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Abstract

Ex situ seed banking was first conceptualized and implemented in the early 20th century to

maintain and protect crop lines. Today, ex situ seed banking is important for the preserva-

tion of heirloom strains, biodiversity conservation and ecosystem restoration, and diverse

research applications. However, these efforts primarily target microalgae and terrestrial

plants. Although some collections include macroalgae (i.e., seaweeds), they are relatively

few and have yet to be connected via any international, coordinated initiative. In this piece,

we provide a brief introduction to macroalgal germplasm banking and its application to con-

servation, industry, and mariculture. We argue that concerted effort should be made globally

in germline preservation of marine algal species via germplasm banking with an overview of

the technical advances for feasibility and ensured success.

Macroalgae are essential members of marine communities and are

no exception to the threats of climate change

Worldwide, biodiversity is declining at alarming rates, resulting in what some scholars are call-

ing the Earth’s sixth great extinction event [1]. The marine environment is no exception, with

increasing sea surface temperatures leading to drastic alterations in marine populations, com-

munities, and ecosystems [2,3]. Of particular concern is potential for loss of macroalgae

(defined as benthic eukaryotic algae of at least 1 mm in length [4]), which function as ecologi-

cal engineers [5–9], primary producers [3,10], habitat and structure providers [6], nutrient

cyclers, keystone species [11], food and nursery grounds for invertebrates and pelagic organ-

isms, and shoreline buffers from storms [12,13]. Furthermore, macroalgae are a US$11 billion

industry as food, animal feed, and fertilizers [14–16]. Seaweeds are under threat from multiple

stressors including warming sea surface temperatures, pollution, overharvesting, and other

anthropogenic disturbances that have major consequences for the structure and function of

near-shore coastal ecosystems [13,17]. Although seaweeds are predicted to function photosyn-

thetically well with increases in CO2 [18,19], their distributions within their local communities

(i.e., occupied tidal zone) and globally (i.e., latitudinal range) are likely to be impacted by
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increased temperature, threat of desiccation, and other environmental factors that are pre-

dicted to be affected by climate change [18,20,21]. The direst of potential consequences include

both localized and complete extinction that in turn results in loss of genetic diversity, ecologi-

cal function, and services provided by marine photoautotrophs [12,17,20–27]. Furthermore,

climate change can open opportunities for increased invasion by nonnative seaweeds [28].

Given the historical importance of the mariculture industry and its continued growth globally,

these effects in the coastal environment will become more pressing for humankind.

Macroalgae aquaculture through history to the present

Wild harvest of macroalgae has a longstanding history in many cultures, particularly in Asia,

Polynesia, and South America. Modification and enhancement of wild stocks began as early as

the 17th century in Japan. Today, over 200 species of macroalgae are wild harvested for various

industries [29], but only a dozen are currently commercially cultivated [15,30,31]. Current

global macroalgae production is worth US$11.7 billion annually, with most production taking

place in Asian countries [16]. As global aquaculture continues to increase, the blue economy—

a term used to describe the use of ocean resources for economic growth—needs to evolve sus-

tainably to support marine ecosystem function and rejuvenation. Understanding trade-offs

and synergies between provisions of different ecosystem services and how these vary with scale

and environmental context needs to be a priority for future research [32]. Much of the innova-

tion in macroalgae aquaculture optimization comes from Asia, although other international

leaders in the industry have begun to explore its use for biofuel production [33–36]. However,

there are still several unpredictable challenges to be overcome before the emerging algal biofuel

industry is of considerable value and impact worldwide, particularly disease mitigation, eco-

logical impacts of large-scale aquaculture, evolution of regulatory practices, market develop-

ment, and the optimization and economical production of biofuel from algal polysaccharides

[37]. Additionally, the preservation of strains utilized in these industries is an important strat-

egy for maintained productivity and commerce.

Algal germplasm banking entails long-term storage of different

lifestages

Ex situ seed banking preserves the diploid, embryonic stage of the embryophyte plant life

cycle. This stage is optimal for preservation because of its evolved traits that facilitate long-

term dormancy in natural conditions (e.g., nutrient-rich endosperm, robust seed coat, specific

germination requirements) [38]. Conversely, algal germplasm banking (referred to as biobank-

ing elsewhere) more resembles methodology utilized for long-term storage of nonflowering

land plants where either spores or haploid gametophytes are stored [39–42]. However, the cells

or tissues targeted very much depend on the species, as the longevity of seaweed microscopic

stages is related to the seaweed life strategy that will resume development when returned to

adequate conditions [43]. For example, the diploid conchocelis stage of Pyropia/Porphyra is

the optimal stage for its long-term storage [44,45]. Preservation work for other species has

focused on spores [42,46,47]. Others are more easily preserved, like Gracilaria and Agarophy-
ton species that are well maintained as meristems or mature thalli [48]. Live tissue preservation

(i.e., liquid cultures in dormancy versus cryopreservation) is of particular use in the context of

strain selection and preservation, and therefore mariculture, as it allows for genotyping of

fresh material, the crossing of known genotypes, and preservation of desirable strains for addi-

tional manipulations, without potentially deleterious thawing measures. Furthermore, the cul-

turing techniques and hatchery methods have been well developed for a variety of species,

particularly for economically important species (e.g., Chondracanthus chamissoi [49], Porphyra
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yezoensis [50], Saccharina spp. [40,51]), but long-term storage protocols are less commonly

available. Thus, we recommend that liquid cultures held under dormancy conditions (e.g.,

reduced light and temperature) be prioritized for long-term germplasm preservation as a

methodology that can be more quickly implemented given the current availability of algal pres-

ervation protocols.

Developing stable aquaculture and germplasm banking techniques

are essential for food security, conservation, and innovation

As the human population continues to grow, it is important to explore alternative food

sources, like macroalgae, for sustainable nutrition. In collaboration with Knorr Foods, the

World Wildlife Fund published a 2019 report supporting P. ubilicalis and Undaria pinnatifida
as part of a top-50 foods list that people should prioritize eating for a healthier planet and

global food sustainability [52]. As reliance on macroalgae for sustenance increases, the neces-

sity to catalog and preserve edible and nutritious species also grows. Germplasm banks repre-

sent the opportunity to provide long-term preservation of important strains and diversity of

those strains. These banks also have important implications for conservation efforts and, per-

haps more importantly, as an optimal economic approach to conservation and restoration

efforts [53]. Ex situ embryophyte seed banks as conservation centers are estimated to cost as

little as 1% of traditional in situ conservation [54], although it is important to note that this

estimate is exclusively for terrestrial systems. With preserved, live samples easily accessible,

restoration efforts are made easier. Furthermore, germplasm material can be used as starting

points for the generation of optimized lines via both direct and indirect synthetic biology

advances [55]. Germplasm collections can also be the lasting references of historical distribu-

tion data, particularly in the context of invasive species identification [56]. Lastly, preserving

macroalgae strains and cultures provides an incredible source of material for industrial and

research applications. In particular, specific species and strains of macroalgae are indicators of

pollution and overall water quality [57], and therefore can be used as early warnings of degrad-

ing systems. Algae are also raw material for innovations in biofuel refinement, pharmaceuti-

cals, cosmetics, textiles, and animal feed [58]. Strains with complete genotype and phenotype

profiles offer great starting points as model systems for numerous research possibilities,

including optimization of biorefining pipelines, development of new macroalgal products and

byproducts, and exploration of macroalgal applications for climate change mitigation.

Given the breadth in germplasm bank utility and value, one of the greatest challenges is

identifying which species to prioritize; with estimates in algal diversity ranging from 72,500

[59] to 170,000 species [60], complete representation is daunting. Because of this challenge, we

recommend prioritization in the following three ways: (1) economic importance, (2) ecological

importance, and (3) evolutionary importance. Perhaps the most easily prioritized species are

those that are currently grown in aquaculture systems. As mentioned previously, many of

these species are already cultivated and optimized for aquaculture. However, these efforts may

have also resulted in loss of genetic diversity [61–64], which can reduce resiliency to environ-

mental stressors [65]. Elsewhere, species highly utilized are still largely wild harvested; Macro-
cystis pyrifera for alginate isolation and Ecklonia maxima for biostimulant production, for

example, are still exclusively wild harvested and have yet to have well-developed mariculture

methodologies for large-scale farms (R. Marcos, P. del Piedra, pers. Comm.). Although M. pyr-
ifera has germplasm collections that represent its distribution and genetic diversity in both

hemispheres [39,66], a breeding program with prioritized strains is still being developed. Con-

versely, E. maxima has yet to be genetically characterized in its limited distribution or devel-

oped to any degree for aquaculture purposes. Thus, economically important species should be
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prioritized in order to not only preserve optimized strains currently used but also conserve

their genetic diversity in order to maintain their utility over time. Secondly, species that pro-

vide crucial ecological services (and are therefore regarded as foundational keystone species)

should be prioritized for germplasm banking. Particularly canopy- and habitat-forming spe-

cies in the brown algal orders Laminariales and Fucales should be targeted for research and

sampling of genetic diversity [67]. Furthermore, those that provide support and structure of

benthic communities, such as coralline algae (Rhodophyta) [68], should also receive prioritiza-

tion for preservation. Thirdly, species that are of evolutionary value should receive attention

for germplasm banking; evolutionary importance can be interpreted as those that have broad

geographic ranges and/or exhibit warm temperature tolerance and, therefore, resiliency to cli-

mate change. Similarly, species that exhibit regular or perhaps even increased growth and fit-

ness in response to increased dissolved carbon availability and decreased nutrient availability

[69] should be targeted (e.g., M. pyrifera [70], G. lemaneiformis [71]). Although emerging

research provides some indication of what species may comprise that category, the literature is

still fairly limited, and because of the fine scale and unique combination of stressors that are

likely to be experienced, these species are likely to be difficult to identify at this time [18,72].

Lastly, species that are members of current refugia, such as mesophotic ecosystems, should be

considered for long-term preservation. Mesophotic systems not only provide connectivity

among marine ecosystems, but can also act as refugia, and therefore are centers of biological

and genetic diversity [73,74]. Although all three areas of priority have considerable room for

growth and advancement via continued research, they are important starting points for germ-

plasm bank development.

International cooperation and collaboration are necessary for

germplasm banking success

Despite a fast-growing interest in commercial aquaculture, corresponding with a rapidly

increasing global demand for nutrition supplementation and industry raw material, few

researchers outside of Asia have explored sustainable domestication programs, including the

creation of macroalgae germplasm banks [31,39,75,76]. Several facilities, such as the National

Institute of Fisheries Science–Seaweed Research Center in South Korea and the Ocean Univer-

sity of China and Chinese Academy of Science, have dedicated infrastructure and research to

the maintenance of commercially important macroalgal species and cultivars. However, it is

likely that these banks, although incredibly useful, are lacking in not only their intraspecific

diversity but also overall species diversity. But the burden to prioritize and value macroalgal

conservancy should not be placed on these few banks, and there must be international recogni-

tion of the importance and utility of macroalgal germplasm preservation. Furthermore, with-

out international buy-in to macroalgae as an important component of mariculture, the global

industry faces the steep hurdle of implementing a sound, eco-centric framework with which to

grow sustainable and economically viable macroalgae products [77–79]. We suggest the fol-

lowing in order to achieve the initiation of such an international cooperative: (1) Legislative/

government officials must support and champion such an initiative at the national level; (2)

the cooperative units must agree on at least broad categories, as those suggested previously, of

species that should be prioritized worldwide; and (3) the cooperative units must agree to share

germplasm collections in order to provide replication and ensure survival of the collections.

Although optimized aquaculture strains are usually owned privately, at least replication of wild

strains and representation of overall biological diversity should be accepted unanimously. The

precedence for resource sharing is set by the Nagoya Protocol, whose obligations described

there within, should be upheld and followed for germplasm banks as well. Additionally,
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suggestions described by the PHYCOMORPH European Guidelines for A Sustainable Aqua-

culture of Seaweeds (PEGASUS) protocol for regional to national coordination should be con-

sidered and implemented to encourage fine scale collections [80]. In particular, initiatives that

incorporate buy-in and management by current aquaculturists and professionals working in

marine products, such as the small, localized cooperatives that are managed by fishermen sea-

weed farmers in Japan, should be prioritized as infrastructure as the national level is con-

structed. In summary, we promote that support and management of germplasm at every level

(i.e., local, state, regional, and national) will be essential to the success and longevity of macro-

algal germplasm banks.

The need for genetic profiling for macroalgal germplasm banking

and its challenges

A major obstacle to the creation of an extensive and viable macroalgal germplasm bank rests

on the documentation and understanding of the genetic variation in coastal macroalgal com-

munities and how genotype influences each organisms’ phenotype and its functional impor-

tance within the ecosystem. Maintaining biodiversity within a marine macroalgal ecosystem

necessitates observing key interactions within a community to identify those species that pro-

vide invaluable ecological services [81] and maintaining that biodiversity and functional varia-

tion in macroalgal germplasm banks [82]. Loss of seaweed genetic diversity through poor

commercial breeding programs has led to yield declines globally [62,63,83,84]; therefore,

maintaining wild or “heirloom” strains is critical for continued yield success of cultured sea-

weed and for maintaining diversity and ecosystem function globally.

Major challenges of documenting genetic diversity across distributions have included not

only considerable collection costs but, historically, impeding sequencing costs as well. How-

ever, work done over the past 30 years with increasingly economical sequencing approaches

has made important progress in our understanding of genome evolution, genetic diversity,

population structure, and ecosystem dynamics in commercially and ecologically important

macroalgae (e.g., Macrocystis [6,66,85–89], Porphyra [62,90–94], and Saccharina [40,51,95]). A

well genotypically characterized germplasm bank can provide a wealth of information for

macroalgal varieties, breeding lines, and has been developed for several strains in Asia and is

currently underway at several facilities in North America and Europe [96]. These germplasm

collections will serve as a valuable tool both for future conservation and aquaculture efforts

and will only increase in impact with increased support for facilities, infrastructure, and

breadth of culture collection.

Conclusions

In closing, we emphasize that international and national programs that are currently support-

ing terrestrial plant seed banks (e.g., botanical gardens, Global Crop Diversity Trust, Plant

Conservation Alliance, Seeds of Success, among others.) should equally support macroalgal

germplasm banking efforts. Building a global network and coordinated initiative to build and

maintain these collections is vital to supporting the Blue Revolution and continued maricul-

ture advancement. By incorporating macroalgal germplasm banks into these efforts, we sup-

port not only human food security and industry but also the ecological function and services

provided by marine primary producers. We also recognize that the ideas presented here are

not necessarily novel; it is important that recognition of documents like PEGASUS be given.

But given the very recent interest in seaweed mariculture outside of Asia and Europe, it is

important that conversations surrounding cooperative and thoroughly characterized
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macroalgal germplasm banking begin as soon as possible, and the ideas presented here con-

tinue in their development as a living concept.
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