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Provider profiling entails comparing the performance of hospitals on indicators
of quality of care. Many common indicators of healthcare quality are binary
(eg, short-term mortality, use of appropriate medications). Typically, provider
profiling examines the variation in each indicator in isolation across hospitals.
We developed Bayesian multivariate response random effects logistic regres-
sion models that allow one to simultaneously examine variation and covariation
in multiple binary indicators across hospitals. Use of this model allows for (i)
determining the probability that a hospital has poor performance on a single
indicator; (ii) determining the probability that a hospital has poor performance
on multiple indicators simultaneously; (iii) determining, by using the Maha-
lanobis distance, how far the performance of a given hospital is from that of
an average hospital. We illustrate the utility of the method by applying it to
10 881 patients hospitalized with acute myocardial infarction at 102 hospitals.
We considered six binary patient-level indicators of quality of care: use of reper-
fusion, assessment of left ventricular ejection fraction, measurement of cardiac
troponins, use of acetylsalicylic acid within 6 hours of hospital arrival, use of
beta-blockers within 12 hours of hospital arrival, and survival to 30 days after
hospital admission. When considering the five measures evaluating processes
of care, we found that there was a strong correlation between a hospital's per-
formance on one indicator and its performance on a second indicator for five of
the 10 possible comparisons. We compared inferences made using this approach
with those obtained using a latent variable item response theory model.
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1 INTRODUCTION

Provider profiling entails comparing the performance of healthcare providers on one or more indicators of quality of
care. While provider profiling most frequently compares quality of care indicators across hospitals, comparisons of
quality of care across physicians or surgeons are also done. Indicators of healthcare quality include patient outcomes
(eg, death, occurrence of surgical complications, hospital length of stay) or measures of processes of care
(eg, prescribing of appropriate medication, provision of smoking cessation counselling to patients who are
current smokers).

Examples of reporting of patient outcomes include hospital report cards produced by the American states of New York,
Pennsylvania, Massachusetts, New Jersey, as well as the Canadian province of Ontario, that reported hospital-specific
mortality rates for patients undergoing coronary artery bypass graft surgery.1-5 Similarly, Pennsylvania, California, and
Ontario have publicly reported hospital-specific mortality rates for patients hospitalized with acute myocardial infarc-
tion (AMI).6-8 Examples of reporting on process of care measures include The Enhanced Feedback for Effective Cardiac
Treatment (EFFECT) Study that reported hospital-specific rates of prescribing of evidence-based medications for patients
hospitalized with AMI or heart failure.9,10

Provider profiling has historically focused on single indicators of quality in isolation. Most of the cardiovascular
report cards described above focused on mortality as the primary indicator of quality. Those studies that considered mul-
tiple quality indicators tended to examine each indicator in isolation. Thus, variation in hospital performance for one
indicator is examined separately from the examination of variation in hospital performance for the other indicators.
Examination of each indicator in isolation precludes a formal examination of whether specific hospitals perform poorly
on multiple indicators or whether hospitals that perform poorly on one indicator tend to perform poorly on a second
indicator.

A small number of studies have described statistical methods for summarizing provider performance on multiple
indicators of quality of care. The most commonly described methods are based on latent variable models.11-13 These
methods are motivated, at least in part, by item response theory models from the psychometrics literature.14 These models
assume the existence of a single latent, or unmeasured, variable denoting the underlying quality of the healthcare provider.
The performance of each hospital on each of the indicators is assumed to be related to this latent variable denoting hospital
quality. Estimation of the value of the latent variable for each hospital permits identification of hospitals with excellent
or poor quality of care.

The presence of multiple indicators of quality of care suggests that multivariate distributions and models may
also be of use for studying variation in hospital performance on a set of multiple indicators. Dunson15 developed
Bayesian latent variable models for clustered mixed outcomes. These models allow for the simultaneous analysis
of binary, categorical, and continuous outcomes. O'Malley et al16 developed models for multivariate outcomes that
allowed for the joint modeling of binary and continuous outcomes. While there is a small literature on multivari-
ate models for the simultaneous analysis of multiple outcomes, we are unaware of their previous use in provider
profiling.

The objective of the current study is 2-fold. First, to develop Bayesian multivariate response random effects logistic
regression models for modeling between-hospital variation in performance on multiple binary indicators simultane-
ously. Second, to contrast this approach with the latent variable approach similar to those that have been described
previously.11-13 The article is structured as follows: In Section 2 we describe the statistical models to be used. In
Section 3 we illustrate the application and interpretation of these methods when applied to a large sample of patients
hospitalized with AMI. Finally, in Section 4 we summarize our findings and place them in the context of the
literature.

2 STATISTICAL METHODS FOR PROVIDER PROFILING ON MULTIPLE
BINARY INDICATORS

In this section we describe two statistical methods for provider profiling on multiple binary outcomes. We
first describe a Bayesian multivariate response random effects logistic regression model and how it can be
used for provider profiling. We then describe a latent variable approach that is motivated by item response
theory models.
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2.1 Bayesian multivariate response random effects logistic regression models

This method is based on fitting a separate random effects logistic regression model for each of the binary indicators.
However, the random effects for the separate logistic regression models are drawn from a multivariate normal distribution.
Thus, the provider-specific random effects for the different indicators can be correlated with one another.

Let Y (k)
𝑖𝑗

denotes the kth binary indicator measured on the ith subject in the jth provider (k = 1,… ,K). We make the
assumption that Y (k)

𝑖𝑗
= 1 denotes a successful outcome or treatment for the ith patient in the jth provider. Let X(k)

𝑖𝑗
denote

a vector of subject characteristics used for risk-adjustment when modeling variation in the kth indicator. For reasons
of model interpretation, we will assume that any continuous variables have been centered around the sample average.
Note that the vector of subject characteristics can vary across the indicator-specific logistic regression models (ie, we are
not assuming that the same set of risk factors or subject characteristics will be used for each of the indicators). Where
applicable, the vector may also include hospital characteristics (in some settings the analyst may want to account for
immutable hospital characteristics that are beyond the control of the hospital, such as location). For each of the K binary
indicators a random effects logistic regression model is fit:

logit(Pr(Y (k)
𝑖𝑗

= 1)) = logit(p(k)
𝑖𝑗
) = 𝛼

(k)
0j + 𝛼(k)X(k)

𝑖𝑗
. (1)

Note that for the kth indicator, the intercept varies across providers, while the regression slopes for the subject char-
acteristics are fixed across providers. We note that allowing the regression slopes to vary across providers allows the
performance of hospitals to differ for different patient groups, for example, male and female patients; however, we do not
explore this further here. A multivariate normal distribution is then assumed for the distribution of the provider-specific
intercepts for the K regression models:

⎛⎜⎜⎜⎜⎜⎝

𝛼
(1)
0j

𝛼
(2)
0j
⋮

𝛼
(K)
0j

⎞⎟⎟⎟⎟⎟⎠
∼ MVN
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0
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0
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⎞⎟⎟⎟⎟⎟⎠
. (2)

The vector 𝜇 that parametrizes the multivariate normal distribution is the mean of the multivariate normal distribution,
which has K components. The matrix Σ that parametrizes the multivariate normal distribution is the variance-covariance
matrix and has K(K + 1)/2 components.

For a given indicator, the parameter 𝛼(k)
0 denotes the log-odds of the indicator being present (ie, of a successful patient

outcome/treatment) at an average hospital for a reference subject whose covariates are all equal to zero. For a given
indicator, hospitals whose random effects are greater than 𝛼

(k)
0 (ie, 𝛼(k)

0j > 𝛼
(k)
0 ) are hospitals at which the odds of the indi-

cator being present are higher than at an average hospital, while hospitals whose random effects are less than 𝛼
(k)
0 (ie,

𝛼
(k)
0j < 𝛼

(k)
0 ) are hospitals at which the odds of the indicator being present are lower than at an average hospital. A hospi-

tal for which 𝛼
(k)
0j < 𝛼

(k)
0 , k = 1,… ,K is a hospital with poorer performance than average on all K indicators. In the case

study in the subsequent section we will illustrate different parameters that can be derived from the model to quantify
provider performance on an array of binary quality indicators.

Fitting multivariate response random effects logistic regression models via maximum likelihood estimation (adap-
tive quadrature) would very likely prove computationally infeasible given the presence of six correlated random effects
and the large number of providers in these data. We therefore fit all models using Markov Chain Monte Carlo (MCMC)
methods.17 We specify diffuse normal prior distributions for the fixed effects (𝛼(k), k = 1, … , K), a diffuse multivariate nor-
mal prior distribution for the mean of the multivariate normal distribution of the random effects 𝜇, and a diffuse Wishart
prior distribution for the precision matrix of the multivariate normal distribution of the random effects (inverse of the
variance-covariance matrix), Σ−1.

2.2 Latent variable approach for use with multiple indicators

As noted in Section 1, a small number of studies have described statistical methods for summarizing provider performance
on multiple indicators of quality of care that are based on latent variable models.11-13 The methods described below are



AUSTIN et al. 1393

motivated by methods described in these articles. The proposed methods are inspired by item response theory models
which are used in the psychometric literature. Let 𝜃 denotes a latent or unmeasured variable that denotes the hospital's
underlying quality of care. We use the convention that higher levels of 𝜃 denote higher quality, while lower levels of 𝜃
denote lower quality. We use the same notation as in Section 2.1 and, as above, assume that all of the indicators of quality
of care are binary.

K regressions are fit, one for each of the K binary indicators. The regression model for the jth indicator is:

logit(Pr(Y (k)
𝑖𝑗

= 1)) = logit(p(k)
𝑖𝑗
) = 𝛼(k) + 𝛽(k)𝜃j + 𝛾 (k)X(k)

𝑖𝑗
. (3)

If 𝛾 (k) = 0 (ie, if the vector of covariates is excluded), then this is the conventional two-parameter item response theory
model (albeit with a slightly different parameterization).14 Specifically, the “difficulty” parameter 𝛿(k) = − 𝛼(k)/𝛽(k) mea-
sures the level of hospital quality needed to observe a 50% prevalence on the given indicator, while the “discrimination”
parameters 𝛽(k) measure the degree to which the given indicator can distinguish between different levels of hospital qual-
ity. For indicators for which risk-adjustment is necessary, the model is an extension or modification of the two-parameter
item response theory model. The sign of 𝛽(k) is not identifiable, so the constraint that 𝛽(k) > 0 is added to the model.13 This
is consistent with our convention that higher levels of 𝜃 denote higher quality.

We fit these models using MCMC methods.14,17 Diffuse normal distributions were assumed for two of the sets of
regression coefficients (𝛼(k), 𝛾 (k), k = 1, .… , K), while diffuse half-normal priors were assumed for the 𝛽(k), due to the
identifiability constraint described above (𝛽(k)∼N(0, 𝜎2)I(0, ), where I(0,) denotes the indicator function that takes the
value zero for negative values 𝛽(k) and 1 for positive values). Finally, we assumed that 𝜃∼N(0, 1).

3 CASE STUDY

In this section we provide a case study to illustrate the application of the methods described in the previous section. We
use data on patients hospitalized with AMI at a large set of hospitals in the Canadian province of Ontario.

3.1 Data sources

We used data from the EFFECT study, which was designed to improve the quality of care provided to patients with cardio-
vascular disease in Ontario.9 The sample for this case study consisted of 10 881 patients admitted with a diagnosis of AMI
to one of 102 hospital sites in Ontario, Canada between 1 April 1999 and 31 March 2001. Data on patient characteristics,
outcomes, and processes of care were obtained from patients' medical records by retrospective chart review.

3.2 Indicators of quality of care

We considered six binary indicators of quality of care for patients hospitalized with AMI: (i) reperfusion (ie, reopening
blocked coronary arteries using either thrombolysis or percutaneous coronary intervention) in patients with ST-segment
elevation myocardial infarction (STEMI); (ii) assessment of left ventricular ejection fraction (LVEF); (iii) measurement
of cardiac troponin levels; (iv) use of acetylsalicylic acid (ASA) within 6 hours of hospital arrival; (v) use of beta-blockers
within 12 hours of hospital arrival; (vi) survival to 30 days from hospital admission (both in-hospital and out-of-hospital
deaths were captured). The first five indicators assess patient-specific processes of care, while the sixth indicator is a
patient outcome. The sixth indicator denotes survival to 30 days from hospital admission. While a more common indicator
is death within 30 days of hospital admission, we changed the indicator from death to survival so that a positive response
for each of the indicators denotes a good outcome or process of care, while a negative response for each indicator denotes
a poor outcome or process of care. The first indicator is only for use in the subset of patients with STEMI, while the
remaining five indicators can be assessed in all patients. In the analytic dataset, the value of the reperfusion indicator was
set to missing for those subjects who did not present with a STEMI. For all other indicators, the value of the indicator was
set to either 0 or 1, denoting that the indicator was not satisfied (not performed) or satisfied (performed), respectively.

The first five indicators are processes of care measures and thus one would expect that they would be performed for all
eligible patients (eg, LVEF should be assessed in all patients). Thus, in the subsequent models, no risk-adjustment will be
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used for these five outcomes. However, comparison of mortality (or survival) across hospitals requires risk-adjustment,
as the illness severity may vary across hospitals. Thus, in the subsequent models, risk-adjustment will be used for the
survival outcome.

3.3 Multivariate response random effects logistic regression models

We fit a multivariate response Bayesian random effects logistic regression as described in the previous section. The
regression model for 30-day survival had a single explanatory variable, the GRACE score, which is a validated model for
predicting mortality in patients with acute coronary syndromes (the components of the GRACE score are age, history of
myocardial infarction, history of heart failure, increased pulse rate at presentation, lower systolic blood pressure at presen-
tation, elevated initial serum creatinine level, elevated initial serum cardiac biomarker levels, ST-segment depression on
presenting electrocardiogram, and not having a percutaneous coronary intervention performed in hospital).18 The other
five logistic regression models had no explanatory variables. These five indicators denote processes of care that should
be provided to all patients, regardless of illness severity. Accordingly, no covariates were included in these five regression
models.

MCMC methods were used to estimate the posterior distribution of the model parameters. Three chains were run, each
using different initial values for the model parameters. Diffuse prior distributions were assumed for the model parameters.
Each chain used an initial run of 500 000 “burn-in” iterations (a high number of burn-in iterations was determined to be
necessary through a trial and error approach and examination of the subsequent trace plots for the sampled parameters),
and was then monitored for an additional 50 000 iterations, with a thinning interval of 10 (ie, 5000 monitored iterations
were retained from each of the three chains). Thus a total of 15 000 monitored iterations were used to determine the
posterior distributions of the parameters of interest. The Gibbs sampler was implemented using OpenBUGS version 3.2.3
using the R2OpenBUGS package for R.

Diffuse prior distributions were specified for all parameters. The prior distribution for the fixed slope for the GRACE
score in the model for 30-day survival was specified to be a normal distribution with mean zero and variance 100. The
prior distribution for 𝜇, the mean of the multivariate normal distribution of the random effects, was specified to be a
multivariate normal distribution with mean zero and a variance-covariance matrix equal to 100× I6×6, where I denotes the
6× 6 identity matrix. Finally, the prior distribution for Σ−1, the precision matrix of the multivariate normal distribution
of the random effects, was specified to be the Wishart distribution W6

(
1
6
I6×6, 6

)
.

A total of 640 model parameters were monitored: one fixed effect slope for the GRACE score in the model for 30-day
survival, six parameters for the mean of the multivariate distribution of the random effects, 21 parameters for the precision
matrix (inverse of the symmetric variance-covariance matrix) for the multivariate distribution of the random effects, and
612 hospital-specific random effects for the six indicators (102 hospitals× 6 indicators). Convergence of the Gibbs sampler
was assessed by visual inspection of the trace plots for 28 parameters (the six components of the mean of the multivariate
normal distribution, the 21 components of the variance-covariance matrix, and the one fixed effect for the effect of the
GRACE score on patient survival) and for the 30 random effect parameters for the first five hospitals. The three separate
chains starting at different starting values mixed well and displayed no lack of convergence. The convergence of each
chain was also assessed using Geweke's statistic,19 by which we tested the equality of the means of the sampled parameters
in the first 25% of the chain with that in the last 25% of the chain. If the sampled values of a given parameter are drawn
from the same stationary distribution, then the two means are equal and the resultant test statistic will have a standard
normal distribution. For each of the three chains, there was no evidence that the distribution of Geweke's test statistic
was not normal across the 640 model parameters when using visual inspection of a normal quantile-quantile plot.

3.4 Latent variable approach

We fit a multivariate response Bayesian random effects logistic regression model. MCMC methods were used to estimate
the posterior distribution of the model parameters. Three chains were run, each using different initial values for the
model parameters. Diffuse prior distributions were assumed for the model parameters. Each chain used an initial run
of 500 000 “burn-in” iterations, and was then monitored for an additional 3 500 000 iterations, with a thinning interval
of 700 (ie, 5000 monitored iterations were retained from each of the three chains). A very high thinning interval (and
therefore number of monitoring iterations) was used due to the high degree of autocorrelation in the monitored chains
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when lower thinning intervals were used. Thus a total of 15 000 monitored iterations were used to determine the posterior
distributions of the parameters of interest. The Gibbs sampler was implemented using PROC MCMC in SAS (SAS/STAT
14.3). Different statistical software was used for the two models as both models were not able to be fit using only one of
the programs.

The prior distribution for the intercept term (𝛼(k)) in each of the six models was specified to be a normal distribution
with mean zero and variance 100. The prior distribution for the slope associated with the latent variable (𝛽(k)) in each of
the six models was specified to be a half-normal distribution with mean zero and variance 100. The prior distribution for
the fixed slope for the GRACE score in the model for 30-day survival was specified to be a normal distribution with mean
zero and variance 100.

A total of 115 model parameters were monitored: one fixed effect slope for the GRACE score in the model for 30-day
survival, six intercept parameters, six slope parameters, and 102 hospital-specific values of the latent variable denoting
hospital quality. Convergence of the Gibbs sampler was assessed by visual inspection of the trace plots for 13 param-
eters (the intercepts and slopes in the six regression models) and for the five values of the latent variable for the first
five hospitals. The three separate chains starting at different starting values mixed well and displayed no lack of con-
vergence. The convergence of each chain was also assessed using Geweke's statistic,19 by which we tested the equality
of the means of the sampled parameters in the first 25% of the chain with that in the last 25% of the chain. In the first
and third set of chains, none of the 115 applications of Geweke's test resulted in a rejection of stationarity. In the sec-
ond set of chains, only one of the 115 applications of Geweke's test resulted in a rejection of stationarity. If one were to
apply a Bonferroni correction to each set of 115 applications, then none of the tests would have resulted in a rejection
of stationarity.

3.5 Results

The overall prevalence of the six indicators were 62% (reperfusion in patients with STEMI), 46% (LVEF assessment),
55% (measurement of cardiac troponin), 51% (ASA within 6 hours of admission), 21% (beta-blockers within 12 hours of
admission), and 89% (survival to 30 days after admission). The hospital-specific prevalences of the indicators ranged from
41% to 100% (reperfusion), 0% to 87% (LVEF), 0% to 100% (troponin), 25% to 83% (ASA), 3% to 61% (beta-blockers), and
80% to 97% (survival to 30 days).

3.5.1 Multivariate response random effects logistic regression models

The posterior mean of the variances of the hospital-specific random effects were 0.20 (reperfusion in patients with
STEMI), 0.94 (LVEF assessment), 5.40 (measurement of cardiac troponin), 0.02 (ASA within 6 hours of admission), 0.05
(beta-blockers within 12 hours of admission), and 0.03 (survival to 30 days after admission). These are equivalent to vari-
ance partition coefficients (VPCs) of 0.06, 0.22, 0.62, 0.01, 0.02, and 0.01, respectively (using the latent variable formulation
of the VPC).20-22 Thus, 6% of the variation in use of reperfusion therapy is due to systematic differences between hospitals,
while 62% of the variation in measurement of cardiac troponin was due to systematic differences between hospitals. Some
of the indicators displayed only minor between-hospital variation, while others displayed very strong between-hospital
variation.

Correlation of hospital-specific random effects
Within each iteration of the Gibbs sampler, the sampled precision matrix was inverted to obtain the variance-covariance
matrix of the distribution of the hospital-specific random effects. From this matrix we obtained the correlation matrix for
the hospital-specific random effects. We also computed Bayesian one-sided P-values for the hypothesis that the correlation
was negative (these were computed as the proportion of the sampled correlations that were negative). The posterior mean
of the correlation matrix and the corresponding Bayesian one-sided P-values are reported in Table 1. The scatterplot matrix
plotting the pairwise relationship between hospital-specific posterior means of the different random effects is presented
in Figure 1.

In interpreting the magnitude of specific correlations, we will use the following criteria, which are based on Cohen's
discussion of effect sizes: 0.1<𝜌≤ 0.3 denotes weak correlation; 0.3<𝜌≤ 0.5 denotes moderate correlation; 𝜌> 0.5 denotes
strong correlation.23,24
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T A B L E 1 Posterior mean of the correlation coefficients and Bayesian one-sided P-values

Indicator Reperfusion LVEF Troponins ASA Beta-blockers Survival to 30 days

Reperfusion 1.00 0.80 (<0.001) 0.84 (<0.001) 0.38 (0.037) 0.61 (0.001) 0.18 (0.167)

LVEF 0.80 (<0.001) 1.00 0.41 (<0.001) 0.53 (0.018) 0.69 (0.004) 0.32 (0.056)

Troponin 0.84 (<0.001) 0.41 (<0.001) 1.00 0.09 (0.359) 0.30 (0.105) −0.01 (0.533)

ASA 0.38 (0.037) 0.53 (0.018) 0.09 (0.359) 1.00 0.47 (0.042) 0.37 (0.073)

Beta-blockers 0.61 (0.001) 0.69 (0.004) 0.30 (0.105) 0.47 (0.042) 1.00 0.37 (0.069)

Survival to 30 days 0.18 (0.167) 0.32 (0.056) −0.01 (0.533) 0.37 (0.073) 0.37 (0.069) 1.00

Note: Each cell contains the posterior mean of the correlation coefficient (Bayesian one-sided P-value).
Abbreviations: ASA, acetylsalicylic acid; LVEF, left ventricular ejection fraction.

F I G U R E 1 Correlation between hospital-specific random effects for the six indicators

There was a strong correlation between a hospital's use of reperfusion therapy in patients with STEMI (reperfu-
sion) and its conducting of LVEF assessments (𝜌 = 0.80), measurement of cardiac troponins (𝜌 = 0.84) and its of use
beta-blockers within 12 hours of hospital arrival (𝜌 = 0.61). Similarly, there was a strong correlation between a hospital's
measurement of LVEF and use of ASA within 6 hours (𝜌 = 0.53) and its use of beta-blockers within 12 hours (𝜌 = 0.69).

Five of our indicators denote processes of care. Of the 10 comparisons of hospital performance on pairs of process of
care indicators, five demonstrated strong correlation (𝜌> 0.50). Of the remaining five pairwise comparisons, there was a
moderate correlation between a hospital's use of reperfusion therapy in patients with STEMI and its use of ASA within
6 hours of arrival (𝜌= 0.38), there was a moderate correlation between a hospital's assessment of LVEF and measurement
of troponins (𝜌= 0.41), and there was a moderate correlation between a hospital's use of ASA within 6 hours of arrival and
its use of beta-blockers within 12 hours of arrival (𝜌 = 0.47). There was a weak correlation between a hospital's measure-
ment of cardiac troponins and its use of beta-blockers within 12 hours of arrival (𝜌= 0.30). Finally, the correlation between
a hospital's measurement of cardiac troponins and its use of ASA within 6 hours of arrival was negligible (𝜌 = 0.09).
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Of our six binary indicators, patient survival was the sole indicator that was a patient outcome and not a process of
care. Hospital performance on patient survival was not strongly correlated with hospital performance on any of the five
processes of care indicators. There was a moderate correlation between a hospital's performance on patient survival and
its assessment of LVEF (𝜌 = 0.32), its use of ASA within 6 hours of arrival (𝜌 = 0.37), and its use of beta-blockers within
12 hours of arrival (𝜌 = 0.37). There was a weak correlation between a hospital's performance on patient survival and its
use of reperfusion therapy (𝜌 = 0.18). There was no correlation between a hospital's performance on patient survival and
its measurement of cardiac troponins (𝜌 = −0.01).

Probability of having negative random effects for all six indicators simultaneously
A hospital with a negative random effect for a given indicator is hospital whose performance on that indicator is
worse than at an average hospital (since the indicators were structured so that a value of zero denoted a poor out-
come or process of care and a value of one denoted a good outcome or process of care). At each monitored iteration
of the Gibbs sampler, we constructed a binary variable for each hospital that denoted whether all six random effects
for that hospital in that iteration were negative. The mean of this indicator variable across the 15 000 monitored itera-
tions denotes the posterior probability that all six random effects were simultaneously negative for the given hospital.
This posterior probability ranged from 0 to 0.85 across the 102 hospitals. The median posterior probability across the
102 hospitals was 0, while the 75th percentile was 0.12. The 90th percentile was 0.52. Thus, for the 10% most extreme
hospitals, the posterior probability that all six random effects were negative was at least 0.52. There were 11 (11.0%) hos-
pitals for which this posterior probability was at least 0.5. The left panel of Figure 2 depicts a “snake plot” in which
the posterior probability of below-average performance on all six indicators is plotted against the hospital's rank on
these probabilities.

The above process was repeated to determine the posterior probability that a given hospital had positive random
effects for each of the six indicators simultaneously (and thus had performance superior to that of an average hos-
pital on each of the six indicators). This posterior probability ranged from 0 to 0.77 across the 102 hospitals. The
median posterior probability was 0.01, while the 75th percentile was 0.19. The 90th percentile was 0.50. There were
11 (11%) hospitals for which this posterior probability was at least 0.5. The right panel of Figure 2 depicts a “snake
plot” in which the posterior probability of above-average performance on all six indicators is plotted against the rank
of these probabilities. The Spearman rank correlation between a hospital's probability of having below-average perfor-
mance on all six indicators and the hospital's probability of having above-average performance on all six indicators
was −0.87.

F I G U R E 2 Probability of
below/above-average
performance on all six indicators
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Mahalanobis distance of each hospital from the center of the distribution of the random effects
The metric discussed in the previous section involved the probability that a hospital had worse performance than
average on all six indicators. While this metric involves directionality, it does provide information on how “far”
the performance of a given hospital is from an average hospital. One could contrast two hospitals that both
have a very high case load and who both have a high probability of having poor performance on all indica-
tors. The first hospital has performance on each indicator that is slightly worse than average. However, due to
its very high case load, the probability of poor performance on all six indicators is high. The second hospital
has performance on each indicator that is substantially worse than average. Its estimated probability of poor per-
formance on all six indicators is also very high. One would want to distinguish between these two hospitals. To
do so, one would want a metric that conveys information about how far a given hospital is from an average
hospital.

The Mahalanobis distance is a measure of distance in multivariate space.25 Given a multivariate distribution with
mean 𝛍 and variance-covariance matrix 𝚺, the Mahalanobis distance of a vector x from the mean of the distribution is
defined as D =

√
(x − 𝝁)t𝚺−1(x − 𝝁). In the context of multivariate provider profiling, this distance measure allows one

to determine the distance of each provider from a hospital with average performance on each of the indicators. Note that
the Mahalanobis distance is only a measure of distance and does not provide information on directionality, furthermore
it implicitly gives equal weight to all six indicators (which is consistent with what we have been doing in these analyses).
We will subsequently combine this distance measure with information about the probability of a hospital having poor
quality of care.

At each monitored iteration of the Gibbs sampler, we used the sampled values of the random effects and the precision
matrix (the inverse of the variance-covariance matrix) to determine the Mahalanobis distance of each hospital from the
mean of the multivariate distribution of the random effects. By examining this quantity for each hospital across the 15 000
monitored chains we determined the posterior distribution of the Mahalanobis distance for each hospital. The mean of
the hospital-specific posterior distribution of the Mahalanobis distance ranged from 1.73 to 3.11, with a median of 2.31
(25th and 75th percentiles: 2.12 and 2.51).

We made the admittedly subjective decision that a hospital whose Mahalanobis distance exceeded that of 75% of hos-
pitals was far from the center of the multivariate distribution (ie, we defined those hospitals in the top 25% of distance to
be far from the center of the distribution). Accordingly, at each iteration of the Gibbs sampler, we computed the Maha-
lanobis distance of each hospital from the mean of the multivariate distribution of the random effects. Within the given
iteration of the Gibbs sample, we determined the 75th percentile of this distribution across the 102 hospitals. We then
created an indicator variable for each hospital denoting whether, for the given iteration, that hospital's Mahalanobis dis-
tance exceeded the 75th percentile of the distribution of Mahalanobis distances. For each hospital we computed the mean
of this indicator variable across the 15 000 iterations of the Gibbs sampler. This quantity is the posterior probability that
the hospital's Mahalanobis distance exceeds the 75th percentile of the distribution of Mahalanobis distances across hos-
pitals. This posterior probability ranged from 0.06 to 0.75 across the 102 hospitals, with a median of 0.21 (25th and 75th
percentiles: 0.14 and 0.33).

A hospital with a large Mahalanobis distance is far from the center of the distribution of hospital performance.
However, the Mahalanobis distance does not, on its own, provide information about the quality of care provided by
that hospital. Figure 3 describes the relationship between Mahalanobis distance and the probability of having neg-
ative random effects for all six indicators (left panel) and the probability of having positive random effects for all
six indicators (right panel). In each panel, we have used solid red circles to denote those hospitals whose probabil-
ity of having below-average performance on all six indicators exceeded 0.5 and whose Mahalanobis distance exceeded
the 75th percentile of such distances. In each panel, we have used solid blue triangles to denote those hospitals
whose probability of having above-average performance on all six indicators exceeded 0.5 and whose Mahalanobis
distance exceeded the 75th percentile of such distances. In each panel, hospitals in the top-right quadrant merit fur-
ther examination. In the left panel, there are seven hospitals that have a high probability of having below-average
performance on all six indicators and that are also far from the performance of an average hospital. These are hospi-
tals that may merit focused quality improvement initiatives to improve the quality of care provided to patients with
AMI. In the right panel, there are two hospitals that have a high probability of having above-average performance
on all six indicators and that are also far from the performance of an average hospital. These two hospitals may
merit focused attention so that the reasons for their high quality performance can be identified and disseminated to
other hospitals.
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F I G U R E 3 Relationship
between Mahalanobis distance
and below/above-average
performance on all six indicators
[Colour figure can be viewed at
wileyonlinelibrary.com]

Profiling using clinical benchmarks
We conducted a set of analyses to illustrate the application of multivariate response multilevel logistic regression mod-
els for provider profiling when an external standard for acceptable performance is used. At the beginning of Section 3.5,
we reported the overall performance on the six indicators. We made the arbitrary decision that hospitals whose perfor-
mance on a given processes of care indicator was worse than the provincial average were deemed to have below-average
performance on that indicator. Furthermore, we decided that hospitals whose adjusted survival (as determined by the
hospital-specific random effect for the survival model) was worse than average had below-average performance on sur-
vival. At each iteration of the Gibbs sampler, we determined whether each hospital had below-average performance on
all six indicators. We then determined the proportion of the iterations in which each hospital had below-average perfor-
mance on all six indicators. We then repeated this process examining the probability that each hospital had above-average
performance on all six indicators.

The hospital-specific probability of below-average performance on all six indicators ranged from 0 to 0.86, with a
median of 0. There were 11 hospitals for which this probability exceeded 0.50. Further investigation for the reasons for
poor performance at these 11 hospitals may be merited. The hospital-specific probability of above-average performance
on all six indicators ranged from 0 to 0.64, with a median of 0. There was only one hospital for which this probability
exceeded 0.50.

3.5.2 Latent variable approach

The posterior means and the 95% highest probability density intervals for the 13 regression parameters (six intercepts,
six slopes for the latent variable, and the slope for the GRACE score) are reported in Table 2. The slope parame-
ter associated with the latent variable denoting hospital quality is referred to as a “discrimination” parameter in the
context of item response theory models. The larger the slope associated with the latent variable, the greater the asso-
ciation between hospital quality and performance on a given indicator. Indicators associated with higher values of 𝛽
have a greater ability to distinguish between different levels of hospital quality compared with indicators with lower
values of 𝛽.

The relationship between the latent variable for hospital quality and performance on the six different indicators is
described in Figure 4. In this figure, the latent variable was allowed to range from −2 to 2, (the range in which approxi-
mately 95% of hospitals would lie, given the assumption that this variable follows a standard normal distribution across

http://wileyonlinelibrary.com
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Indicator Posterior mean 95% HPD interval

Reperfusion 0.5019 (0.4378, 0.5669)

LVEF −0.2108 (−0.3298, −0.0880)

Troponin −0.1586 (−1.2560, 0.8923)

ASA 0.0251 (−0.0147, 0.0620)

Beta-blockers −1.3504 (−1.3983, −1.3028)

30-day survival 2.6676 (2.5773, 2.7555)

Slope for latent variable (𝜷)

Reperfusion 0.0088 (0.0000, 0.0256)

LVEF 0.5953 (0.4910, 0.7016)

Troponin 5.4985 (4.4408, 6.5913)

ASA 0.0186 (0.0000, 0.0451)

Beta-blockers 0.0640 (0.0118, 0.1158)

30-day survival 0.0345 (0.0000, 0.0809)

Slope for GRACE score (𝜸)

30-day survival −0.0337 (−0.0356, −0.0319)

Abbreviations: ASA, acetylsalicylic acid; HPD, highest probability density;
LVEF, left ventricular ejection fraction.

T A B L E 2 Posterior means and 95% HPD intervals

F I G U R E 4 Relationship between latent variable
and performance on the six indicators [Colour figure can
be viewed at wileyonlinelibrary.com]

hospitals). There is one curve for each of the six indicators. The curve for survival denotes the probability of 30-day sur-
vival for a patient with an average GRACE score as a function of the underlying latent variable. The indicator denoting
measurement of cardiac troponins had the greatest ability to discriminate between hospitals on the basis of quality of
care. Measurement of LVEF had moderate ability to discriminate between hospitals on the basis of quality. The remaining
four indicators had negligible ability to discriminate between hospitals.

3.5.3 Comparison of the two approaches

The agreement between the Bayesian multivariate logistic regression approach and the latent variable approach is
explored in Figure 5. This figure consists of four panels. In each panel we have plotted the estimated hospital-specific

http://wileyonlinelibrary.com
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F I G U R E 5 Comparison of latent variable approach and multivariate logistic regression model

latent variable denoting hospital quality vs a different metric based on the Bayesian multivariate logistic regression model.
In the top left panel we have plotted the posterior mean of the hospital-specific Mahalanobis distance against the latent
variable denoting hospital quality. As one moves away from a latent variable value of zero (denoting average quality),
the Mahalanobis distance tends to increase, since we are moving away from the center of the multivariate distribution.
In the bottom left panel we have plotted the probability of below-average performance on all six indicators against the
latent variable denoting hospital quality. The Spearman rank correlation for these two quantities was −0.76, denoting, as
expected, a strong negative correlation. Note that the large majority of hospitals with a positive latent variable (denoting
above-average quality) tended to have a very low probability of below-average performance on all six indicators. In the
top-right panel we have plotted the probability of above-average performance on all six indicators against the latent vari-
able denoting hospital quality. The Spearman rank correlation for these two quantities was 0.82, denoting, as expected,
a strong positive correlation. Finally, in the bottom right panel we have plotted the probability that the Mahalanobis dis-
tance is above the 90th percentile of distance against the latent variable denoting hospital quality. The Spearman rank
correlation for these two quantities was −0.28, denoting a weak correlation.

4 DISCUSSION

The primary objective of this article was to describe a multivariate response Bayesian random effects logistic regression
model that allows for provider profiling simultaneously on multiple binary indicators of quality of care. Analyses based on
this model allow for a formal assessment of whether performance on different quality indicators is correlated within given
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healthcare providers. This allows for an examination of whether providers that have poor performance on one indicator
also have poor performance on a second indicator, and conversely whether providers that have good performance on one
indicator also have good performance on a second indicator. The use of this approach allows for a deeper examination of
provider performance than does examining each indicator in isolation. A secondary objective was to compare inferences
made using this model with those made using a previously described latent variable model for profiling on multiple
indicators of hospital performance.

The latent variable model can be thought of as a simplification of the multivariate response logistic regression model.
This can be seen in comparing formulas (2) and (3) above. Formula (3) is simply formula (2) where we have constrained all
cross-equation correlations to equal one. The multivariate response logistic regression model allows for different pairwise
correlations between different pairs of indicators. In contrast, the latent variable model assumes that there is only one
underlying dimension of hospital quality. In so doing, it implicitly assumes that all the correlations in the multivariate
model are equal to one. With this simplifying assumption comes greater ease of interpretation. This may be possible when
the indicators are such that is reasonable to assume a unidimensional hospital quality model. If the indicators pertained
to very different types of patients (eg, surgical site infections in patients undergoing colorectal surgery and troponin
measurement in patients hospitalized with AMI), this assumption may not be realistic. Similarly, when the indicators
reflect a mix of process, outcome, and structural measures, this assumption may not be realistic, and the multivariate
response model may be preferred. In the current application we have five process measures and one outcome measure.
More generally, many of the estimated correlations in the multivariate response models are substantially lower than 1,
further suggesting that the multivariate response model would likely be statistically preferred to the latent variable model.

Christiansen and Morris26 advocated for the use of Bayesian random effects regression models in provider profiling,
suggesting that one of the advantages of this approach is the ability to make probabilistic statements about acceptable
provider performance. Similarly, Normand et al27 described the use of Bayesian random effects regression models for
healthcare provider profiling. The use of these methods allows for determining the probability of unacceptable perfor-
mance at individual hospitals. The statistical performance of different Bayesian methods for hospital profiling has been
examined in a series of articles.28-32 Importantly, all of these articles considered scenarios in which healthcare providers
were being compared on a single outcome.

While there is a large literature on statistical methods for provider profiling for a single patient outcome (eg, mortal-
ity), there is a limited literature on methods to compare healthcare provider performance on multiple patient outcomes.
The majority of previous studies used latent variable approaches to model hospital performance on multiple indicators.
To the best of our knowledge, apart from these studies that a used latent variable approach, only one study has examined
healthcare provider profiling for multiple patient outcomes simultaneously.33 Robinson et al developed a multivariate
regression model for patient medical costs. The two outcomes were primary care costs and specialty care costs. The under-
lying regression model for each of the two cost outcomes was a two-part model that accounted for the large number of
patients with zero costs. Importantly, the outcomes considered in that study were continuous. The novelty of the current
study is its focus on provider profiling on multiple binary indicators of healthcare quality. Binary indicators are arguably
more common in healthcare provider profiling than are continuous outcomes.

While there is a paucity of research on methods for multivariate provider profiling in health research, there is limited
research on this topic in the field of education research. The primary focus in education is on test scores, which are
continuous outcomes. Goldstein34 described multivariate response random effects linear models that can be used for
modeling variation in multiple student test scores (eg, mathematics test scores, reading test scores, and writing test scores)
across schools. Leckie35 recently showed how these multivariate response models can then be extended to model multiple
cohorts of students and so examine the stability of school effects over time as well as the consistency in school effects
across different academic subjects. Our motivation is the same as that of Goldstein and Leckie. While their focus was on
multiple continuous test scores, our focus is on performance on multiple binary indicators. However, the same method
underlies both approaches: a multivariate response random effects regression model.

The focus of the current study was on provider profiling for multiple binary indicators simultaneously. Our focus was
on binary indicators as these are the most common type of indicator in healthcare profiling. However, the methods that
we described can be easily modified to be used in settings with a mixture of continuous and binary indicators.36 A recent
example from the school performance monitoring literature is a joint analysis of school effects on student attainment
(continuous), absence (continuous), and exclusion (binary) indicators.37 In the context of hospital performance, possible
continuous quality indicators include hospital length of stay or wait time for a given procedure (eg, time from hospital
arrival to initiation of reperfusion therapy for patients arriving at hospital with a STEMI). To modify the multivariate
response model, a logistic regression model for a binary indicator would be replaced with an appropriate linear model or
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generalized linear model for the continuous outcome. While the focus was on binary indicators of healthcare quality, the
proposed methods can be used to examine variation in any set of binary variables between hospitals or regions. Thus, given
a set of comorbid conditions or disease risk factors, one could examine the within-hospital or within-region correlation
between different comorbid conditions or risk factors. This would allow one to see whether the presence of comorbid
conditions or risk factors tend to be clustered within certain hospitals or regions. In our case study we examined hospital
performance on one patient outcome (survival to 30 days) and five measures of process of care. However, there is no
reason that a specific application of this approach is limited to one patient outcome. One can consider any combination of
patient outcomes and measures of process of care. Similarly, the latent variable approach can be modified to accommodate
nonbinary outcomes.

An alternative approach to addressing multiple indicators is to explicitly create a composite indicator. While the latent
variable model implicitly provides an estimate of a composite indicator (the latent variable denoting hospital quality), it is
important to note that the multivariate response logistic regression model is not based on creating a composite indicator
that pools information from a set of indicators. Compared to our multivariate approach, the explicit use of a composite
indicator would likely result in a loss of information about variation in hospital performance. Furthermore, it is not clear
what is the best method to pool multiple binary indicators to create a single composite indicator. Using our proposed
approach, we are not weighting the different indicators, but examining the within-hospital correlation in the different
indicators. Teixeira-Pinto and Normand13 briefly discuss limitations with the creation of a composite hospital-level indi-
cator of quality of care. One option is to calculate the proportion of patients receiving the given indicator at each hospital
and then to compute the average proportion across indicators within each hospital (they refer to this as the raw average
scores [RAS]). Alternatively, one can weight the indicator-specific proportions according to the number of patients eligi-
ble for the given indicator, to produce raw-weighted average scores (RWAS). They describe how paradoxical results can
arise if some hospitals have no eligible patients for some of the indicators. Furthermore, they suggest that the computation
of average scores is only meaningful when none of the indicators require risk-adjustment. Given that mortality requires
risk-adjustment, we did not consider this approach in the current study. Furthermore, the use of RAS or RWAS is only
feasible when all of the indicators are binary. In contrast to this, both methods used in our case study can be extended to
include continuous outcomes such as hospital length of stay or procedural wait times.

Neither of the two methods described in this study require that each indicator be assessed on every subject. One
of the indicators in the case study, reperfusion therapy, was only applicable to the subset of subjects with STEMI. This
was achieved by setting the value of the indicator to missing for those subjects to whom the indicator did not pertain
(ie, for those subjects who did not have a STEMI, the value of the reperfusion variable was set to missing). By doing so,
those subjects to whom the indicator did not pertain provided no information on the performance of the hospital on that
indicator. The ability of the method to incorporate indicators that apply to different subsets of the sample is important as
many indicators apply only to subsets of the sample. For example, the outcome of readmission within 30 days of hospital
discharge applies only to those subjects who are discharged alive from the index hospitalization episode.

In our case study we examined the probability that a hospital had below-average performance on all six indicators
of quality of care. An advantage of MCMC methods is that researchers can create any summary measure of interest. For
example, one could generate a warning flag indicator if a hospital was in the bottom quartile of performance on three or
more indicators (without specifying what those three indicators were). One could then report the posterior probability
of this warning indicator for each hospital and target quality improvement initiatives at those hospitals that had a high
posterior probability for this warning indicator. Similarly, one could determine the posterior probability that a hospital has
poor performance on at least one of the indicators. We examined each hospital's performance relative to that of an average
hospital. One could also ask whether a hospital fell below externally set thresholds on each of the indicators. For instance,
healthcare funders, regulators and caregivers could develop external thresholds for each indicator (eg, ASA use within
6 hours of admission in at least 80% of patients). The proposed methods can be easily modified to examine the probability
that a hospital fell below these externally defined thresholds on a given number of quality of care indicators. The flexibility
of the multivariate response Bayesian random effects logistic regression model is that the criteria for identifying hospitals
as performance outliers can be modified by investigators to best address their objectives and criteria for classifying hospital
performance.

We suggest that the two approaches considered in this article be seen as complementary. The latent variable approach
has at least two advantages. First, it provides a single numeric summary of each hospital's quality of care. Hospitals in
the tails of this distribution (eg, bottom 10% or top 10%) can be classified as performance outliers. Second, it allows for
identifying which indicators are most closely correlated with quality of care, and which indicators do allow for a mean-
ingful discrimination between hospitals according to their quality of care. However, a drawback to this approach is that



1404 AUSTIN et al.

it requires the assumption of an unmeasured variable denoting hospital quality and it may be difficult to communicate to
physicians and hospital administrators how this variable is estimated. The use of multivariate response hierarchical mod-
els has at least two advantages. First, it allows for a formal quantification of the correlation in hospital performance on
different indicators. Second, as discussed in the previous paragraph, one can create many different flags of poor (or excel-
lent) hospital performance based on a hospital's performance on multiple indicators. This may result in classifications
that are of greater relevance for physicians and hospital administrators. Furthermore, these actionable flags can make
reference to normative standards or thresholds where these exist. The primary limitation to the multivariate response
logistic regression model is that, unlike the latent variable approach, it is more difficult to create a single summary score
reflecting hospital quality. Most of the metrics that we developed using this approach involved some synthesis of distance
and the probability of poor performance on all six indicators.

The approach of measuring hospital quality using multiple indicators of quality of care shares some similarities with
multiple informant analysis.38-40 Multiple informant analysis is used in settings in which information on a given condi-
tion are provided by different sources (ie, the informants). For instance, a child's psychological state may be ascertained
by interviewing parents, teachers, and clinicians. From a provider profiling perspective, the different indicators can be
seen as different informants on the quality of care provided by a given hospital. However, multiple informant analysis
differs from provider profiling in that in multiple informant analysis, the informants are seeking to answer the same
question, whereas in profiling, the indicators truly are different aspects of hospital quality. Finally, multiple informant
analysis differs in that it is generally interested in fitting regression models in which the outcomes are provided by differ-
ent informants (but the regressors such as age or sex come from a single source) or in fitting regression models in which
the regressors are provided by multiple informants (but the outcome variable comes from a single source). In contrast to
this, provider profiling is typically trying to quantify variation in hospital performance and identify hospitals with outlying
performance.

Directions for future research include creating methods that synthesize the multivariate response logistic regres-
sion model and the latent variable approach. One possible way to do so would be to have two latent variable models,
one for those outcomes that require risk-adjustment (eg, death and hospital readmission) and one for process-of-care
measures that do not require risk-adjustment. The latter model would implicitly assume that there is a perfect
within-hospital correlation on the performance of the different process-of-care measures. This approach would sug-
gest that hospital quality had two dimensions, rather than the single dimension assumed by the existing latent variable
approaches.

In conclusion, we have developed multivariate response Bayesian random effects logistic regression models that can
be used to compare the performance of healthcare providers on a set of binary indicators of healthcare quality. Use of
this method allows one to formally quantify the magnitude of within-hospital correlation on the performance of different
binary indicators. Furthermore, by using the Mahalanobis distance, one can quantify the distance of a given hospital from
an average hospital.
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