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Abstract: Several clinical studies indicate that smoking predisposes its consumers to esophageal
inflammatory and malignant diseases, but the cellular mechanism is not clear. Ion transporters
protect esophageal epithelial cells by maintaining intracellular pH at normal levels. In this study,
we hypothesized that smoking affects the function of ion transporters, thus playing a role in the
development of smoking-induced esophageal diseases. Esophageal cell lines were treated with
cigarettesmoke extract (CSE), and the viability and proliferation of the cells, as well as the activity,
mRNA and protein expression of the Na+/H+ exchanger-1 (NHE-1), were studied. NHE-1 expression
was also investigated in human samples. For chronic treatment, guinea pigs were exposed to tobacco
smoke, and NHE-1 activity was measured. Silencing of NHE-1 was performed by using specific
siRNA. CSE treatment increased the activity and protein expression of NHE-1 in the metaplastic cells
and decreased the rate of proliferation in a NHE-1-dependent manner. In contrast, CSE increased
the proliferation of dysplastic cells independently of NHE-1. In the normal cells, the expression
and activity of NHE-1 decreased due to in vitro and in vivo smoke exposure. Smoking enhances
the function of NHE-1 in Barrett’s esophagus, and this is presumably a compensatory mechanism
against this toxic agent.

Keywords: esophagus; ion transport; smoking; NHE-1; Barrett’s esophagus

1. Introduction

Cigarette smoking is responsible for the development of many diseases, especially
different types of cancers. Since smoking primarily affects the lungs, the effects of smo-king
have been most intensively studied on this organ. However, other organs may also be
affected, such as the esophagus, which is directly exposed to cigarette smoke. For this rea-
son, a number of clinical studies have been conducted to examine the connection bet-ween

Int. J. Mol. Sci. 2021, 22, 10581. https://doi.org/10.3390/ijms221910581 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3196-8159
https://orcid.org/0000-0001-6084-6524
https://orcid.org/0000-0002-8299-105X
https://orcid.org/0000-0002-4105-8458
https://orcid.org/0000-0003-0811-2931
https://doi.org/10.3390/ijms221910581
https://doi.org/10.3390/ijms221910581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms221910581
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms221910581?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 10581 2 of 16

smoking and esophageal diseases. These studies have shown that smoking strongly corre-
lates with the development of esophageal adenocarcinoma (EAC) and Barrett’s esophagus
(BE) and also increases the risk of progression from BE to EAC [1–5]. In contrast, only a
few data are available regarding the cellular mechanism of smoking-induced lesions. In
an older study, Orlando et al. showed that the esophageal potential difference is reduced
by cigarette smoke extract (CSE), in which inhibition of Na+ transport plays an important
role [6]. This study suggests that smoking alters the ion transport processes in esophageal
epithelial cells (EECs); however, it is not known whether this takes part in the development
of BE or EAC.

Ion transport processes through the esophageal mucosa play an important protective
role, as they greatly contribute to the maintenance of normal intracellular pH (pHi). Se-
veral ion transporters have been identified on EECs in recent years, and their role has
been characterized both under physiological and pathophysiological conditions [7,8]. Our
workgroup showed that acid and/or bile acids alters the activity and expression of ion
transporters, which may be important in the development and progression of esophageal
diseases [8]. Among the acid–base transporters, the Na+/H+ exchanger (NHE) is one of
the most important transmembrane protein that mediates the exchange of Na+ and H+.
In addition to playing an important role in the alkalization of the pHi, it also regulates
cell vo-lume, proliferation, migration, and invasion [9–11]. Several members of the NHE
family are known, of which NHE-1 is the most common, ubiquitously expressed isoform.
The presence of NHE-1 has been shown in the esophagus of several species, such as
rat and rabbit, where it is essentially involved in the regulation of pHi [12]. In contrast,
the expression of this isoform in the normal human esophagus is controversial, and its
importance is more highlighted under pathological conditions [8,13–17]. Increased NHE-1
expression has been shown in BE, which probably plays a protective role against the acid-
or bile-induced injury by enhancing the cellular resistance of the cells [8,15,18]. The role of
NHE-1 in EAC is controversial. Some studies suggest that NHE-1 enhances the growth
of eso-phageal cancer cells, while other studies have shown that NHE-1 expression is
associated with longer postoperative survival [13,16].

There is no information on how smoking affects NHE-1 activity or expression in the
esophagus. Since Na+ transport is inhibited by smoking [6], it is conceivable that NHE-1
plays a role in the pathogenesis of cigarette-smoke-induced esophageal diseases. Therefore,
the objective of the present study was to investigate the effect of tobacco smoke on normal,
metaplastic and dysplastic cells and to investigate the role of NHE-1 in it.

2. Results
2.1. Effect of CSE on Esophageal Epithelial Cell Proliferation

To examine the effect of CSE on cell proliferation, first we determined the concentra-
tions of CSE at which the cells retained their viability. CSE concentrations were chosen
based on the literature data [19,20]. Cytotoxicity studies showed that both CP-A and CP-D
cells mostly tolerated CSE at 1 and 10 µg/mL concentrations, at each incubation time
(6, 24 and 72 h). In contrast, 100 µg/mL CSE induced a high degree of cell death, especially
during longer incubation (Figure 1a). Therefore, in the proliferation assays, the effect of
1 and 10 µg/mL CSE was examined for 6, 24 and 72 h (Figure 1b). In the metaplastic,
CP-A cells, CSE treatment dose-dependently reduced cell proliferation in the 24 and 72 h
treatment groups. In contrast, in the dysplastic, CP-D cells 72 h CSE treatment significantly
increased the proliferation.
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Figure 1. Effects of cigarette smoke extract (CSE) treatment on cell viability and proliferation. Metaplastic (CP-A) and 
dysplastic (CP-D) esophageal cell lines were exposed to different concentrations of CSE for 6, 24 and 72 h and the effects 
on cellular viability (a) and proliferation (b) were studied, using LDH and CCK8 assays, respectively. In the case of via-
bility assay, 0.1% Triton X-100 was used as a positive control. Data represent mean ± SEM of three independent experi-
ments; a = p ≤ 0.05 vs. control. 

2.2. Activity and Expression of NHE-1 in the Metaplastic and Dysplastic Cells 
Next, we examined the rate of NHE activity in the CP-A and CP-D cell lines, using 

the NH4Cl pre-pulse technique (Figure 2a,b). As shown in Figure 2a, in the absence of 
HCO3- the initial rate of regeneration from acidosis reflects the activity of NHE. Currently, 
nine NHE isoforms are known, and among them the presence of NHE-1 and NHE-2 was 
confirmed in the esophageal mucosa [8,12,21]. Our previous studies showed that NHE-1 
displays greater activity and is better expressed than NHE-2 both in the metaplastic and 
dysplastic cells [8], indicating that NHE-1 is primarily responsible for the regeneration 
from acidosis. As shown in Figure 2a,b, regeneration from acidosis was higher in CP-A 
(BF: 5.47 ± 0.52) than in CP-D cells (BF: 3.36 ± 0.24), indicating that CP-A cells have higher 
NHE-1 activity. We have also compared the mRNA and protein expressions of NHE-1 
between the metaplastic and dysplastic cells at different time points (6, 24 and 72 h). In 
addition, mRNA expression of NHE-1 (SLC9A1) was investigated by RT-PCR 24 h after 
plating the cells. As an internal gene, human beta actin (ACTB) was used. RT-PCR analysis 
revealed that there was no significant difference in NHE-1 expression among CP-A and 
CP-D cells, and no difference was observed between the different incubation times (Figure 
2c). Similar to RT-PCR, the Western blot analysis showed no difference in the protein ex-
pression of NHE-1 between the CP-A and CP-D cells (Figure 2d). 
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Figure 1. Effects of cigarette smoke extract (CSE) treatment on cell viability and proliferation. Metaplastic (CP-A) and
dysplastic (CP-D) esophageal cell lines were exposed to different concentrations of CSE for 6, 24 and 72 h and the effects on
cellular viability (a) and proliferation (b) were studied, using LDH and CCK8 assays, respectively. In the case of viability
assay, 0.1% Triton X-100 was used as a positive control. Data represent mean ± SEM of three independent experiments;
a = p ≤ 0.05 vs. control.

2.2. Activity and Expression of NHE-1 in the Metaplastic and Dysplastic Cells

Next, we examined the rate of NHE activity in the CP-A and CP-D cell lines, using
the NH4Cl pre-pulse technique (Figure 2a,b). As shown in Figure 2a, in the absence of
HCO3

- the initial rate of regeneration from acidosis reflects the activity of NHE. Currently,
nine NHE isoforms are known, and among them the presence of NHE-1 and NHE-2 was
confirmed in the esophageal mucosa [8,12,21]. Our previous studies showed that NHE-1
displays greater activity and is better expressed than NHE-2 both in the metaplastic and
dysplastic cells [8], indicating that NHE-1 is primarily responsible for the regeneration
from acidosis. As shown in Figure 2a,b, regeneration from acidosis was higher in CP-A (BF:
5.47 ± 0.52) than in CP-D cells (BF: 3.36 ± 0.24), indicating that CP-A cells have higher
NHE-1 activity. We have also compared the mRNA and protein expressions of NHE-1
between the metaplastic and dysplastic cells at different time points (6, 24 and 72 h). In
addition, mRNA expression of NHE-1 (SLC9A1) was investigated by RT-PCR 24 h after
plating the cells. As an internal gene, human beta actin (ACTB) was used. RT-PCR analysis
revealed that there was no significant difference in NHE-1 expression among CP-A and CP-
D cells, and no difference was observed between the different incubation times (Figure 2c).
Similar to RT-PCR, the Western blot analysis showed no difference in the protein expression
of NHE-1 between the CP-A and CP-D cells (Figure 2d).
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Figure 2. Activity, mRNA and protein expression of Na+/H+ exchanger-1 (NHE-1) in esophageal cell lines. (a) Representa-
tive intracellular pH (pHi) curves present the recovery from acidosis in CP-A and CP-D cells. (b) Summary data of the 
calculated activity of NHE-1 in the different cell lines. The rate of pH recovery (J(B−)) was calculated from the ΔpH/Δt 
obtained via linear regression analysis of the pHi measurement performed over the first 60 s of recovery from the lowest 
pHi level (initial pHi). The buffering capacity at the initial pHi was used to calculate J(B−). Data are presented as the mean 
± SEM. a: p ≤ 0.05 vs. CP-A; n = 5–11 exp./26–91 region of interests (ROIs). (c) mRNA and (d) protein expression of NHE-1 
in the CP-A and CP-D cells. α-Tubulin was used as a protein-loading control. Data represent mean ± SEM of three inde-
pendent experiments. 
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In order to investigate the effect of CSE on the activity of NHE-1, the previously men-

tioned NH4Cl pre-pulse technique was used. Since CSE alone can affect the fluorescence 
signals, cells were pretreated with 1, 10 or 100 µg/mL CSE for 1 h, and then NHE activity 
was measured (Figure 3a,b). Control cells were incubated in HEPES solution without CSE. 
In the case of CP-A cells, pretreatment with 1 µg/mL CSE decreased NHE activity from 
5.47 ± 0.52 to 3.08 ± 0.55. In contrast, at higher concentrations (10 and 100 µg/mL, respec-
tively) the activity of the exchanger increased (8.18 ± 1.3 at 10 µg/mL CSE and 12.28 ± 0.73 
at 100 µg/mL CSE). In CP-D cells, CSE strongly reduced NHE-1 activity at all three con-
centrations (from 3.36 ± 0.24 to 1.25 ± 0.26 at 1 µg/mL CSE, 1.62 ± 0.23 at 10 µg/mL CSE 
and 1.46 ± 0.29 at 100 µg/mL CSE, respectively).  

Figure 2. Activity, mRNA and protein expression of Na+/H+ exchanger-1 (NHE-1) in esophageal cell lines. (a) Representa-
tive intracellular pH (pHi) curves present the recovery from acidosis in CP-A and CP-D cells. (b) Summary data of the
calculated activity of NHE-1 in the different cell lines. The rate of pH recovery (J(B−)) was calculated from the ∆pH/∆t
obtained via linear regression analysis of the pHi measurement performed over the first 60 s of recovery from the lowest
pHi level (initial pHi). The buffering capacity at the initial pHi was used to calculate J(B−). Data are presented as the
mean ± SEM. a: p ≤ 0.05 vs. CP-A; n = 5–11 exp./26–91 region of interests (ROIs). (c) mRNA and (d) protein expression of
NHE-1 in the CP-A and CP-D cells. α-Tubulin was used as a protein-loading control. Data represent mean ± SEM of three
independent experiments.

2.3. Effect of CSE on The Activity and Expression of NHE-1

In order to investigate the effect of CSE on the activity of NHE-1, the previously men-
tioned NH4Cl pre-pulse technique was used. Since CSE alone can affect the fluorescence
signals, cells were pretreated with 1, 10 or 100 µg/mL CSE for 1 h, and then NHE activity
was measured (Figure 3a,b). Control cells were incubated in HEPES solution without
CSE. In the case of CP-A cells, pretreatment with 1 µg/mL CSE decreased NHE activity
from 5.47 ± 0.52 to 3.08 ± 0.55. In contrast, at higher concentrations (10 and 100 µg/mL,
respectively) the activity of the exchanger increased (8.18 ± 1.3 at 10 µg/mL CSE and
12.28 ± 0.73 at 100 µg/mL CSE). In CP-D cells, CSE strongly reduced NHE-1 activity at
all three concentrations (from 3.36 ± 0.24 to 1.25 ± 0.26 at 1 µg/mL CSE, 1.62 ± 0.23 at
10 µg/mL CSE and 1.46 ± 0.29 at 100 µg/mL CSE, respectively).
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in the CP-A cells upon CSE treatment, almost in all treated groups (Figure 4b). In the CP-
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Figure 3. Effects of cigarette smoke extract (CSE) treatment on the activity of Na+/H+ exchanger-1 (NHE-1) in esophageal
cell lines. Metaplastic (CP-A) and dysplastic (CP-D) esophageal cell lines were pretreated with different concentrations
of CSE (1, 10 and 100 µg/mL) for 1 h, and the activity of NHE-1 was measured. (a) Representative intracellular pH (pHi)
curves present the recovery from acidosis in CP-A cells. (b) Summary data of the calculated activity of NHE-1 in the
different cell lines. The rate of pH recovery (J(B−)) was calculated as described in Figure 2b. Data are presented as the
mean ± SEM; a = p ≤ 0.05 vs. control; n = 12–14 exp./66–68 ROIs.

The CSE treatment did not cause significant differences in mRNA expression of NHE-1
in any of the cell lines (Figure 4a). In contrast, the protein expression was increased in
the CP-A cells upon CSE treatment, almost in all treated groups (Figure 4b). In the CP-D
cells, CSE treatment caused a robust increase at 1 µg/mL concentration in the 6 h treatment
group, while no significant change was detected in the other groups.

2.4. Smoking Decreases NHE-1 Activity on Normal Esophageal Epithelial Cells

In order to investigate how CSE affects NHE activity under physiological conditions,
we studied the effect of CSE on normal EECs isolated from guinea pigs. The same concen-
trations were used as for the cell lines, and the cells were pretreated with CSE in the same
manner. As shown in Figure 5a,b, NHE activity was significantly reduced by CSE treatment
(from 12.19 ± 0.46 to 4.64 ± 0.94 at 1 µg/mL CSE, to 3.96 ± 0.43 at 10 µg/mL CSE and
to 4.49 ± 0.4 at 100 µg/mL CSE, respectively). In order to investigate the chronic effects
of smoking, guinea pigs were exposed to cigarette smoke for one, two and four months,
respectively, and then NHE activity was examined (Figure 5c). Guinea pigs of the same
age were used as controls. Similar to acute CSE treatment, chronic treatment decreased
NHE activity from 15.81 ± 0.91 to 7.98 ± 0.52 in the 1-month group, from 9.92 ± 0.78 to
7.9 ± 0.33 in the 2-month group and from 10.86 ± 0.54 to 5.46 ± 0.19 in the 4-month group
(Figure 5d). These data indicate that smoking decreases the activity of NHE-1 in the normal
eso-phageal mucosa.



Int. J. Mol. Sci. 2021, 22, 10581 6 of 16Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 4. Effects of cigarette smoke extract (CSE) treatment on the mRNA and protein expression of Na+/H+ exchanger-1 
(NHE-1) in esophageal cell lines. Metaplastic (CP-A) and dysplastic (CP-D) esophageal cell lines were treated with dif-
ferent concentrations of CSE (1 and 10 µg/mL) for 6, 24 and 72 h, and the relative gene (a) and protein (b) expressions of 
NHE-1 were investigated by real-time PCR and Western blot, respectively. GAPDH was used as a protein-loading control. 
Data represent mean ± SEM of three independent experiments; a = p ≤ 0.05 vs. control. 

2.4. Smoking Decreases NHE-1 Activity on Normal Esophageal Epithelial Cells 
In order to investigate how CSE affects NHE activity under physiological conditions, 

we studied the effect of CSE on normal EECs isolated from guinea pigs. The same concen-
trations were used as for the cell lines, and the cells were pretreated with CSE in the same 
manner. As shown in Figure 5a,b, NHE activity was significantly reduced by CSE treat-
ment (from 12.19 ± 0.46 to 4.64 ± 0.94 at 1 µg/mL CSE, to 3.96 ± 0.43 at 10 µg/mL CSE and 
to 4.49 ± 0.4 at 100 µg/mL CSE, respectively). In order to investigate the chronic effects of 
smoking, guinea pigs were exposed to cigarette smoke for one, two and four months, re-
spectively, and then NHE activity was examined (Figure 5c). Guinea pigs of the same age 
were used as controls. Similar to acute CSE treatment, chronic treatment decreased NHE 
activity from 15.81 ± 0.91 to 7.98 ± 0.52 in the 1-month group, from 9.92 ± 0.78 to 7.9 ± 0.33 
in the 2-month group and from 10.86 ± 0.54 to 5.46 ± 0.19 in the 4-month group (Figure 
5d). These data indicate that smoking decreases the activity of NHE-1 in the normal eso-
phageal mucosa.  

CP-A

0.0

0.5

1.0

1.5

2.0

2.5

1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml
6 h 24 h 72 h

2Δ
Δ

C
T

0.0

0.5

1.0

1.5

2.0

2.5

1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml
6 h 24 h 72 h

2Δ
Δ

C
T

CP-D

NHE

GAPDH

6 h               24 h          72 h

0

5

10

15

20

25

30

1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml
Control 6 h 24 h 72 h

No
rm

al
iz

ed
 d

en
si

ty
 (%

)

a
a

a

aa

GAPDH

NHE

6 h               24 h          72 h

a b

0

5

10

15

20

25

30

35

40

1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml 1 µg/ml 10 µg/ml
Control 6 h 24 h 72 h

No
rm

al
iz

ed
 d

en
si

ty
 (%

) a

CP-A

CP-D

Figure 4. Effects of cigarette smoke extract (CSE) treatment on the mRNA and protein expression of Na+/H+ exchanger-1
(NHE-1) in esophageal cell lines. Metaplastic (CP-A) and dysplastic (CP-D) esophageal cell lines were treated with dif-ferent
concentrations of CSE (1 and 10 µg/mL) for 6, 24 and 72 h, and the relative gene (a) and protein (b) expressions of NHE-1
were investigated by real-time PCR and Western blot, respectively. GAPDH was used as a protein-loading control. Data
represent mean ± SEM of three independent experiments; a = p ≤ 0.05 vs. control.

2.5. Effect of Smoking on NHE-1 Protein Expression in Human Esophageal Samples

Protein expression of NHE-1 was investigated in normal squamous epithelium and in
BE samples obtained from patients with smoking and non-smoking history (Figure 6a,b).
Patients who had never smoked or not smoked for more than a year were classified as
non-smokers, while patients who had been smokers for at least 20 years were classified
as smokers. Only patients with known smoking status were included in the analysis. As
controls, normal esophageal biopsy samples and the intact tumor-free margin of surgically
resected esophageal cancer were used. Weak NHE-1 expression was detected in the normal
esophageal epithelium, and it was further reduced by smoking. In BE, strong NHE-1
expression was observed, mainly at the basolateral membrane of the columnar cells. In
smokers, NHE-1 expression increased, and staining was detected not only in the plasma
membrane but in the cytoplasm as well. Interestingly, strong NHE-1 staining was also
observed in the glands. There was no significant difference between the intestinal and
non-intestinal metaplasia, neither in the smoker nor in the non-smoker group.

2.6. Role of NHE-1 in The CSE-Induced Proliferation

In order to investigate whether the altered expression or activity of NHE-1 has any
role in the effect of CSE on proliferation, we silenced the SLC9A1 gene, using specific siRNA
(Figure 7a–d). The efficiency of silencing was investigated at both mRNA and protein
levels (Figure 7a,b). In CP-A cells, NHE-1 knockdown reduced the rate of proliferation at
each incubation time, suggesting that NHE-1 is essential for the normal function of the
cells (Figure 7c). In the CP-D cells, the lack of NHE-1 protein initially increased the rate of
proliferation, whereas no significant difference was observed with additional incubation
times (Figure 7c). In the absence of NHE-1, CSE treatment increased the rate of proliferation
in the CP-A cells in almost all treated groups. For CP-D cells, proliferation increased alone
in the 72h treatment group (Figure 7d).
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3. Discussion

Recent studies have described that altered expression or activity of ion transporters
play an important role in the development or progression of different types of cancer [22–26].
For this reason, many ion transporters emerged as potential targets for cancer ther-
apy [27,28]. Our study demonstrates, for the first time, that smoking affects cell pro-
liferation in BE in which the ubiquitously expressed transmembrane transporter, NHE-1,
plays a central role. In the presence of NHE-1, CSE decreased the proliferation of metaplas-
tic cells, whereas, in the absence of the exchanger, cell proliferation increased due to the
CSE treatment. This result may be significant from the point of view that NHE-1 plays a
protective role in BE, and decreased NHE-1 expression may contribute to the neoplastic
progression of BE in smoking patients.

An interesting observation of our study is that CSE treatment slightly reduced the
proliferation of metaplastic cells, while it increased the proliferation of dysplastic cells.
The decreased proliferation in the metaplastic cells is presumably due to the decreased
cell viability at higher concentrations of CSE. In contrast, dysplastic cells were much more
resistant to CSE, and despite the low degree of cell death, cell proliferation increased
with treatment. In order to study the underlying mechanisms, we investigated the effect
of smoking on ion transport processes. Esophageal ion transporters play an important
protective role in EECs by preventing acidic or basic shift in pHi. Therefore, disruption of
pH regulatory processes leads to an upset of extra- and intracellular pH, which can result
in changes in cellular function and also causes genetic instability. It is well-known that the
pH of tumor is dysregulated and typically an acidic microenvironment develops within
the tumor that promotes cell division and migration [29–32]. Among the ion transporters
NHE-1 is an ubiquitously expressed plasma membrane protein that plays an essential
role in maintaining physiological pHi. Inadequate function of this transporter has been
described in several cancer types, including esophageal cancer [13,16,33–37]; therefore,
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NHE-1 emerged as a potential target in anti-cancer therapy [37,38]. We showed that, in
the case of acute CSE exposure, higher concentrations of CSE increased NHE-1 activity
in the metaplastic cells; this is presumably a defense mechanism by which the cells try to
maintain the normal pH homeostasis. In contrast, decreased activity of NHE-1 in CP-D
cells indicates damaged compensatory pH regulatory mechanisms. We have previously
shown that bile, which is an important etiological factor in the development of GERD and
BE, had the opposite effect that is decreased the activity of NHE-1 in the metaplastic cells
and increased it in the dysplastic cells [8]. In order to get a more complete picture of the
effect of CSE, we treated the cells with CSE for 6, 24 and 72 h and the mRNA, and the
protein expressions of NHE-1 were investigated. In CP-A cells, CSE treatment induced
an increase in mRNA expression, but this did not reach a significant level. However, a
clear elevation was found at the protein level that is thought to be associated with the
increased NHE-1 activity by CSE. Examination of human esophageal samples also showed
that smoking increases NHE-1 expression in both intestinal and non-intestinal metaplasia,
consistent with the results obtained on the CP-A cells. In the case of CP-D cells, no signi-
ficant change in either mRNA or protein expressions was observed after long-term or
higher-dose CSE administration, indicating that only the activity of the protein changes
due to the CSE treatment. In order to investigate how smoking affects NHE activity under
normal conditions, we examined the effect of acute and chronic tobacco exposure on guinea
pig EECs. We chose guinea pigs because we have previously shown that ion-transport
processes in the secretory gland of the guinea pig is similar to humans; in addition, more
cells can be obtained from the esophagus of guinea pig than from the esophagus of mice or
rat [39]. The duration of chronic in vivo smoking was determined based on the literature
data [40–42]. Our results showed that both acute and chronic tobacco smoke exposures
significantly reduce NHE-1 function. In the case of acute CSE exposure no dose-dependent
effect was observed. This can be explained by the fact, that the composition of each CSE
preparation may slightly differ from each other as it contains thousands of components,
most of which are unstable molecules. Since the CSE extract was not analyzed and only
the concentration of the whole extract was calculated minor or larger differences in the
preparations may be responsible for the lack of a dose-response effect. In the case of chronic
smoking, smoking did not cause as much a decrease in the 2-month-old guinea pigs as in the
1- and 4-month-old animals. One explanation for this is that the effects of smoking and/or
the activity of NHE-1 differs in each age group. The effect of chronic smoking in humans
was only studied at expression level because human EECs are not suitable for functional
measurements due to the high sensitivity and low viability of the human primary cells.
Consistent with the result obtained in guinea pig EECs, smoking reduced the expression
of NHE-1 in humans. Although NHE-1 is expressed in a very low level in the normal
human esophageal mucosa [8,13,15,16], the decreased expression of NHE-1 associates with
cellular acidosis, which may increase the risk of cancer development, as a greater number
of DNA damage and thus mutations develop in an acidic environment [15]. In order to
clarify the role of NHE-1 in the CSE-induced proliferation, we downregulated NHE-1
by specific siRNA transfection. In the absence of NHE-1, the CSE-induced proliferation
increased in the metaplastic cell line, suggesting that NHE-1, in addition to being essential
in maintaining the normal pH of cells, also performs an important protective function and
regulates cell proliferation against toxic agents. The protective role of NHE-1 against the
carcinogenic processes has been also demonstrated in esophageal squamous cell carcinoma
(ESCC), where suppression of NHE-1 increased the malignant potential and associated
with poor prognosis in ESCC patients [13]. In contrast, Guan et al. have found that
inhibition of NHE-1 suppressed esophageal cancer cell growth in EAC and ESCC cell
lines and in nude mouse xenografts [16]. It has also been demonstrated in other cancer
types that NHE-1 promotes tumor malignancy by providing appropriate pH conditions
for tumor growth and invasion [11,43]. These data suggest that NHE-1 acts as a tumor
oncogene rather than a suppressor in cancer. In BE, most studies agree that increased
NHE activity and/or expression is more likely part of a defense or adaptive mechanism
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which protects cells against toxic-agent-induced cellular acidification [8,14,15,18,44]. In the
more advanced dysplastic state, inhibition of NHE-1 had no effect on the CSE-induced
proliferation, indicating that, in dysplasia, the proliferative effect of CSE is independent
from NHE-1.

Taken together, smoking affects NHE-1 function in normal, metaplastic and dysplastic
cells differently. Under normal conditions, smoking reduces the activity and expression of
NHE-1, resulting in the acidosis of pHi. Disturbance of the pH homeostasis can lead to cell
deaths or to the malignant transformation of the cells. In the metaplastic state, smoking
increases the function of NHE-1, which is presumably a compensatory mechanism that
prevents the onset of cancerous processes by keeping the intracellular pH in the normal
range. As the expression of NHE-1 decreases, this protective mechanism disappears and
the proliferative potential of the cells increases. In contrast to BE, decreased activity or
expression of NHE-1 had no effect on smoking-induced proliferation in the dysplastic state
indicating the involvement of other mechanisms.

We propose that upregulation of NHE-1 is the part of a protective mechanism against
the harmful effects of smoking; however, further investigation would be needed to support
this hypothesis. Direct increase in NHE-1 expression by using NHE-1 agonists or the
use of transgenic mice models in which the SLC9A1 gene is modified would give a more
complete picture of the role of NHE-1. Nevertheless, the present results indicate that direct
augmentation of NHE-1 function may provide new avenues for decreasing the damaging
effect of smoking.

4. Materials and Methods
4.1. Chemicals and Solutions

All general laboratory chemicals and Trypan Blue solution (Catalogue No. T8154) were
purchased from Sigma-Aldrich (Budapest, Hungary). We obtained 2,7-bis-(2-carboxyethyl)-
5 (6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) from Invitrogen (Watham, MA,
USA), prepared (2 µmol/L) in dimethyl sulfoxide and stored at −20 ◦C. Nigericin (10 µM)
was dissolved in ethanol and stored at −20 ◦C. High-Capacity Reverse Transcription
Kit, TaqMan gene expression Master Mix, lipofectamine 2000 transfection reagent were
purchased from Thermo Fisher Scientifc (Watham, MA, USA). Cell Counting Kit-8 was from
Dojindo Molecular Technologies (Rockville, MD, USA). Citotoxicity detection kit (LDH)
was obtained from Roche (Catalogue No. 11644793001, Roche). SLC9A1 siRNAs (siRNA
ID: 119643) was from Life Technologies. The standard Na+-HEPES solution contained (in
mM): 130 NaCl, 5 KCl, 1 CaCl2, 1 MgCl2, 10 D-glucose and 10 Na-HEPES. NH4Cl-HEPES
solution was supplemented with 20 mM NH4Cl, while NaCl concentration was lowered to
110 mM. HEPES-buffered solutions were gassed with 100% O2, and their pH was set to 7.5
with HCl.

4.2. Animals

Guinea pigs (4–12 weeks old, male) were kept in standard plastic cages on 12:12 h
light–dark cycle at room temperature (23± 1 ◦C) and had free access to standard laboratory
chow and drinking solutions. Animal experiments were conducted in accordance with
the Guide for the Care and Use of Laboratory Animals (United States, Department of Health
and Human Services). In addition, the experimental protocol performed on non-smoking
animals was approved by the local Ethical Board of the University of Szeged, Hungary.

4.3. Patients

Formalin-fixed paraffin-embedded esophageal tissue samples were retrieved from the
archives of the Department of Pathology, University of Szeged (Szeged, Hungary), from
January 2018 to May 2021. Retrospective data collection of patients was performed by
the approval of the Ethics Committee of the University of Szeged (No. 4658), according
to Helsinki Declaration and GDPR. We collected data based on diagnosis, histopatholo-
gical features of the esophageal lesion, state of the disease and smoking history of the
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patients from patient database used in Hungarian healthcare system (eMedSolution). Each
esophageal biopsy and surgical resection sample was analyzed by pathologists earlier.
Patients were basically classified into two groups: smoking group with a smoking history
of more than 20 years and non-smoking group who had never smoked or had not smoked
for at least a year. As a control, tumor-free resection margins and normal esophageal biopsy
samples were used. The average age of BE patients was 55.1 ± 4.6 years in the smoking
group (n = 7), and 57.3 ± 3.8 years in the non-smoking group (n = 20). The average age in
the control group was 38.5 ± 11.5 years in the smoking group (n = 3), and 59.7 ± 3.8 years
in the non-smoking group (n = 7).

4.4. Cell Cultures

CP-A (human metaplastic esophageal epithelial cell line) and CP-D (human dysplastic
esophageal epithelial cell line) cells were purchased from American Type Culture Collection
(Manassas, VA, USA). The complete growth medium consists of MCDB-153 basal medium,
5% fetal bovine serum, 4 mM L-glutamine, 1× ITS supplement (Sigma I1884; 5 µg/mL
Insulin, 5 µg/mL Transferrin and 5 ng/mL Sodium Selenite), 140 µg/mL Bovine Pituitary
Extract (Sigma P1476), 20 mg/L adenine, 0,4 µg/mL hydrocortisone, 8,4 µg/L cholera toxin
(Sigma C8052), 20 ng/mL recombinant human EGF (Epidermal Growth Factor) and 1%
(v/v) penicillin/streptomycin. The cells were cultured at 37 ◦C and gassed with a mixture
of 5% CO2–95% air. Cells were seeded at 100% confluency and were used between 3 and
19 passage numbers.

4.5. Preparation of Cigarette-Smoke Extract

CSE was prepared at the Department of Pharmacognosy, University of Szeged. Briefly,
mainstream smoke from 15 Kentucky Research Cigarettes (3R4F; 12 mg tar and 1.0 mg
nicotine/cigarette), was continuously bubbled through 10 mL of distilled water. Dry
weight was measured after evaporation of the crude extract with N2. CSE solution was
then diluted to the appropriate concentration, using HEPES or culture media. CSE was
freshly prepared for each experiments or used within 2 days of preparation.

4.6. Cigarette-Smoke Exposure

The chronic effect of cigarette smoking was investigated by using a smoking chamber
at the Department of Pharmacology and Pharmacotherapy, University of Pécs. Male guinea
pigs were divided into three groups, according to the period of cigarette-smoke exposure
(1-, 2- and 4-month exposure, n = 3/group). In order to avoid large age differrences at the
time of sacrifice, animals were selected for each group based on their age, so all animals
were 5 months old at the time of sacrifice. Guinea pigs were maintained under 12:12 h
light/dark cycle, with free access to food and water. Animals were exposed to whole
body cigarette-smoke exposure 4 times a day, 5 days a week, for 30 min each time, using
a TE2 whole body smoke exposure chamber (Teague Enterprises, Woodland, CA, USA).
During the experiment, 3R4F Kentucky Research Cigarettes (Kentucky Tobacco Research
and Development Center, Lexington, KY, USA) were smoked and ventilated inside the
chamber. The animals were sacrificed 24–48 h after the last CSE exposure, and EECs
were isolated. Intact age- and sex-matched animals served as controls. All experimental
procedures were in accordance with the institutional guidelines under approved protocols
(No. XII./2222/2018, University of Pécs).

4.7. Isolation of Guinea Pig Esophageal Epithelial Cells

Animals were sacrificed by cervical dislocation, the esophagus was removed and
EECs were isolated as described previously [45]. Briefly, the organ was cut longitudinally,
rinsed in Hank’s Balanced Salt Solution (HBSS, Sigma H9269) and digested in dispase
solution (2 U/mL, Sigma D4818) for 40 min. After digestion, the inner, epithelial layer of
the esophagus was detached from the submucosa and rinsed in HBSS. Then the epithelial
layer was incubated in 0.5% Trypsin–EDTA solution supplemented with 1% (v/v) antimy-
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coticum/antibioticum for 2 × 15 min. The trypsin was inhibited by a filtered Soybean
trypsin inhibitor (Gibco, 10684033) solution, and the whole lysate was centrifuged for
5 min, at 1000 rpm. The cell pellet was diluted in keratinocyte serum free media (KSFM,
Gibco, Catalogue No. 17005042) supplemented with 1% (v/v) antimycoticum/antibioticum
and seeded onto cover glasses and incubated until use. Viability of guinea pig EECs was
investigated by using Trypan Blue reagent. After the incubation, bright field images were
taken under 40×magnification, and stained cells were counted and considered not viable.

4.8. Immunohistochemistry

Immunohistochemical analysis of NHE-1 expressions was performed on 4% buffered
formalin-fixed sections of human esophageal samples embedded in paraffin. The 5 µm–
thick sections were stained in an automated system (Autostain, Dako, Glostrup, Denmark).
Briefly, the slides were deparaffinized, and endogenous peroxidase activity was blocked
by incubation with 3% H2O2 (10 min). Antigenic sites were disclosed by applying citrate
buffer in a pressure cooker (120 ◦C, 3 min). To minimize non-specific background staining,
the sections were then pre-incubated with milk (30 min). Subsequently, the sections
were incubated with a human anti-NHE-1 (1:100 dilution, 30 min, Alomone Laboratories)
primary polyclonal antibody and exposed to LSAB2 labeling (Dako, Glostrup, Denmark)
for 2 × 10 min. The immunoreactivity was visualized with 3,3′-diaminobenzidine (10 min);
then the sections were dehydrated, mounted and examined. NHE-1 expressing cells
were identified by the presence of a dark red/brown chromogen. A semi-quantitative
scoring system was used to evaluate the expression of NHE-1. The intensity of staining
(0 = negative, 1 = weak, 2 = moderate and 3 = strong) and the percentage of positive
cells (1–0–25% of the cells are positive, 2–25–50% of the cells are positive, 3–50–75% of
the cells are positive and 75–100% of the cells are positive) were scored and then the
composite score was obtained by multiplying the intensity of staining and the percen-tage
of immunoreactive cells.

4.9. Quantitative Real-Time PCR Analysis

Total mRNA was isolated by using an RNA isolation kit of Macherey-Nagel (Nu-
cleospin RNA Plus kit, Macherey-Nagel, Germany) according to manufacturer’s instruc-
tions. The concentration of RNA was determined by spectrophotometry (NanoDrop 3.1.0,
Rockland, DE, USA). Two micrograms of total RNA were reverse-transcribed, using High-
Capacity cDNA Archive Kit (Applied Biosystems) according to manufacturer’s instructions.
Quantitative real-time PCR was carried out on a Roche LightCycler 96 SW (Roche, Basel,
Switzerland). TaqMan probe sets of SLC9A1 were used to check gene expression. Target
gene expression levels were normalized to a human housekeeping gene, β-actin (ACTB),
and then, using the ∆∆CT method, relative gene expression was calculated. Fold changes
were represented (2−∆∆CT). Values below 0.5 and above 2.00 were considered significant.

4.10. Western Blot

Cells were lysed in Cell Lysis Buffer (Catalogue No. 9803, Cell Signaling Technology,
Danvers, MA, USA) supplemented with complete EDTA-free protease inhibitor (Roche,
Catalogue No. 11873580001). Then samples were centrifuged at 2500 rpm for 20 min at 4 ◦C,
and the supernatants were used. Protein concentration in the samples was determined by
using a BCA assay (Pierce Chemical, Rockford, IL, USA) or Bradford reagent (Bio-Rad Lab-
oratories, Hercules, CA, USA), and equal amounts of proteins (20 or 30 µg) were resolved
on polyacrylamide gel and transferred onto Protran (GE Healthcare Amersham™) or PVDF
(Invitrogen, Watham, MA, USA) membranes. Membranes were incubated overnight with
rabbit polyclonal anti-NHE-1 (Catalogue No. ANX-010, Alomone Labs, Jerusalem, Israel),
mouse monoclonal anti-GAPDH (Catalogue No. MAB 374, Sigma Aldrich, Hungary) or
mouse monoclonal anti-α-Tubulin antibody (Catalogue No. T9026, Merck, Darmstadt,
Germany) followed by the incubation with the appropriate HRP-conjugated secondary anti-
body (Catalogue No. P0448 goat anti-rabbit and P0161 rabbit anti-mouse, DAKO, Glostrup,
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Denmark or G-21040 goat anti-mouse, Invitrogen, Watham, MA, USA). The peroxidase
activity was visualized by using the enhanced chemi-luminescence assay (Advansta, Menlo
Park, CA, USA) or with Clarity Chemiluminescence Substrate (Bio-Rad Laboratories, Her-
cules, CA, USA). Signal intensities were quantified by using the QuantityOne software
(Bio-Rad, Hercules, CA, USA) or Image Lab Software, version 5.2 (Bio-Rad Laboratories,
Hercules, CA, USA). The results from each membrane were normalized to the GAPDH or
α-Tubulin values and compared to the 6 h control.

4.11. Measurement of Intracellular pH

Cells were seeded onto 24 mm cover glasses which were placed on the stage of an
inverted microscope connected with an Xcellence imaging system (Olympus, Budapest,
Hungary). Cells were incubated with a pH-sensitive fluorescence dye, BCECF-AM for
30–60 min according to cell type. Cells were perfused with solutions at 37 ◦C at a 5 to
6 mL/min perfusion rate. Average 5–12 regions of interest (ROIs) were marked in each
measurement, and one image was taken per second. The cells were excited with 440 and
495 nm wavelength, and a 440/495 ratio was detected at 535 nm. One pHi measurement
was obtained per second. In situ calibration of the fluorescence signal was performed by
using the high K+-nigericin technique. Since CSE alone influences fluorescence signals,
cells were pretreated with freshly prepared CSE (1, 10 and 100 µg/mL) for 1 h before
microfluorometric measurements.

4.12. Determination of Buffering Capacity

The total buffering capacity (βtotal) of cells was estimated according to the NH4Cl
pre-pulse technique, as previously described [46,47]. Briefly, EECs were exposed to various
concentrations of NH4Cl in Na+- and HCO3

−-free solutions. The total buffering capacity
of the cells was calculated by using the following equation: βtotal = βi + βHCO3− = βi +
2.3 × [HCO3

−]i, where βi refers to the ability of intrinsic cellular components to buffer
changes of pHi and was estimated by the Henderson–Hasselbach equation. The measured
rates of pHi change (∆pH/∆t) were converted to transmembrane base flux J(B−), using the
following equation: J(B−) = ∆pH/∆t × βi. The βi value at the start point pHi was used for
the calculation of J(B−).

4.13. Measurement of Na+/H+ Exchanger Activity

For evaluating the activity of NHE-1, NH4Cl pre-pulse technique was used. EECs
were exposed to NH4Cl (20 mM) for 3 min, which resulted in a sudden pHi elevation
through NH3 diffusion into the cells. NH4Cl withdrawal caused a remarkable decrease
in pHi as the intracellular NH4

+ and H+ dissociating and basic NH3 exiting the cells. The
regeneration from acidosis (the first 60 s) reflects the activity of NHEs in standard HEPES-
buffered solutions. The following equation was used for estimating the transmembrane
base flux: J(B−) = ∆pH/∆t × βi, where ∆pH/∆t was calculated by linear regression
analysis, whereas the intrinsic buffering capacity (βi) was determined by the Henderson–
Hasselbach equation.

4.14. SLC9A1 Gene Silencing

Cells were seeded on a 6-well plate in antibiotic-free complete growth medium and
incubated overnight. SLC9A1 gene silencing was performed at 40–50% confluency. Then
100 pmol SLC9A1 siRNA was dissolved in 250 µL Opti-MEM (Gibco, Catalogue No.
31985070) reduced serum medium. Then 5 or 7.5 µL Lipofectamine 2000 was added to
250 µL Opti-MEM and incubated for 5 min at room temperature. Then the prepared siRNA
solution and Lipofectamine 2000 were mixed and incubated for 20 min to form complexes.
The complexes were added to the wells, mixed gently by rocking the plate back and forth
and then incubated for 72 h. After transfection, RT-qPCR and immunocytochemistry was
performed to estimate mRNA and protein levels.
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4.15. Proliferation

Cells were seeded at 103 cells per well into a 96-well plate (100 µL/well) in complete
growth medium and allowed to attach for 24 h. Cells were then treated with CSE (1 and
10 µg/mL) for 6, 24 and 72 h. After the treatments, 10 µL of CCK8 solution was added to
each well and the cells were incubated for further 3 h. Absorbance was detected at 450 nm,
using a FLUOstar OPTIMA Spectrophotometer (BMG Labtech, Ortenberg, Germany).

4.16. Cytotoxicity Assay

For cytotoxicity assay, 100 µL of cell suspension was seeded into a 96-well plate
(2.5× 104 cells/well) and allowed to adhere overnight. On the following day, the cells were
incubated with CSE (1, 10 and 100 µg/mL) for 6, 24 and 72 h. Then 100 µL of supernatant
from each of the wells was carefully transferred into a new 96-well plate containing 100 µL
reaction mixture. We then measured lactate dehydrogenase (LDH) activity at 490 nm
using a FLUOstar OPTIMA Spectrophotometer (BMG Labtech, Ortenberg, Germany). For
background controls, we measured 200 µL assay medium, without cells. For low controls,
we used 100 µL cell suspension and 100 µL assay medium. In the case of high controls, the
mixture of 100 µL cell suspension and 100 µL Triton-X 100 (0.1%) solution was measured.
The LDH release induced by Triton-X 100 was assigned to 100%. The average absorbance
values of each of the triplicates were calculated, and the average value of the background
control (LDH activity contained in the assay medium) was subtracted from each of the
samples to reduce background noises. We then calculated the percentage of cytotoxicity by
using the following formula: Cytotoxicity (%) = (exp. value–low control/high control–low
control) × 100. Low control determines the LDH activity released from the untreated
normal cells (spontaneous LDH release), whereas high control determines the maximum
releasable LDH activity in the cells (maximum LDH release).

4.17. Statistical Analysis

Results were described as means ± SE. For statistical analysis, one-way ANOVA and
Student’s t-test were used, p ≤ 0.05 were considered significant.

Author Contributions: Conceptualization, V.V.; data curation, E.B., M.M.K., E.G., Z.H. (Zsófia Hoyk),
Z.M.K., A.H. and K.C.; formal analysis, E.B., E.G., L.T., Z.H. (Zsófia Hoyk), M.A.D., Z.M.K., A.K.-P.,
K.C., Z.H. (Zsuzsanna Helyes) and P.H.; funding acquisition, V.V.; Investigation, E.B., M.M.K. and
E.G.; methodology, E.B., M.M.K., E.G., M.A.D., A.K.-P., A.H., Z.H. (Zsuzsanna Helyes) and P.H.;
supervision, V.V.; validation, L.T.; writing—original draft, V.V.; writing—review and editing, E.B.,
M.M.K., E.G., L.T., Z.H. (Zsófia Hoyk), M.A.D., Z.M.K., A.K.-P., A.H., K.C., Z.H. (Zsuzsanna Helyes),
P.H. and V.V. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Research, Development and Innovation Office
(FK123982) and by the Ministry of Human Capacities (EFOP 3.6.2-16-2017-00006).

Institutional Review Board Statement: Retrospective data collection of patients was performed by
the approval of the Ethics Committee of the University of Szeged (No. 4658), according to Helsinki
Declaration and GDPR. Smoking studies were in accordance with the institutional guidelines under
approved protocols (No. XII./2222/2018, University of Pécs).

Informed Consent Statement: Patient consent was waived due to retrospective data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cook, M.B.; Kamangar, F.; Whiteman, D.C.; Freedman, N.D.; Gammon, M.D.; Bernstein, L.; Brown, L.M.; Risch, H.A.; Ye, W.;

Sharp, L.; et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: A pooled analysis from
the international BEACON consortium. J. Natl. Cancer Inst. 2010, 102, 1344–1353. [CrossRef] [PubMed]

2. Cook, M.B.; Shaheen, N.J.; Anderson, L.A.; Giffen, C.; Chow, W.H.; Vaughan, T.L.; Whiteman, D.C.; Corley, D.A. Cigarette
smoking increases risk of Barrett’s esophagus: An analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium.
Gastroenterology 2012, 142, 744–753. [CrossRef] [PubMed]

http://doi.org/10.1093/jnci/djq289
http://www.ncbi.nlm.nih.gov/pubmed/20716718
http://doi.org/10.1053/j.gastro.2011.12.049
http://www.ncbi.nlm.nih.gov/pubmed/22245667


Int. J. Mol. Sci. 2021, 22, 10581 15 of 16

3. Kuang, J.J.; Jiang, Z.M.; Chen, Y.X.; Ye, W.P.; Yang, Q.; Wang, H.Z.; Xie, D.R. Smoking Exposure and Survival of Patients with
Esophagus Cancer: A Systematic Review and Meta-Analysis. Gastroenterol. Res. Pract. 2016, 2016, 7682387. [CrossRef] [PubMed]

4. Wang, Q.L.; Xie, S.H.; Li, W.T.; Lagergren, J. Smoking Cessation and Risk of Esophageal Cancer by Histological Type: Systematic
Review and Meta-analysis. J. Natl. Cancer Inst. 2017, 109, djx115. [CrossRef] [PubMed]

5. Coleman, H.G.; Bhat, S.; Johnston, B.T.; McManus, D.; Gavin, A.T.; Murray, L.J. Tobacco smoking increases the risk of high-grade
dysplasia and cancer among patients with Barrett’s esophagus. Gastroenterology 2012, 142, 233–240. [CrossRef] [PubMed]

6. Orlando, R.C.; Bryson, J.C.; Powell, D.W. Effect of cigarette smoke on esophageal epithelium of the rabbit. Gastroenterology 1986,
91, 1536–1542. [CrossRef]

7. Becskehazi, E.; Korsos, M.M.; Eross, B.; Hegyi, P.; Venglovecz, V. OEsophageal Ion Transport Mechanisms and Significance Under
Pathological Conditions. Front. Physiol. 2020, 11, 855. [CrossRef]

8. Laczko, D.; Rosztoczy, A.; Birkas, K.; Katona, M.; Rakonczay, Z., Jr.; Tiszlavicz, L.; Roka, R.; Wittmann, T.; Hegyi, P.; Venglovecz, V.
Role of ion transporters in the bile acid-induced esophageal injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G16–G31.
[CrossRef]

9. Demaurex, N.; Grinstein, S. Na+/H+ antiport: Modulation by ATP and role in cell volume regulation. J. Exp. Biol. 1994, 196,
389–404. [CrossRef]

10. Grinstein, S.; Rotin, D.; Mason, M.J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular
proliferation. Biochim. Biophys. Acta 1989, 988, 73–97. [CrossRef]

11. Stock, C.; Schwab, A. Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol. 2006, 187, 149–157. [CrossRef] [PubMed]
12. Shallat, S.; Schmidt, L.; Reaka, A.; Rao, D.; Chang, E.B.; Rao, M.C.; Ramaswamy, K.; Layden, T.J. NHE-1 isoform of the Na+/H+

antiport is expressed in the rat and rabbit esophagus. Gastroenterology 1995, 109, 1421–1428. [CrossRef]
13. Ariyoshi, Y.; Shiozaki, A.; Ichikawa, D.; Shimizu, H.; Kosuga, T.; Konishi, H.; Komatsu, S.; Fujiwara, H.; Okamoto, K.; Kishimoto,

M.; et al. Na+/H+ exchanger 1 has tumor suppressive activity and prognostic value in esophageal squamous cell carcinoma.
Oncotarget 2017, 8, 2209–2223. [CrossRef]

14. Fujiwara, Y.; Higuchi, K.; Tominaga, K.; Watanabe, T.; Oshitani, N.; Arakawa, T. Functional oesophageal epithelial defense against
acid. Inflammopharmacology 2005, 13, 1–13. [CrossRef]

15. Goldman, A.; Shahidullah, M.; Goldman, D.; Khailova, L.; Watts, G.; Delamere, N.; Dvorak, K. A novel mechanism of acid and
bile acid-induced DNA damage involving Na+/H+ exchanger: Implication for Barrett’s oesophagus. Gut 2010, 59, 1606–1616.
[CrossRef]

16. Guan, B.; Hoque, A.; Xu, X. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude
mouse xenografts. Front. Biol. 2014, 9, 75–81. [CrossRef]

17. Tobey, N.A.; Koves, G.; Orlando, R.C. Human esophageal epithelial cells possess an Na+/H+ exchanger for H+ extrusion. Am. J.
Gastroenterol. 1998, 93, 2075–2081. [CrossRef]

18. Goldman, A.; Chen, H.; Khan, M.R.; Roesly, H.; Hill, K.A.; Shahidullah, M.; Mandal, A.; Delamere, N.A.; Dvorak, K. The Na+/H+

exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells. PLoS
ONE 2011, 6, e23835. [CrossRef]

19. Liu, Y.; Wang, B.; Liu, X.; Lu, L.; Luo, F.; Lu, X.; Shi, L.; Xu, W.; Liu, Q. Epigenetic silencing of p21 by long non-coding RNA
HOTAIR is involved in the cell cycle disorder induced by cigarette smoke extract. Toxicol. Lett. 2016, 240, 60–67. [CrossRef]
[PubMed]

20. Zhao, Y.; Xu, Y.; Li, Y.; Xu, W.; Luo, F.; Wang, B.; Pang, Y.; Xiang, Q.; Zhou, J.; Wang, X.; et al. NF-kappaB-mediated inflammation
leading to EMT via miR-200c is involved in cell transformation induced by cigarette smoke extract. Toxicol. Sci. 2013, 135, 265–276.
[CrossRef] [PubMed]

21. Kong, J.; Nakagawa, H.; Isariyawongse, B.K.; Funakoshi, S.; Silberg, D.G.; Rustgi, A.K.; Lynch, J.P. Induction of intestinalization
in human esophageal keratinocytes is a multistep process. Carcinogenesis 2009, 30, 122–130. [CrossRef]

22. Boedtkjer, E. Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer
Progression. Rev. Physiol. Biochem. Pharmacol. 2021, 1–46. [CrossRef]

23. Chen, J.; Zhang, M.; Ma, Z.; Yuan, D.; Zhu, J.; Tuo, B.; Li, T.; Liu, X. Alteration and dysfunction of ion channels/transporters in a
hypoxic microenvironment results in the development and progression of gastric cancer. Cell Oncol. 2021, 44, 739–749. [CrossRef]

24. Lu, C.; Ma, Z.; Cheng, X.; Wu, H.; Tuo, B.; Liu, X.; Li, T. Pathological role of ion channels and transporters in the development and
progression of triple-negative breast cancer. Cancer Cell Int. 2020, 20, 377. [CrossRef]

25. Stock, C. How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev.
Physiol. Biochem. Pharmacol. 2020. [CrossRef]

26. Zhang, M.; Li, T.; Zhu, J.; Tuo, B.; Liu, X. Physiological and pathophysiological role of ion channels and transporters in the
colorectum and colorectal cancer. J. Cell Mol. Med. 2020, 24, 9486–9494. [CrossRef] [PubMed]

27. Arcangeli, A.; Becchetti, A. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters. Pharmaceuticals 2010, 3,
1202–1224. [CrossRef] [PubMed]

28. Ramirez, A.; Garcia-Quiroz, J.; Aguilar-Eslava, L.; Sanchez-Perez, Y.; Camacho, J. Novel Therapeutic Approaches of Ion Channels
and Transporters in Cancer. Rev. Physiol. Biochem. Pharmacol. 2020, 1–57. [CrossRef]

29. Corbet, C.; Feron, O. Tumour acidosis: From the passenger to the driver’s seat. Nat. Rev. Cancer 2017, 17, 577–593. [CrossRef]
[PubMed]

http://doi.org/10.1155/2016/7682387
http://www.ncbi.nlm.nih.gov/pubmed/27073394
http://doi.org/10.1093/jnci/djx115
http://www.ncbi.nlm.nih.gov/pubmed/29933436
http://doi.org/10.1053/j.gastro.2011.10.034
http://www.ncbi.nlm.nih.gov/pubmed/22062359
http://doi.org/10.1016/0016-5085(86)90212-X
http://doi.org/10.3389/fphys.2020.00855
http://doi.org/10.1152/ajpgi.00159.2015
http://doi.org/10.1242/jeb.196.1.389
http://doi.org/10.1016/0304-4157(89)90004-X
http://doi.org/10.1111/j.1748-1716.2006.01543.x
http://www.ncbi.nlm.nih.gov/pubmed/16734751
http://doi.org/10.1016/0016-5085(95)90626-6
http://doi.org/10.18632/oncotarget.13645
http://doi.org/10.1163/156856005774423953
http://doi.org/10.1136/gut.2010.213686
http://doi.org/10.1007/s11515-014-1289-z
http://doi.org/10.1111/j.1572-0241.1998.00596.x
http://doi.org/10.1371/journal.pone.0023835
http://doi.org/10.1016/j.toxlet.2015.10.016
http://www.ncbi.nlm.nih.gov/pubmed/26506537
http://doi.org/10.1093/toxsci/kft150
http://www.ncbi.nlm.nih.gov/pubmed/23824089
http://doi.org/10.1093/carcin/bgn227
http://doi.org/10.1007/112_2021_63
http://doi.org/10.1007/s13402-021-00604-1
http://doi.org/10.1186/s12935-020-01464-9
http://doi.org/10.1007/112_2020_41
http://doi.org/10.1111/jcmm.15600
http://www.ncbi.nlm.nih.gov/pubmed/32662230
http://doi.org/10.3390/ph3041202
http://www.ncbi.nlm.nih.gov/pubmed/27713296
http://doi.org/10.1007/112_2020_28
http://doi.org/10.1038/nrc.2017.77
http://www.ncbi.nlm.nih.gov/pubmed/28912578


Int. J. Mol. Sci. 2021, 22, 10581 16 of 16

30. Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg,
J.M.; Sloane, B.F.; et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013, 73, 1524–1535.
[CrossRef]

31. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer.
Cancer Cell Int. 2013, 13, 89. [CrossRef] [PubMed]

32. Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos
Trans. R Soc. Lond B Biol. Sci. 2014, 369, 20130099. [CrossRef] [PubMed]

33. Brisson, L.; Driffort, V.; Benoist, L.; Poet, M.; Counillon, L.; Antelmi, E.; Rubino, R.; Besson, P.; Labbal, F.; Chevalier, S.; et al.
NaV1.5 Na(+) channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J.
Cell Sci. 2013, 126, 4835–4842. [CrossRef]

34. Li, S.; Bao, P.; Li, Z.; Ouyang, H.; Wu, C.; Qian, G. Inhibition of proliferation and apoptosis induced by a Na+/H+ exchanger-1
(NHE-1) antisense gene on drug-resistant human small cell lung cancer cells. Oncol. Rep. 2009, 21, 1243–1249. [CrossRef]

35. Serafino, A.; Moroni, N.; Psaila, R.; Zonfrillo, M.; Andreola, F.; Wannenes, F.; Mercuri, L.; Rasi, G.; Pierimarchi, P. Anti-proliferative
effect of atrial natriuretic peptide on colorectal cancer cells: Evidence for an Akt-mediated cross-talk between NHE-1 activity and
Wnt/beta-catenin signaling. Biochim. Biophys. Acta 2012, 1822, 1004–1018. [CrossRef]

36. Vaish, V.; Sanyal, S.N. Role of Sulindac and Celecoxib in chemoprevention of colorectal cancer via intrinsic pathway of apoptosis:
Exploring NHE-1, intracellular calcium homeostasis and Calpain 9. Biomed. Pharm. 2012, 66, 116–130. [CrossRef]

37. Reshkin, S.J.; Cardone, R.A.; Harguindey, S. Na+-H+ exchanger, pH regulation and cancer. Recent Pat. Anticancer Drug Discov.
2013, 8, 85–99. [CrossRef]

38. Loo, S.Y.; Chang, M.K.; Chua, C.S.; Kumar, A.P.; Pervaiz, S.; Clement, M.V. NHE-1: A promising target for novel anti-cancer
therapeutics. Curr. Pharm. Des. 2012, 18, 1372–1382. [CrossRef]

39. Venglovecz, V.; Rakonczay, Z., Jr.; Ozsvari, B.; Takacs, T.; Lonovics, J.; Varro, A.; Gray, M.A.; Argent, B.E.; Hegyi, P. Effects of bile
acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut 2008, 57, 1102–1112. [CrossRef] [PubMed]

40. Bracke, K.R.; D’Hulst, A.I.; Maes, T.; Demedts, I.K.; Moerloose, K.B.; Kuziel, W.A.; Joos, G.F.; Brusselle, G.G. Cigarette smoke-
induced pulmonary inflammation, but not airway remodelling, is attenuated in chemokine receptor 5-deficient mice. Clin. Exp.
Allergy 2007, 37, 1467–1479. [CrossRef] [PubMed]

41. D’Hulst, A.I.; Vermaelen, K.Y.; Brusselle, G.G.; Joos, G.F.; Pauwels, R.A. Time course of cigarette smoke-induced pulmonary
inflammation in mice. Eur. Respir. J. 2005, 26, 204–213. [CrossRef]

42. Stevenson, C.S.; Docx, C.; Webster, R.; Battram, C.; Hynx, D.; Giddings, J.; Cooper, P.R.; Chakravarty, P.; Rahman, I.; Marwick,
J.A.; et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke
inhalation. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L1183–L1193. [CrossRef]

43. Stock, C.; Pedersen, S.F. Roles of pH and the Na(+)/H(+) exchanger NHE1 in cancer: From cell biology and animal models to an
emerging translational perspective? Semin. Cancer Biol. 2017, 43, 5–16. [CrossRef] [PubMed]

44. Fujiwara, Y.; Higuchi, K.; Takashima, T.; Hamaguchi, M.; Hayakawa, T.; Tominaga, K.; Watanabe, T.; Oshitani, N.; Shimada, Y.;
Arakawa, T. Roles of epidermal growth factor and Na+/H+ exchanger-1 in esophageal epithelial defense against acid-induced
injury. Am. J. Physiol. Gastrointest Liver Physiol. 2006, 290, G665–G673. [CrossRef] [PubMed]

45. Kalabis, J.; Wong, G.S.; Vega, M.E.; Natsuizaka, M.; Robertson, E.S.; Herlyn, M.; Nakagawa, H.; Rustgi, A.K. Isolation and
characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat. Protoc. 2012, 7, 235–246.
[CrossRef] [PubMed]

46. Hegyi, P.; Gray, M.A.; Argent, B.E. Substance P inhibits bicarbonate secretion from guinea pig pancreatic ducts by modulating an
anion exchanger. Am. J. Physiol. Cell Physiol. 2003, 285, C268–C276. [CrossRef]

47. Weintraub, W.H.; Machen, T.E. pH regulation in hepatoma cells: Roles for Na-H exchange, Cl-HCO3 exchange, and Na-HCO3
cotransport. Am. J. Physiol. 1989, 257, G317–G327. [CrossRef]

http://doi.org/10.1158/0008-5472.CAN-12-2796
http://doi.org/10.1186/1475-2867-13-89
http://www.ncbi.nlm.nih.gov/pubmed/24004445
http://doi.org/10.1098/rstb.2013.0099
http://www.ncbi.nlm.nih.gov/pubmed/24493747
http://doi.org/10.1242/jcs.123901
http://doi.org/10.3892/or_00000347
http://doi.org/10.1016/j.bbadis.2012.02.016
http://doi.org/10.1016/j.biopha.2011.11.019
http://doi.org/10.2174/1574892811308010085
http://doi.org/10.2174/138161212799504885
http://doi.org/10.1136/gut.2007.134361
http://www.ncbi.nlm.nih.gov/pubmed/18303091
http://doi.org/10.1111/j.1365-2222.2007.02808.x
http://www.ncbi.nlm.nih.gov/pubmed/17883726
http://doi.org/10.1183/09031936.05.00095204
http://doi.org/10.1152/ajplung.00105.2007
http://doi.org/10.1016/j.semcancer.2016.12.001
http://www.ncbi.nlm.nih.gov/pubmed/28007556
http://doi.org/10.1152/ajpgi.00238.2005
http://www.ncbi.nlm.nih.gov/pubmed/16306134
http://doi.org/10.1038/nprot.2011.437
http://www.ncbi.nlm.nih.gov/pubmed/22240585
http://doi.org/10.1152/ajpcell.00574.2002
http://doi.org/10.1152/ajpgi.1989.257.3.G317

	Introduction 
	Results 
	Effect of CSE on Esophageal Epithelial Cell Proliferation 
	Activity and Expression of NHE-1 in the Metaplastic and Dysplastic Cells 
	Effect of CSE on The Activity and Expression of NHE-1 
	Smoking Decreases NHE-1 Activity on Normal Esophageal Epithelial Cells 
	Effect of Smoking on NHE-1 Protein Expression in Human Esophageal Samples 
	Role of NHE-1 in The CSE-Induced Proliferation 

	Discussion 
	Materials and Methods 
	Chemicals and Solutions 
	Animals 
	Patients 
	Cell Cultures 
	Preparation of Cigarette-Smoke Extract 
	Cigarette-Smoke Exposure 
	Isolation of Guinea Pig Esophageal Epithelial Cells 
	Immunohistochemistry 
	Quantitative Real-Time PCR Analysis 
	Western Blot 
	Measurement of Intracellular pH 
	Determination of Buffering Capacity 
	Measurement of Na+/H+ Exchanger Activity 
	SLC9A1 Gene Silencing 
	Proliferation 
	Cytotoxicity Assay 
	Statistical Analysis 

	References

