estimated from the converted waveforms shows a
correlation value of 0.26 with the corresponding values from
true ABP waveforms in these phases.

C. SINGLE-SUBJECT RESULTS
The results for single subject multi-day trial are shown in
Fig. 6. The ICG waveforms obtained from the FIR system
were used to calculate the stroke volume on the test days. The
results were compared with the corresponding stroke volume
values from the measured ICG. The system performed well
on the testing days as the errors in stroke volume from the
ICG measurements and the stroke volume from the system
estimated waveforms are very small on 3 of the 4 test days.
There is a difference of 7 ml in FIR based estimated and ICG
based stroke volume on the third day. It was observed that the
BCG data on the third day had low signal-to-noise ratio due
to the presence of motion artifacts.

IV. DISCUSSION
Based on the results derived in the previous sections, we
conclude that leveraging the common features of BCG and
ICG waveforms may provide a methodology by which stroke
volume estimates can be extracted from BCG waveforms.
Specifically, the mapping technique employed in this work
shows that BCG waveforms accurately capture correspond-
ing changes in ICG waveforms and, consequently, changes
in hemodynamic parameters (i.e., stroke volume).

In contrast, the features from the blood pressure wave-
forms do not show any significant relationship with the
BCG-derived features and the BCG waveforms do not
capture the change in blood pressure parameters. Recent
research [29], [30], has shown that the BCG waveforms can,
on the other hand, be used to provide a proximal timing

reference for measurement of pulse transit time (PTT) to
assist in ubiquitous monitoring for blood pressure. PTT, the
amount of time required for a pressure wave to travel between
two points on the arterial tree, has been shown to have a strong
inverse relationship with blood pressure. To the best of our
knowledge, this is the first time the BCG-to-ABP relationship
has been explored on the basis of features derived from the
two measurement modalities.

The results suggest that the BCG phenomenon is more
related with blood flow as compared to the arterial pressure
curve. The methods presented in this paper, such as those
related to extraction of features from the ICG and ABP wave-
forms, are based on the existing literature regarding these
two measurement modalities [20], [29]. The features from
the BCG waveforms, which are based on time intervals and
amplitudes of different points on the BCGwave, are extracted
to capture changes in the flow of blood.

The data were collected from healthy subjects from both
genders and no gender related differences were observed in
the results. The methods outlined in this work can be used
with other BCG measuring sensors, such as accelerometers,
and in settings other than the home for continuous assessment
of hemodynamic parameters. However, for correct estimation
of these parameters from the BCG, motion artifacts must not
be present in the signal, or algorithms for mitigating their
effects should be designed.

An important limitation of this study was that data was
collected from relatively young and healthy subjects. Hence,
future work should include a more diverse group of partic-
ipants and also subjects with cardiovascular disease. More-
over, data from one healthy subject was used in the feasibility
study involving multi-day trial for stroke volume estimation
from the BCG using the methods outlined in this paper.
Further work with additional subjects is needed to validate
these findings.

The results from the single subject multi-day trial also
showed an error of 7ml in the BCG- and ICG-estimated
stroke volumes on one of the test days. After further inves-
tigation into that day’s results, it was found that presence
of motion artifacts in the measured signals, caused by even
the slightest inadvertent subject motion, introduced errors in
the mapping technique and thus rendered incorrect results.
In fact, removal of motion related artifacts from the mea-
sured signals is very important to provide high signal-to-
noise ratio in the measured signals and thus lead to correct
estimation of parameters. Hence, future work needs to focus
on design of algorithms that can adaptively detect, remove
and compensate for the motion and posture-based noise in
the data and lead to accurate estimation of clinically relevant
cardiovascular parameters in home settings.

Future work should also focus on augmenting our find-
ings with non-invasive reference standard measurements by
incorporating invasive methods for accurate assessment of
true hemodynamic measurements. For example, the BCG can
be measured at the same time as catheter-based recordings of
pressures and flows.
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The methods presented in this manuscript represent
early translational work with the aim of providing a solu-
tion to monitoring HF patients at home and potentially
predicting exacerbations using the BCG-derived cardiac
output estimates. Predicting an HF exacerbation fundamen-
tally requires the accurate measurement of cardiac output,
and/or the components that it is derived from. Accordingly,
the ability to accurately derive cardiac output changes from
BCG recordings is a central element towards BCG-based
scales being translated into use for monitoring HF patients
at home.

V. CONCLUSION
In this paper, we have systematically compared the BCG
measurements obtained from a modified electronic weigh-
ing scale with the hemodynamic measurements, based on
flow and pressure of blood, from the ICG and ABP sen-
sors. The results derived in this study provide insight into
the physiological origin of the BCG and can lead to design
and implementation of algorithms and methods for using the
BCG measurements for cardiac output evaluation as well as
cardiac contractility in unsupervised environments outside of
the clinic.
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