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Tumor mutation burden (TMB) serves as an effective biomarker predicting efficacy of
mono-immunotherapy for non-small cell lung cancer (NSCLC). Establishing a precise
TMB predicting model is essential to select which populations are likely to respond to
immunotherapy or prognosis and to maximize the benefits of treatment. In this study,
available Formalin-fixed paraffin embedded tumor tissues were collected from 499
patients with NSCLC. Targeted sequencing of 636 cancer related genes was
performed, and TMB was calculated. Distribution of TMB was significantly (p < 0.001)
correlated with sex, clinical features (pathological/histological subtype, pathological stage,
lymph node metastasis, and lympho-vascular invasion). It was also significantly (p < 0.001)
associated with mutations in genes like TP53, EGFR, PIK3CA, KRAS, EPHA3, TSHZ3,
FAT3, NAV3, KEAP1, NFE2L2, PTPRD, LRRK2, STK11, NF1, KMT2D, and GRIN2A. No
significant correlations were found between TMB and age, neuro-invasion (p = 0.125),
and tumor location (p = 0.696). Patients with KRAS p.G12 mutations and FAT3missense
mutations were associated (p < 0.001) with TMB. TP53 mutations also influence TMB
distribution (P < 0.001). TMB was reversely related to EGFRmutations (P < 0.001) but did
not differ by mutation types. According to multivariate logistic regression model, genomic
parameters could effectively construct model predicting TMB, which may be improved by
introducing clinical information. Our study demonstrates that genomic together with
clinical features yielded a better reliable model predicting TMB-high status. A simplified
model consisting of less than 20 genes and couples of clinical parameters were sought to
be useful to provide TMB status with less cost and waiting time.
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INTRODUCTION

Immune checkpoint inhibitors (ICIs) targeting programmed death
1 (PD-1) and programmed death ligand 1 (PD-L1) achieved great
success improving clinical outcomes of patients with advanced
NSCLC. The efficacy of ICIs varies widely among individuals (1).
Therefore, biomarkers stratifying patients who may benefit from
ICI treatment are of great importance. Immunostaining ofPD-L1 is
considered as the first considered option. NSCLC patients with
tumor proportion score (TPS) ≥1% showed survival advantage
from ICIs, especially, mono-immunotherapy. Tumor mutation
burden (TMB) has been confirmed as a biomarker associating
with efficacy of immunotherapy (2, 3). Meanwhile, in patients with
resected NSCLC, TMB can help to evaluate long-term prognosis
(4). Recent studies have shown that there aremany factors affecting
TMB distribution and ICIs (5, 6). TMB was negatively associated
with clinical outcomes in metastatic EGFR mutant lung cancer
patients treated with EGFR-TKI (7). PIK3CA amplification was
significantly associated with TMB-H (8). Thus MSI-H/MMR-
deficient tumors have much more somatic-mutations than MSS/
MMR-proficient tumors (9), which have been demonstrated to
have direct effects on TMB. Moreover, the molecular profile was
associated with clinicopathological features and genetic ancestry
markers of CRC patients (10). NSCLC tumors with elevated TMB
and PD-L1 expression are associated with lympho-vascular
invasion (11). It was also reported in patients with advanced
gastric cancer that clinicopathological (lymph node metastasis)
and molecular characteristics (PIK3CA mutations) are associated
with responders to nivolumab (12).

TMB was precisely evaluated by whole-exon sequencing and
could be predicted by a comprehensive genomic profiling (CGP)
panel with a minimal size of 1 M. However, more turn-around
time (TAT) would be taken when CGP is performed. Therefore,
establishing a precise TMB predicting model is essential to
monitor which populations are likely to respond to
immunotherapy or prognosis and to maximize the benefits of
treatment. In this article, we firstly aimed to select potential
parameters by associating genetic and pathological characters
with TMB distribution. An optimal TMB prediction model was
constructed based on selected various clinical and genetic factors.
Receiver operating curve analysis was applied to assess the
performance of this prediction model.
MATERIALS AND METHODS

Patients
A total of 499 Formalin-Fixed, Paraffin Embedded tumor
specimens of resected lung cancer were collected between
March 2019 and September 2019. All patients signed the
informed consent. Five hundred and eight cancer-related genes
were sequenced.

Targeted Exome Capture Sequencing and
Tumor Mutation Burden Assessment
Targeted exome capture sequencing data from 499 NSCLC
samples were generated by MGI-500 platform. In detail,
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genomic DNA (gDNA) was extracted from FFPE and peripheral
blood samples using the Qiagen DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany) per protocol. DNA concentration and
quality were assessed by Qubit (Life Technologies, Gaithersburg,
MD, USA) and agarose gel electrophoresis. gDNA (250 ng) was
used for sequencing library construction as previously described.
The hybridization product was subsequently purified, amplified,
and qualified. Finally, sequencing of 508 key cancer related genes
was performed with a paired-end 100 bp and 8 bp barcode on a
MGISEQ-2000 sequencer following the manufacturer’s protocols.

Raw data was first filtered by SOAPnuke to exclude reads with
low quality. The clean reads were then aligned to the reference
human genome (UCSC hg19) using the BWA MEM algorithm.
Single-nucleotide variants (SNVs) were detected by Genome
Analysis Toolkit (GATK) Unified Genotyper. Small insertions
and deletions (indels) were called using GATK Haplotype. Copy
number variants (CNVs) were called using read-depth analysis.
All the above variants were further filtered by quality depth,
strand bias, mapping quality, and read position. Each variant was
finally annotated with respect to gene location.

Targeted exome capture sequencing data of 499 NSCLC
patients was analyzed in depth, and TMB was evaluated, which
was defined as the total number of non-synonymous and indel
somatic mutations present in a baseline tumor sample excluding
known driver genes. TMB-high group was defined based on top
20% of TMB value.

Statistical Analysis
Chi-square test and Kruskal–Wallis test were used for comparing
categorical and continuous variables, respectively. A P-value
threshold of p ≤0.001 (Chi-square test) and p <0.05 (Kruskal–
Wallis test) were used to define statistical significance. To
determine the driver genes’ differential between TMB-H and
TMB-L, the Wilcoxon test was performed to figure out the
significant driver genes. To determine the multivariable
association of clinical and mutation characteristics with TMB-
H, LASSO regression was used. In order to evaluate whether the
histologic and genomic data could provide effective prediction of
TMB, the receiver operating characteristic (ROC) curve analysis
and area under the curve (AUC) were applied to evaluate the
accuracy of TMB prediction model.
RESULTS

Sample Demographics and Clinical
Characteristics
499 FFPE tissues were collected from patients with clinically
diagnosed NSCLC, including 470 lung adenocarcinomas
(LUADs) and 29 lung squamous cell carcinomas (LUSCs).
Fifty-five percent of the samples were female (n = 275) (Table
1). The median age at diagnosis was 60 years (range, 29 to 85
years). More males than females were found in the TMB-high
group (P < 0.001) (Table 1). More patients with LUSC were in
the TMB-high group compared with those with LUAD (P <
0.001) (Table 1). 216 samples were located in the left lung, and
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TABLE 1 | Baseline characteristics of included patients by TMB.

TMB low (N = 400) TMB high (N = 99) Total (N = 499) p value

Gender <0.001
Female 251 (62.8%) 24 (24.2%) 275 (55.1%)
Male 149 (37.2%) 75 (75.8%) 224 (44.9%)
Age 0.003
<= 60 220 (55.0%) 38 (38.4%) 258 (51.7%)
>60 180 (45.0%) 61 (61.6%) 241 (48.3%)
Location 0.627
Left 171 (42.8%) 45 (45.5%) 216 (43.3%)
Right 229 (57.2%) 54 (54.5%) 283 (56.7%)
Histology <0.001
N-Miss 2 0 2
LUAD 391 (98.2%) 77 (77.8%) 468 (94.2%)
LUSC 7 (1.8%) 22 (22.2%) 29 (5.8%)
Pathological Subtype <0.001
N-Miss 10 1 11
In situ 18 (4.6%) 2 (2.0%) 20 (4.1%)
invasive 279 (71.5%) 71 (72.4%) 350 (71.7%)
Keratinizing 1 (0.3%) 13 (13.3%) 14 (2.9%)
Micro-invasive 89 (22.8%) 4 (4.1%) 93 (19.1%)
Non-keratinizing 3 (0.8%) 8 (8.2%) 11 (2.3%)
Histological subtype <0.001
N-Miss 115 31 146
Leptic 87 (30.5%) 8 (11.8%) 95 (26.9%)
Acinar 136 (47.7%) 33 (48.5%) 169 (47.9%)
Papillary 36 (12.6%) 12 (17.6%) 48 (13.6%)
Micropapillary 2 (0.7%) 3 (4.4%) 5 (1.4%)
Solid 9 (3.2%) 9 (13.2%) 18 (5.1%)
Mucinous 15 (5.3%) 3 (4.4%) 18 (5.1%)
Lymph node 0.009
N-Miss 214 40 254
Negative 171 (91.9%) 47 (79.7%) 218 (89.0%)
Positive 15 (8.1%) 12 (20.3%) 27 (11.0%)
Para-bronchial <0.001
N-Miss 201 36 237
Negative 188 (94.5%) 50 (79.4%) 238 (90.8%)
Positive 11 (5.5%) 13 (20.6%) 24 (9.2%)
LVI 0.001
N-Miss 100 15 115
0 264 (88.0%) 62 (73.8%) 326 (84.9%)
1 36 (12.0%) 22 (26.2%) 58 (15.1%)
Stage <0.001
IA1 165 (41.2%) 14 (14.1%) 179 (35.9%)
IA2 112 (28.0%) 21 (21.2%) 133 (26.7%)
IA3 50 (12.5%) 18 (18.2%) 68 (13.6%)
IB 34 (8.5%) 11 (11.1%) 45 (9.0%)
II 10 (2.5%) 19 (19.2%) 29 (5.8%)
III 20 (5.0%) 13 (13.1%) 33 (6.6%)
IV 9 (2.2%) 3 (3.0%) 12 (2.4%)
T stage <0.001
N-Miss 21 1 22
T1 329 (86.8%) 59 (60.2%) 388 (81.3%)
T2 44 (11.6%) 28 (28.6%) 72 (15.1%)
T3 3 (0.8%) 7 (7.1%) 10 (2.1%)
T4 3 (0.8%) 4 (4.1%) 7 (1.5%)
N stage <0.001
N-Miss 7 2 9
N0 365 (92.9%) 75 (77.3%) 440 (89.8%)
N1 8 (2.0%) 11 (11.3%) 19 (3.9%)
N2 20 (5.1%) 11 (11.3%) 31 (6.3%)
M stage 0.783
N-Miss 3 1 4
M0 387 (97.5%) 96 (98.0%) 483 (97.6%)
M1 10 (2.5%) 2 (2.0%) 12 (2.4%)
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the other 283 samples were in the right lung. In the left lung, 69
(13.9%) cases were located in the lower left lobe, while 29.1% of
NSCLC were located in the upper lobe. The distribution of TMB
is not significantly affected by tumor location (Table 1). In this
study, most patients were stage IA (n = 360; 72.0%) and IB (n =
44; 8.9%). Seventy-three (14.4%) patients belonged to stage II/III/
IV (7.6%). Distribution of T stage was as follows: T1 (n = 388,
81.3%), T2 (n = 72, 15.1%), T3 (n = 10, 2.1%), and T4 (n = 7,
1.5%). Most of them were N0 (n = 440, 89.8%) and M0 stage (n =
483, 97.6%) (Table 1). Clinical stage (IA), T1, and N0 are
significantly related to higher level of TMB (Table 1 and
Figures 1A–D). Here, we also find a significant association
between TMB distribution and clinicopathological features
such as pathological subtype (P < 0.001) (Figure 1E),
histological subtype (P < 0.001) (Figure 1F), para-bronchial
lymph nodes (P < 0.001), lymph node metastasis (P = 0.009),
and LVI (lympho-vascular invasion) (P < 0.001) (Table 1). But,
TMB distribution is not significantly affected by neuro-invasive
(p = 0.125) (Table 1).

Mutation Burden and Frequently
Mutated Genes
Samples were divided into high (99) and low (400) TMB groups
(Table 1) according to TMB top 20% in all histology (n = 6.15/
Mb) (Supplementary Figure 1). In two groups, canonical driver
mutations were found in EGFR (TMB-L: n = 246, TMB-H: n =
42), KRAS (TMB-L: n = 32, TMB-H: n = 18), PIK3CA (TMB-L:
n = 13, TMB-H: n = 12), BRAF (TMB-L: n = 23, TMB-H: n = 5)
and TP53 (TMB-L: n = 80, TMB-H: n = 55) (Supplementary
Table 1 and Figure 1). There is no association between TMB
distribution and driver gene mutational status (P = 0.27)
(Supplementary Figure 2). Genes, differentially mutated
between TMB-L and TMB-H patients (TMB-Low vs. TMB-
High) were EGFR (62 vs 42%, P < 0.001), EPHA3 (2 vs 13%,
P < 0.001), FAT3 (4 vs 20%, P < 0.001), KEAP1 (1 vs 7%, P =
0.001), KMT2D (2 vs 10%, P < 0.001), LRRK2 (1 vs 10%, P <
0.001), NAV3 (1 vs 12%, P < 0.001), NF1 (2 vs 10%, P < 0.001),
NFE2L2 (1 vs 11%, P < 0.001), PIK3CA (3.2 vs 12.1%, P < 0.001),
PTPRD (1 vs 10%, P < 0.001), STK11 (1 vs 8%, P < 0.001), TP53 (20
vs 56%, P < 0.001), and TSHZ3 (1 vs 13%, P < 0.001) (Figure 2,
Supplementary Table 1 and Supplementary Figure 3). At the
same time, some gene mutations associated with immunotherapy
resistance are not related to genetic mutations (Supplementary
Figure 4).

Associations of four mutated genes with high frequency
(TP53, EGFR, KRAS, and FAT3) and TMB were further
investigated. 124 patients (24.85%) harbored EGFR L858R
mutation, and 93 had EGFR exon 19 deletion (Figure 3A). No
correlation of EGFR mutation status with TMB distribution was
observed (P = 0.29) (Figure 3A). TP53 mutations (missense,
nonsense, and frameshift mutations) were significantly
associated with TMB distribution (P < 0.001) (Figure 3B).
TMB was also significantly affected by three mutation types in
PIK3CA genes, including p.E542X, p.E545X, and p.Q546K (P <
0.05) (Figure 3C). There was a significant correlation between
TMB distribution and KRAS P.G12X (P < 0.05) (Figure 3D).
Frontiers in Oncology | www.frontiersin.org 4
Besides, missense and truncated FAT3 mutations were
significantly related to TMB (P < 0.05) (Figure 3E).

Constructing Tumor Mutation Burden
Prediction Model
Based on the above clinical and genetic results, we hypothesized
whether combination of clinical and genetic features could
predict TMB status. Therefore, we trained a multivariable
logistic regression model that included clinical parameters, age,
histology, clinical stage (TNM) as well as genetic factors (TP53,
FAT3, APC, EPHA3, TERT, LRRK2, RB1, PTPRD, STK11,
and NF1).

Three factors (histology, Stage and TP53) were extremely
powerful predictors for TMB through multivariate analysis (p <
0.001) (Supplementary Table 1). Other factors like FAT3, APC,
PTPRD (P = 0.01), lymph-node metastasis, EPHA3, TERT, and
STK11 (P = 0.05) that have been found to be related to TMB
distribution (Supplementary Table 2). Using TMB =6.15 muts/
Mb, the prediction model achieved a sensitivity of 73.8% and a
specificity of 90.3%; the AUC (area under the ROC curve) was
0.899 (95% confidence interval, 0.861–0.938) indicating its
potential for reliably identifying patients with greater TMB.
After removing histological parameters, the AUC (area under
the ROC curve) of these factors was 0.863 with a sensitivity of
76.3% and a specificity of 87.1% (Figure 4).
DISCUSSION

TMB, PD-1/L-1 expression are used to select patients who may
benefit from immunotherapy (13). TMB is an emerging
predictive marker of immune checkpoint blockade response
(4) as well as prognosis for patients with NSCLC (14). In
particular, it is important to accurately predict the benefit of
immunotherapy based on TMB status. Also, it is reported that
high TMB was associated with a better prognosis in patients with
resected NSCLC (15). Our integrated histologic and genomic
model is an important step toward addressing this unmet need.

In this analysis, we evaluated the association between TMB
and clinical characteristics in patients with early-stage NSCLC.
In the univariate analysis, despite being significantly associated
with sex, our results further found that TMB was correlated with
several clinicopathological features, like histological subtype,
LVI, pathological subtype, para-bronchial lymph nodes, lymph
node metastasis as well as tumor size. A recent study also
explored the correlation of TMB and clinical characteristics in
early-stage squamous cell lung carcinoma; however, no
significant association was observed between TMB and age,
gender, smoking history, stage (16). Another study assessed
associations between clinical and TMB in resected NSCLC and
identified that histological type, gender, and smoking status were
associated with higher TMB (17). These inconsistent findings
may be due to differences in ethnicity and pathologic types of
the cohorts. In addition, the differences in panels used for
TMB evaluation also have a significant impact on the results.
TMB was initially detected using whole exon sequencing,
April 2021 | Volume 10 | Article 608989
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but a growing number of clinical trials are now using commercial
panel sequencing to detect TMB. There is no uniform standard for
TMB calculation method and threshold determination. Moreover,
TMB varies greatly among different cancers and even different
pathological subtypes. These are challenges that need to be
overcome before further application of TMB (18–20).
Frontiers in Oncology | www.frontiersin.org 5
In LUAD, carcinoma in situ, invasive and microinvasive
cancers have different cell growth patterns and stages, which in
turn affect the patient’s treatment and prognosis (21). In stage I
LUADs, the micropapillary component was significantly
associated with nodal micro-metastasis of tumor cells and may
be a manifestation of aggressive behavior (22). TMB discrepancy
A B

C D

E F

FIGURE 1 | The relationship between the TMB distribution and the tumor stages of NSCLC patients. Correlation analysis of TMB and TNM stage (A–D),
pathological (E) and histological subtypes (F).
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was observed among LUAD with various components.
Remarkably, it is critical to determine the heterogeneity of
LUAD components (histological subtype) by genetic profile.
Solid predominant LUADs were more likely to harbor KRAS
mutations than are other predominant subtypes (23). The solid
predominant subtype of tumor has been found to correlate
remarkably with an inflamed phenotype characterized by a
high proportion of PD-L1/CD8+TILs and active cytotoxic
immune profiling and that increased tumor immunogenicity
from a high TMB (24). The alterations of EGFR, KRAS, and
BRAF genes proved to be more frequent in micropapillary LUAD
(24, 25). The studies have suggested that the molecular
pathogenesis of micropapillary component may differ from
other types of LUAD (26).

Pre-invasive LUAD displayed distinct mutation profiles. In
situ and micro-invasive LUAD showed higher prevalence of
driver mutations, for example, EGFR mutations and ALK
fusion. Thus, compared with invasive LUAD, in situ and
micro-invasive LUAD had lower TMB, which are concordant
with variant distribution of driver gene mutations in these two
histologic subtypes. LUSC (27) and LVI (28) were previously
found to have higher TMB, which was similar to the results of
our study. Beside, LVI has been linked to an increase in immune
cell infiltration (28). Our result, together with other reported data
may provide a TMB related immune activation hypothesis.
Patients with different tumor stages exhibited distinct clinical
behaviors (29). Para-bronchial lymph nodes is associated with a
Frontiers in Oncology | www.frontiersin.org 6
poorer prognosis (21, 30). Thus, we inferred that these
factors may affect immunogenicity through immune
microenvironment and molecular profile. Neuro-invasive and
stage-M did not affect TMB distribution, contrary to our
expectation. The specific mechanism needs to be elucidated.

On the genomic level, the results showed that fifteen genes
(TP53, PIK3CA, KRAS, EPHA3, TSHZ3, FAT3, NAV3, KEAP1,
NFE2L2, PTPRD, LRRK2, STK11, NF1, KMT2D, GRIN2A) were
significantly associated with TMB-H; EGFR was associated with
TMB-L. Among these high-TMB-related genes, recent studies
have shown that TP53-mutated tumors showed prominently
increased somatic mutation burden compared with other
mutant groups (KRAS, EGFR, STK11); and patients with TP53
or KRAS mutations showed remarkable clinical benefit to PD-1
inhibitors (31, 32). PIK3CA and KRAS are mainly involved in the
PI3K signaling pathway, which is one of the most important
signal transduction pathways in the development of LUADs (33).
In particular, four activated mutations of PIK3CA (p.E542X,
p.E545X and p.Q546K) were found to have significant effect on
TMB-H. PIK3CA gene mutations in the helical domain were
correlated with TMB-H and poor prognosis in metastatic breast
carcinomas with late-line therapies (34). Studies in lung cancer
suggested that PIK3CA amplification was associated with higher
TMB (8). Moreover, KRAS G12 mutations also correlated with
high TMB group. As reported, NSCLC patients with KRAS G12
mutations showed an increased proportion of PD-L1+/CD8+
TILs (35). These genes stimulated PTEN/PIK3CA/AKT pathway,
FIGURE 2 | The left panel is TMB-L mutation map and the right panel is TMB-H mutation map. Mutation ratio of different genes displays in left. Different mutation
types have different color codes.
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which in turn would lead to increased proliferation of tumor
cells (32). Accelerated cell cycle may accumulate somatic
mutations putatively resulting in elevated TMB. KEAP1-
NFE2L2 plays a significant role in the dysregulation of
oxidative stress pathway in lung cancer (36). Oxidative stress
can lead to mutagenic DNA damage in the form of oxidative
base modifications and the induction of DSB (DNA Double-
Strand Break) which promotes mutations (8, 37). KEAP1
mutation was significantly associated with lower CD8+TIL
density which may be associated with shorter survival in
LUAD patients receiving immnotherapy (38). It means that
oxidative stress is a parallel mechanism of high-TMB. EGFR,
Frontiers in Oncology | www.frontiersin.org 7
KRAS, TP53, and STK11, also reported in a recent study, showed
a correlation with tumor antigenicity and PD-L1 expression
(8, 36, 39, 40). Of note, GRIN2A regulates excitatory
neurotransmission in the brain (36) and has scarcely been
reported in NSCLC. It is necessary to further obtain a deeper
understanding of its mechanism and further applications. Our
data also confirmed the association between EGFR mutations
and TMB-L, which have been reported previously (41).
Considering these findings, we speculate that tumor with high
TMB-related-gene mutations may lead to the destruction of
immune cells including CD8+TILs and DSB/DDR level,
resulting in the increase of somatic mutations of tumor cells.
A B

C

D E

FIGURE 3 | Violin plots of EGFR, TP53, PIK3CA, KRAS gene mutation types and the distribution of tumor mutation burden (TMB). Correlation between TMB and
EGFR (A), TP53 (B), PIK3CA (C), KRAS (D) and FAT3 (E) mutations.
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>Thus, we trained a multivariable logistic regression model
predicting TMB category with 6.15 mutations/Mb as the cut-off
value utilizing five clinical features (age, histology, T, N, M) and 10
genes (TP53, FAT3, APC, EPHA3, TERT, LRRK2, RB1, PTPRD,
STK11 andNF1). By comparing sensitivity and specificity, the results
of two predictive model for TMB (histologic + genomics, genomics)
confirmed that histologic features made a strong contribution to the
integrated model for TMB prediction. There is also a small sample
study which found that integrating multiple factors helps accurate
prediction of TMB (37) although the ROC curves of the two studied
models are close (0.89). Our study selected fewer histologic
parameters without involving radiologic parameters. Another study
showed that 56-gene panel could be used as a screening method for
patients with low TMB. Compared with the panel, our prediction
model has fewer genetic parameters, but achieved comparative
efficiency (41). Therefore, this model may be better used to screen
TMB-L or TMB-H status in early-stage NSCLC patients.
CONCLUSION

Overall, comprehensive clinical and genomic information can
effectively evaluate TMB-high or low status. Our results showed
Frontiers in Oncology | www.frontiersin.org 8
that an integrated prediction model combining histology and
genomic parameters significantly improved the accuracy of TMB
prediction. However, whether this integrated model plays a key
role in predicting the clinical outcome to immunotherapy and
prognosis, still needs further investigation.
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