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Expression of MAGE-A and NY-ESO-1 cancer/testis antigens is enriched in triple-negative
invasive breast cancers

Aims: A better understanding of the expression of
cancer/testis antigens (CTAs) in breast cancer might
enable the identification of new immunotherapy
options, especially for triple-negative (TN) tumours,
which lack expression of the conventional therapeutic
targets oestrogen receptor, progesterone receptor, and
human epidermal growth factor receptor 2. The aim
of this study was to quantify the expression of MAGE-
A and NY-ESO-1 CTAs in breast cancer, and relate
this to known clinicopathological parameters.
Methods and results: We surveyed MAGE-A and NY-
ESO-1 expression in an unselected cohort of 367
breast tumours (of which 65 were TN), with accom-
panying clinical follow-up data, by using immunohis-
tochemical analysis of tissue microarrays. Relevant to
their potential as vaccine targets in breast cancer,
MAGE-A was expressed in 13% of cases, and NY-

ESO-1 in 3.8%, with the majority of tumours show-
ing fairly homogeneous staining within individual tis-
sue cores (~85% of cases with staining in >75% of
tumour cells). Most NY-ESO-1-positive cases also
expressed MAGE-A (P = 2.06 9 10�9), and both
were strongly associated with the TN phenotype
(P < 0.0001), with the most proliferative and poorly
differentiated cases, in paticular, showing genomic
instability. This was characterised by coexpression of
c-Kit and TTK, and overexpression of p53.
Conclusions: MAGE-A and NY-ESO-1 are frequently
expressed in TN breast cancer (~47% and 17% of TN
cases, respectively), suggesting that targeting them
could be feasible in this patient group. Expression is
reasonably homogeneous in positive cases, suggesting
that immunohistochemical analysis of tissue biopsies
would be a reliable companion biomarker.
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Introduction

Breast cancer is the most frequently diagnosed cancer
in women. It is also a predominant cause of

mortality, and the global burden of breast cancer
rises every year.1 Approximately 10–20% of breast
tumours belong to the triple-negative (TN) subtype,
defined by lack of expression of oestrogen receptor
(ER), progesterone receptor (PR), and human epider-
mal growth factor receptor 2 (HER2), which are com-
panion biomarkers and/or therapeutic targets of
hormone and anti-HER2 therapy. Cytotoxic
chemotherapy is the standard-of-care therapy, and is
very effective in a subset of patients, but responses
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are not durable in all cases,2 which ultimately relapse
with the shortest progression-free and overall survival
of all breast cancers.3 Accordingly, efforts are ongo-
ing to identify predictive markers of chemotherapy
efficacy in TN breast cancer (TNBC), as well as alter-
native treatments for patients who are most likely to
develop resistance.
High-resolution genetic and cellular profiling of

TNBCs has revealed subgroups characterised by chro-
mosomal instability (CIN), DNA repair defects, and
androgen receptor (AR) signalling.4–6 The immune
microenvironment is also a strong determinant of
both the molecular profile and the clinical outcome
in TNBC patients, with the poorest prognostic group
being characterised by stromal restriction of tumour-
infiltrating lymphocytes (TILs), or a general deficiency
of TILs in tumour and stromal compartments.7–9

Therapeutic strategies retargeting the immune system
to cancer cells have proven successful in liquid
cancers10–13 as well as in a few solid tumours.14–18

This is achieved by manipulating the endogenous
immune response19–22 and/or bypassing it altogether
by genetically reprogramming T cells with adoptive
transfer of chimeric antigen receptor (CAR) T cells,
which are reprogrammed to target tumour anti-
gens.10–18 Therapeutic cancer vaccines may also be
useful as part of regimens aimed at boosting antitu-
mour immunity. Cancer vaccines and CAR T cells
can be directed against proteins expressed by many
cancers (shared antigens) or neoantigens encoded by
mutant transcripts.
Cancer/testis antigens (CTAs) belong to a group of

proteins that are expressed in the developing
embryo, are restricted to the testis in the adult, and
are aberrantly re-expressed in malignancy, particu-
larly high-grade and advanced-stage tumours,
including TNBC.23–28 Members of the melanoma-
associated antigen (MAGE) family and New York
Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1)
are among the CTAs being actively investigated as
cancer immunotherapy targets. They have been
shown to evoke spontaneous cytotoxic T-cell
responses in melanoma, oesophageal carcinoma,
bladder cancer, and non-small-cell lung carci-
noma.29,30 Several studies have evaluated MAGE-A
and NY-ESO-1 expression in breast cancer, with
variable reports on expression frequency.23,31–34

Their therapeutic potential for immunotherapy and
the staining homogeneity observed in diverse cohorts
led us to investigate the expression of MAGE-A and
NY-ESO-1 in our historical cohort of breast cancer
patients.

Materials and methods

T I S S U E M I C R O A R R A Y S ( T M A S ) A N D

H I S T O P A T H O L O G Y R E V I E W

This study made use of the Queensland Follow-Up
(QFU) cohort, a resource comprising formalin-fixed
paraffin-embedded breast tumours from patients
undergoing surgical resection at the Royal Brisbane
Women’s Hospital (RBWH) between 1987 and 1994,
with accompanying long-term (up to 30 years) clini-
cal follow-up information.35–39 Ethical approval from
the Human Research Ethics Committees of the RBWH
and the University of Queensland was obtained prior
to the commencement of the study. Tumours were
sampled in duplicate on TMAs for biomarker studies,
and haematoxylin and eosin-stained whole tissue sec-
tions were available for histopathological review.
The review was conducted by an experienced

breast pathologist (S.R.L.; parameters included histo-
logical subtype, grade, and the presence of lympho-
vascular invasion and lymphocytic infiltrate;
Table 1). We also considered patient age, tumour
size, and lymph node (LN) status (whether disease
had spread to the LNs at the time of surgery),
extracted from diagnostic pathology reports. We
selected a range of breast tumour biomarkers impli-
cated in the prognosis and/or pathobiology of breast
cancer: (i) hormone receptors, i.e. ER and PR; (ii)
Ki67, a marker of proliferation; and (iii) a range of
biomarkers implicated in TNBC, including markers of
basal/myoepithelial-like phenotype [epidermal growth
factor receptor (EGFR) and the high molecular weight
cytokeratins (CKs) CK5/6 and CK14], vimentin
(mesenchymal marker), androgen receptor (AR) (can
confer luminal-like intracellular signalling and a
luminal-like phenotype in a proportion of TNBCs with
a favourable outcome),40,41 c-Kit (associated with
primitive, progenitor states42), p53 (overexpression is
associated with genomic instability),43 and mitosis-
independent expression of the dual-specificity protein
kinase TTK (implicated in chromosomal instability
and poor clinical outcome.35

I M M U N O H I S T O C H E M I C A L ( I H C ) A N A L Y S I S

Analysis of the CTAs were performed by staining the
QFU TMA slides with antibodies against MAGE-A
(Santa Cruz Biotechnology, Santa Cruz, CA, USA; sc-
20034, 1:500 dilution), NY-ESO-1 (Santa Cruz
Biotechnology; sc-53869, 1:30 dilution), p53 (Dako,
Santa Clara, CA, USA; M7001, 1:150 dilution), c-Kit
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(Dako; A4502, 1:1000 dilution), TTK (Abcam, Cam-
bridge, UK; ab11108, 1:100 dilution), HER2 (Dako;
A0485, 1:200 dilution), ER (Novocastra, Newcastle
upon Tyne, UK; NCL-L-ER-6F11, 1:100 dilution), PR
(Novocastra; NCL-L-PGR-312, 1:200 dilution), vimen-
tin (Dako; M0725, 1:400 dilution), AR (Dako;
M3562, 1:50 dilution) and Ki67 (Dako; M724001-2,
1:200 dilution) with the MACH 1 Universal HRP-
Polymer (Biocare Medical; (Pacheco, CA, USA; Cat.
no. M1U539 G, L10) or Vectastain Universal ABC
(Vector Laboratories, Burlingame, CA, USA) kit. Slides
were scanned with the Aperio ScanScope T2 digital
system (Buffalo Grove, IL, USA), and core images
were then segmented into individual images for scor-
ing (Aperio Spectrum TMA module).
Samples were assessed in a blinded manner by two

observers (A.P. and P.K.dC). For MAGE-A and NY-
ESO-1, scoring was based purely on intensity, owing to
its homogeneity of staining in the tissue cores. A score
in a range of 0–3 (0 = negative; 1 = weak; 2 = mod-
erate; 3 = strong) was assigned for each cellular com-
partment—cytoplasm and nucleus. However, the
majority of the cases (65%) expressed CTAs homoge-
neously throughout the tumour compartment of dupli-
cate cores, and there were no obvious subcellular
expression patterns. Hence, cytoplasmic and nuclear
component scoring were not considered separately for
further analysis. Tumour cell percentage staining was
subsequently stratified as either >75% or <75%, as this
adequately described the positive cases. IHC analysis
was performed for the markers, the results for some of
which have been published previously.35,36,38,39 The
cut-off value for HER2 positivity was based on a silver
in-situ hybridisation (SISH) score of >6 and an IHC
score of 3+ if SISH was unsuccessful. Once HER2 posi-
tivity had been determined, ER status and PR status
were examined; staining of ≥1% of the tumour cell
nuclei was considered to be positive. After scoring for
ER positivity if the sample was negative for both ER/PR
and HER2, it was assigned to the TN subtype. For dis-
tinction between TN, basal-like, and non-basal, if ≥1%
of tumour cells were positive for either EGFR or CK14
or CK5/6, the tumour was considered to be TN basal-
like. However, with relevance to the clinical context,
TN/basal-like is not a clinically defined subtype, and
we therefore assigned any tumours that fell into the
TN category to the TN group.
Once HER2 status and ER status had been deter-

mined, Ki67 expression was scored high if staining
was observed in 10% of the tumour cell nuclei, and
low if it was observed in <10% of the tumour cell
nuclei. Biomarkers such as TTK and c-Kit were scored
purely on intensity, owing to the homogeneity of

staining in the tissue cores. A score in a range of 0–3
(0 = negative; 1 = weak; 2 = moderate; 3 = strong)
was assigned. Scoring for p53, vimentin and AR was
based on an IHC score, which was derived by multi-
plying the intensity and percentage of the tumour cell
staining. It was further stratified into a binary scoring
system, i.e. 0–1 (<60 = 0/negative and >60 = 1/posi-
tive for p53; >0 = 1/positive for AR and vimentin).
Statistical analysis was performed with PRISM (v7).

Associations between MAGE-A, NY-ESO-1 and clini-
copathological parameters were evaluated with the
chi-square test and Fisher’s exact test. Relationships
with breast cancer-specific survival were investigated
with Kaplan–Meier analysis, with log-rank tests being
used to assess significance. P-values of <0.05 were
considered to be significant.

Results

C O H O R T D E M O G R A P H I C S A N D

C L I N I C O P A T H O L O G Y

Among the 367 cases, the median patient age at
diagnosis was 59 years, the median follow-up was
5.2 years, and the median follow-up of patients who
were alive was 21.5 years. These cases were collected
between 1987 and 1994. Most of the cases were
grade 2 (49%), and LN status was available for 56%
of the cohort (27% LN-positive; 29% LN-negative)
(Figure 1A). Invasive ductal carcinoma (IDC) was the
major histological subtype (58%), followed by lobular
variants (12%), mixed histologies (ductolobular, 9%;
others collectively, 9%), metaplastic (5%), and other
special types (collectively, 7%; Figure 1A). IHC stain-
ing showed that 75% of the cohort were ER-positive,
and SISH analysis identified ERBB2 amplification in
10% of cases.
Cases were also categorised according to their

expression of a panel of prognostic biomarkers: ER,
PR, HER2, Ki67, and expression of EGFR and/or high
molecular weight cytokeratins (CK5/6 and CK14),
which are associated with a basal-like phenotype.
According to this scheme,35 the majority of the
cohort was categorised as ER-positive/Ki67-low
(65%), followed by TN/basal-like (15%), HER2-posi-
tive (10%), ER-positive/Ki67-high (7%) and TN/non-
basal (3%) (Figure 1A).

E X P R E S S I O N O F M A G E - A A N D N Y - E S O - 1 I N

I N V A S I V E B R E A S T C A N C E R

MAGE-A and NY-ESO-1 showed homogeneous stain-
ing, with positivity in both cytoplasmic and nuclear
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tumour cell compartments in 13% (n = 48) and
3.8% (n = 14) of cases, respectively (Figure 1B–D).
CTA staining was relatively homogeneous, with
>75% of tumour cells being stained in the majority
of the MAGE-A-positive (83%) and NY-ESO-1-posi-
tive (85%) cases (Figure 1E). This criterion was
employed as a threshold to note homogeneity, and
not as a cut-off for positivity. Interestingly, 12 of
the 14 NY-ESO-1-positive cases coexpressed MAGE-A
(Figure 1D; P = 2.06 9 10�9). Analysis of clinico-
pathological parameters showed that expression of
both CTAs was associated with Ki67 expression and
grade (driven mostly by the mitotic score

component; Table 1). This was underpinned by
strong enrichment of expression in TN tumours
(86% of which were TN/basal-like for MAGE-A, and
all of which were TN/basal-like for NY-ESO-1 (Fig-
ure 2Ai,ii). Taking advantage of data generated as
part of previous QFU cohort studies,35–39 we further
examined the phenotypic features of MAGE-A-expres-
sing and NY-ESO-1-expressing TNBCs, and found
positive associations with c-Kit, p53, and mitosis-
independent TTK expression (Figure 2B). The CTAs
(particularly NY-ESO-1) were also associated with
expression of vimentin (a marker of mesenchymal
differentiation), and were inversely associated with
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NA
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LN+ve
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Figure 1. A, Distribution of the Queensland Follow-Up patient population according to: grade, lymph node involvement, histological subtype,

oestrogen receptor positivity, HER2 status, and various prognostic subtypes. B,C, Representative images of MAGE-A and NY-ESO-1 staining

on breast tumour tissue microarray cores, shown at low and high magnification. D, Concomitant expression of MAGE-A and NY-ESO-1.

E, Proportion of MAGE-A-positive and NY-ESO-1-positive tumours expressing the respective antigens in >75% of cells within duplicate cores.
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AR expression (Table 1), although these associations
did not reach statistical significance within the TN
group (not shown).

E X P R E S S I O N O F M A G E - A A N D N Y - E S O - 1 I N

B R E A S T C A N C E R I S N O T A S S O C I A T E D W I T H

S U R V I V A L

The median overall survival time of all cases in this
present study was 13.6 years. According to Kaplan–

Meier survival analysis, MAGE-A-positive cases within
the whole cohort showed a 40% decrease in breast
cancer-specific survival (BCSS) at 25 years (Fig-
ure 3A), and MAGE-A-positive cases within the TN
group showed a 35% decrease in BCSS at 5 years
(Figure 3C), which was not significantly different
from the MAGE-A-negative cases. NY-ESO-1-positive
cases showed a trend towards a poorer outcome (Fig-
ure 3B), but there was no difference after accounting
for TN status (Figure 3D).
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Figure 2. A,B, Chi-square or Fisher’s exact test analysis of associations between expression of MAGE-A/NY-ESO-1 and clinical diagnostic or

experimental biomarkers (c-Kit, p53, and TTK1).
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Discussion

We investigated the expression of MAGE-A and NY-
ESO-1 in invasive breast cancer, and found prevalent
expression within the TN group. Previous reports
have shown variable expression of MAGE-A and NY-
ESO-1, ranging between 17% and 74%, and between
2% and 40%, respectively,31,44 and the expression
levels of both were higher in TNBC,31,44–48 which
corroborates our findings. Taking advantage of the
large pre-existing dataset on experimental biomarkers
in the QFU cohort, we found that the CTAs are
expressed most prevalently in the TN tumours show-
ing salient features of poor differentiation/primitive
phenotype, proliferation, and genomic instability. This
was indicated by coexpression of c-Kit and TTK, and
overexpression of p53. In addition, we found that
these CTAs were expressed concomitantly and in the
majority of the cells within a tumour, suggesting that
they have favourable features as cancer vaccine tar-
gets. Our study strengthens the rationale for targeting
CTAs to broaden the therapeutic options for TNBC.
Mutations in p53 can result in a stable non-func-

tional protein that accumulates in the nucleus, and
that gives rise to an IHC phenotype mimicking

overexpression;43,49 thus, p53 overexpression in can-
cer is a surrogate for functional abrogation. CIN and
aneuploidy are interrelated and are crucial hallmarks
of cancer, which is partly contributed to by inade-
quacy of p53.50–55 This promotes aberrant DNA dam-
age repair and augments mutagenesis.56 Through
association with p53 coexpression, our findings imply
that NY-ESO-1-positive tumours reflect these chromo-
somal abnormalities, and have a proliferative advan-
tage. However, we observed no association between
MAGE-A and p53, which, perhaps, could be attribu-
ted to MAGE-A inhibiting its function;57 one possible
suggested mechanism is blocking of the interaction
between p53 and chromatin, thus making p53
unable to regulate tumour cell proliferation and apop-
tosis.57,58 Furthermore, we found a strong association
between MAGE-A expression and mitosis-independent
expression of the spindle assembly checkpoint protein
TTK, which is crucial for chromosomal alignment
and centrosome duplication, and is a marker for CIN
in TNBC.35,59,60

Re-expression of CTAs in cancer is thought to give
cancer cells stem cell-like properties.61 Interestingly,
we found striking coexpression of both CTAs with the
mammary luminal progenitor marker c-Kit
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(Figure 2Bi,ii), and enrichment with vimentin
(Table 1), suggesting that these tumours are in rela-
tively primitive states of differentiation.62 Basal-like
breast cancers often show luminal progenitor-like
phenotypes, and may even originate from this cell
type in the premalignant breast.42 Therefore, this
striking coexpression could be part of the association
with the basal-like phenotype (Table 1). This strong
correlation might also indicate a programmed state of
dedifferentiation involving multiple stem cell markers,
whereby a demethylation programme drives the
expression of these CTAs, as is evident in ovarian and
colon cancer.63,64

If cancer vaccine or CAR T-cell therapies are to be
implemented for treatment in certain cases, efficacy
would be determined, in part, by antigen abundance
and heterogeneity. An extensive IHC analysis of the
expression of eight CTAs in 454 IDCs revealed frequent
coexpression in ER-positive as compared with ER-nega-
tive tumours,47 consistent with our findings on
MAGE-A and NY-ESO-1 coexpression. This raises the
possibility that therapies simultaneously targeting multi-
ple CTAs may elicit more efficient antitumour responses
than single-antigen approaches. In terms of expression
heterogeneity, we found that the majority of cases
expressed MAGE-A and NY-ESO-1 in >75% of tumour
cells within duplicate cores, which is also a potentially
favourable feature in terms of therapeutic use. To max-
imise the efficacy of vaccination-based strategies, it
would be informative to analyse the distribution of mul-
tiple ‘actionable’ CTAs within individual tumours in a
larger cohort, in order to identify combinations that
could achieve the greatest breadth of coverage.
Immunotherapy is an attractive strategy to target

TNBC, especially in patients with minimal residual
disease after neoadjuvant chemotherapy, because of
their statistically poor prognosis.46,48 Analysing
MAGE-A and NY-ESO-1 expression in post-neoadju-
vant chemotherapy surgical samples may therefore
aid in recognising patients who are suitable for vacci-
nation strategies. Interestingly, adoptive T-cell ther-
apy targeting MAGE-A3 has shown promise in the
metastatic setting,65 and another trial is ongoing
(Identifier no. NCT02111850).66 We hypothesise that
CTAs may be expressed more frequently in the
chemoresistant cells selected after neoadjuvant ther-
apy, owing to their association with features that pro-
mote clonal selection (primitive phenotype, high
proliferation, and CIN). Features of high proliferation,
evasion of apoptosis, and a primitive/stem-like state,
which is considered to be an epithelial–mesenchymal
transition state, perhaps confer chemoresistance to
these cells, as is evident in multiple myeloma.67

Finally, our study was performed on a small num-
ber of TN tumours, so our findings are worth follow-
ing up in a larger cohort. Nonetheless, given the
promising benefits of immunotherapy for this group
of patients with currently limited interventional
strategies, it provides the rationale for targeting CTAs
in TNBC.
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