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Capturing the coupled dynamics between individual behavioural decisions
that affect disease transmission and the epidemiology of outbreaks is critical
to pandemic mitigation strategy. We develop a multiplex network approach
to model how adherence to health-protective behaviours that impact
COVID-19 spread are shaped by perceived risks and resulting community
norms. We focus on three synergistic dynamics governing individual behav-
ioural choices: (i) social construction of concern, (ii) awareness of disease
incidence, and (iii) reassurance by lack of disease. We show why policies
enacted early or broadly can cause communities to become reassured and
therefore unwilling to maintain or adopt actions. Public health policies
for which success relies on collective action should therefore exploit the
behaviourally receptive phase; the period between the generation of sufficient
concern to foster adoption of novel actions and the relaxation of adherence
driven by reassurance fostered by avoidance of negative outcomes over time.

1. Introduction

The ongoing COVID-19 pandemic has cemented the understanding among
public health researchers, practitioners and policy makers that the spread
of infectious disease is more than a purely epidemiological process. While
COVID-19 has strained hospital capacity [1], the global supply of personal pro-
tective equipment [2,3], food supply chains [4,5] and unemployment insurance
processing capacity [6], the greatest challenges in understanding, predicting
and planning mitigation for the ongoing spread of the disease lies in how to
understand, anticipate and influence human behavioural responses [7].

Efforts to incorporate social [8], psychological [9] or economic [10] factors
have revealed the profound effects of behavioural choices on projected outbreak
dynamics [11,12]. Critically, however, many studies helping shape policy have
considered behavioural factors as mostly uniform across the affected population
and mostly constant throughout the course of an outbreak [13]. While there
are legitimate and important reasons to explore models making these assump-
tions, they do not reflect the current reality of behavioural responses to the
COVID-19 pandemic.

People’s behavioural responses to the pandemic will vary considerably,
often between locations and over time, driven by variations in local government
policy as well as individual behaviours over time (e.g. as ‘stay at home’ orders
were enacted and relaxed; [14]), and across social and demographic groups
(e.g. conservative versus liberal; [12,15]). These are not static parameters;
these shifting patterns of behaviour are not independent of the spread of infec-
tion but are instead inextricably coupled with the spatial and temporal patterns
of disease incidence.
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Models that have incorporated individual behavioural
responses with the epidemiological dynamics of an ongoing
outbreak (e.g. avoiding sick people, accepting a vaccine;
[16-22]) provide the basis for developing more dynamic
approaches that allow individual behaviours to change when
some psychological threshold for change is met. Understand-
ing, analysing and predicting such coupled dynamics, in
which behavioural responses themselves shift over space and
time, will allow us to build outbreak models that can apply
broadly across regions and withstand shifting conditions for
more than a few weeks at a time. Such models can then support
policy makers in designing flexible, responsive plans that can
be better communicated to, and accepted by, the public,
improving efforts to mitigate current risks and helping us
prepare for future pandemics.

Amenable to this dynamic behavioural approach, net-
work models in epidemiology have been used with great
success to understand how individual heterogeneity in con-
tacts among individuals can cause deviations in outbreak
progression relative to homogeneous, mean-field approxi-
mations of average behaviours [23]. Analogously, network
models of ‘social contagions’ predict the spread of beliefs or
information through populations [24-29]. Studies focusing
on specific aspects of social contact networks have shown
that a variety of structural features—edge density, clustering
coefficient and modularity—of those networks affect the
progression of epidemics and information [30-36].

For social-behavioural phenomena, multiplex (also
called multilayer) networks capture ongoing, coupled
dynamics (e.g. [37-39]). In application to coupled behaviour-
epidemiological dynamics, multiplex networks can be used
to combine a physical contact, or ‘infection’, network over
which an infectious disease might be transmitted and a com-
munication network over which information or opinions
might be shared. They can therefore provide the required
tool for coupling the states and dynamics between the layers
[40,41]. Consequently, simulations exploiting coupled multi-
plex networks have provided important insights into the
impact of social construction of risk perception on the
spread of infectious diseases (e.g. [42,43]).

Social distancing exemplifies how coupling between a
communication and infection network layer is critical to
the COVID-19 pandemic. Adherence to social distancing
recommendations is determined by individual concern and
resulting behaviours. Those concerns are, in turn, constructed
by each individual based both on direct observation of evidence
(e.g. contact or lack of contact with sick people), and on social
inputs, including communication with worried peers/advisors
and perception of social norms (e.g. knowledge of
the compliance of others). These social inputs rely on a com-
munication network which may or may not overlap with the
contact network over which infection spreads. The communi-
cation network and contact network can be considered as
layers of a multiplex network containing the same set of interact-
ing individuals. Coupled dynamics between the communication
and infection layers of the multiplex network can have some
profound impacts on the progression of epidemics and the effi-
cacy of attempted mitigation strategies. Characteristics of the
communication layer will impact which individuals and com-
munities perceive the risk to be high (whether or not the actual
risk of infection is high in their physical environment), which
will influence rates of adherence to disease-defensive public
health policies. For the same reasons, the multiplex structure

should influence when disease permeates heterogeneous
networks, reaching different communities at different time/
stages of the outbreak, and how rapidly it spreads through
each community when it does reach them, especially as
increased disease prevalence should increase perceived risk,
and thereby slow the progression via behavioural defensive
responses. Two of the most likely network features to be impor-
tant in shaping the interplay between these dynamics are
homophily (the tendency to be affiliated with similar others)
[44-47] and modularity (the strength of division between ‘com-
munities’; populations more likely to be connected to each other
than to individuals outside of the group) [48,49].

To begin to understand how these coupled behavioural-
epidemiological dynamics may be driving the current
COVID-19 pandemic, we here present a multiplex network
model that captures a standard susceptible-exposed—
infected—-removed (SEIR) epidemiological dynamic [50], in a
population with a simplified age structure (children, adult
and elderly), and with two opposing ‘predispositions’ that
contribute to homophily in either the infection layer of the net-
work, communication layer or both. Our model assumes that
social influence can be effective at elevating individual con-
cern about disease, but only direct observation of an absence
of illness in a community will provide reassurance (i.e. cause
a decrease of concern). We assess the severity of disease pro-
gression by a joint measure considering both the time and
magnitude of the epidemic peak in each community. We
explore the relative impact of social versus observational
estimation of disease risk on the epidemic outcomes in com-
munities, the role of reassurance on the likely dynamics in
risk behaviours over time and the influence of modularity
and homophily according to predisposition on these patterns.
While this model is parameterized to reflect current COVID-19
features and challenges, it seems clear that socio-behavioural
dynamics that shape the nature of risk perception, and there-
fore disease protective behaviours should be important for
any pandemic preparedness planning for the future. We there-
fore present a broad set of scenarios.

We used stochastic simulations to test how the spread of concern
influenced epidemic dynamics of COVID-19 through populations
divided into communities in both communication and physical
contact structures (figure 1). All simulated populations consisted
of 2000 individuals of three age-categories: children (18 or
younger), young (low-risk) adults (19-64) and old (high-risk)
adults (65 or older) and split between two distinct ‘predispositions’.
Predispositions could be used to reflect any characteristic or belief
that may influence the tendency of individuals to be connected in
either the communication layer, infection layer or both (a relevant
example being political views in the USA). We then designed realis-
tic, social networks for our populations and used these coupled
(multiplex) networks to determine how infection and the spread
of concern about the disease can spread through the population
and interact (figure 2). We recorded epidemic outcomes for a
range of network structures and proposed models for the change
in concern of individuals over time. All modelling was conducted
inR3.6.1 [51]. R code used is provided in the electronic supplemen-
tary material and on GitHub (https://github.com/matthewsilk/
CoupledDynamicsNetworkPaper/). Full methods are detailed in
the electronic supplementary material.
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Figure 1. A depiction of the modelling process. We generated coupled multiplex networks (a,b) containing a communication and infection layer for 2000 indi-
viduals. This network was divided into 10 equally sized social communities and the network was rewired to have a desired modularity (a). Here (a) we show
community assignment in the infection layer for young adults of a single predisposition (i.e. only part of the network). (b) The infection layer and communication
layer of the multiplex network differed in density so that the infection layer was better connected and could have the same or higher modularity and the same or
lower homophily according to predisposition. We then modelled the spread of infection (c) and change in adherence to social distancing (d) and recorded these at a

community-level. The colours of the lines depict the community membership illustrated in (a). (Online version in colour.)
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Figure 2. (a) A schematic providing an overview of how our stochastic model couples risk perception and infection dynamics and (b) details on the key parameters
varied during the simulations. Values of the reassurance effect were drawn from a uniform distribution between —0.2 and —0.01. In the figure, we refer to the
modularity of the communication layer at Q. and the modularity of the infection layer as Q. (Online version in colour.)

(b) Population generation

Our population was 24% children, 63% young adult and 13%
old adult to match recent United States demographic data. Age
classes could differ in the social connections, epidemiological
outcomes and concern about the disease (as detailed in
relevant sections). Individuals also had one of two baseline
predispositions: ‘A’ and ‘B’. Fifty per cent of individuals were

of each predisposition. Homophily according to predisposition
could impact social connections.

(c) Social network generation

We generated nine multiplex social networks that connected all
2000 individuals within a ‘communication’ layer that influenced
the spread of concern about the disease and an ‘infection” layer
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that influenced the transmission of the pathogen itself. Each net-
work layer consisted of 10 equally sized social communities
(community size: 200). We simulated equally sized communities
as a simplifying assumption to focus on the importance of the
learning processes of interest. Networks were simulated in a
stepwise fashion so that connections in both the communication
layer and infection layer displayed community structure, homo-
phily by age and could display homophily by predisposition (see
the electronic supplementary material, Methods). Children were
connected to parents in the young adult layer and shared their
parents’ connections with older adults. We used three different
combinations of modularity and three different combinations of
homophily by predisposition. Using relative modularity [48],
sections of our networks either had a modularity (based on
pre-defined social communities) of 0.4 in both layers, a modular-
ity of 0.6 in both layers, or the infection layer had a modularity of
0.6 and the communication layer a modularity of 0.4 (to reflect
the fact that more communication is likely between communities
than contacts relevant for infection). The proportion of each pre-
disposition (A and B) within each community was the same as
that in the overall population. We made this decision as a simpli-
fying assumption (to focus our analyses on the learning
processes of interest), although in reality social communities
could be biased towards particular predispositions. For homo-
phily by predisposition, we included networks in which there
was either (i) no homophily in either layer, (ii) homophily in
the communication layer only, or (iii) homophily in both layers.

(d) Concern model

We modelled the spread of concern about the disease through
the communication layer as a complex contagion [52]. For all
adults, whether an individual was adherent or not (binary
trait) depended on a Bernoulli draw based on an underlying
probability which we term concern (for information on the
adherence of children see the eectronic supplementary material,
Methods). Consequently, it was possible for individuals to
move from being non-adherent to adherent but also for them
to return to being non-adherent. Individuals with intermediate
levels of concern were likely to fluctuate between adherent and
non-adherent states. Initial levels of concern correspond to a
50, 20 or 5 chance of adherence. The underlying concern of all
adults could then be influenced by social construction, awareness
or reassurance (figure 2a). We focused on the region of parameter
space where social construction could only increase concern to
isolate the importance of the reassurance effect (i.e. to be conser-
vative relative to our effect of interest). However, in some
contexts, social construction could lead to reductions in concern
and adherence in its own right.

Concern and adherence were modelled at an individual level
throughout each simulation. Each time an individual became adher-
ent, individuals cut their connections within the infection layer of
the network while maintaining their connectivity in the communi-
cation layer. Individuals cut all non-parent-child connections with
a 50% probability (selected to represent a reasonable general
approximation of a real-life effect across diverse demographic and
socio-economic groups; see the electronic supplementary material,
Methods). Connections were cut to have an edge weight of 0.001
meaning that the probability of transmission across them was
negligible. Old adults that cut connections with young adults also
cut connections with their children. If an individual became non-
adherent then these edge weights returned to their initial values.

(e) Infectious disease model

We modelled the spread of SARS-CoV-2 using an age-structured
stochastic SEIRD model adapted from [50] and adjusted to match
empirical data as detailed in the electronic supplementary
material, Methods. The model contains susceptible (S), exposed

(E), mildly or pre-symptomatic (I1), symptomatic (I2), hospital- n

ized (I3), recovered (R) and dead (D) compartments. The
transition between compartments is detailed below and par-
ameter values are provided in the electronic supplementary
material, table S6. Symptomatic (I2) and hospitalized (I3) individ-
uals cut all connections (including to children) in the infection
layer of the network to 0.001, meaning that individuals are only
likely to spread infection during the time they are I1 (mean: 4
days). These connections were restored to their full value if and
when individuals recovered.

(f) Simulations

For each of the nine multiplex networks studies we conducted
simulations for the full combination of starting values (3), social
construction effects (5) and awareness effects (5). For each of
these 75 combinations, we conducted 10 replicate simulations
with the same network structure but with different individuals
seeded with infection (figure 2b). A unique value of the reassur-
ance effect was drawn from the uniform distribution defined
above for each run of the simulation (figure 2b). We simulated a
time period of 300 days (or until there were no remaining infected
individuals). The simulation algorithm is detailed in the electronic
supplementary material, Methods.

(g) Analysis

To test the combined effects of the social construction of concern,
increases in concern owing to awareness of incidence of disease,
and relaxation of adherence to social distancing owing to reassur-
ance effects from not knowing infected people, we first calculated a
measure of epidemic severity that took into account the height and
timing of the epidemic peak in each community (figure 3):

. height of epidemic peak
severity = - : : - : : X
max height of epidemic peak in all simulations
__ time from start of outbreak to epidemic peak
max time from start of outbreak to epidemic peak /’

(see also the electronic supplementary material, Methods)

We then used linear mixed effects models to ascribe variation
in epidemic severity to network structure and values of the social
construction, awareness and reassurance effects as detailed in the
electronic supplementary material, Methods.

3. Results

We monitored the epidemiological outcomes and changes in
adherence to protective behaviours (e.g. social distancing)
over time separately for each of 10 communities or modules
in our social networks (figure 1).

(a) Communities infected later are often hit harder

In the absence of any changes to concern or adherence (which
we term learning for convenience), communities hit later in the
epidemic typically have more severe outbreaks than those hit
earlier (figure 4; electronic supplementary material, figure S2
and tables S1-S5), with a reduced time from the start of an out-
break to its peak, and a higher peak (electronic supplementary
material, figure S1). This pattern remains regardless of whether
initial social distancing levels are high (50% of the population
adherent; electronic supplementary material, table S1) or inter-
mediate (20% adherent; electronic supplementary material,
table 52). These patterns were qualitatively similar across all
of the nine multiplex networks simulated. However, the overall
models estimated that outbreaks were typically less severe
when there was matching homophily in the infection and
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selected simulation runs. (Online version in colour.)
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(0, 0.4, 1.6) and social construction effects (0, 0.2, 1). In the top row, there is no change in the concern of individuals through social construction, while in the left-
hand column, there is no effect of awareness. Conversely, these two parameters take their maximum values in the bottom row and right-hand column, respectively.
Points are coloured on a continuous scale according to the strength of the reassurance effect. For each run of the simulation, this was sampled from a uniform
distribution between —0.2 and —0.01. (Online version in colour.)

communication layers, and more severe when there was
homophily only in the communication layer (electronic
supplementary material, tables S1-S2).

(b) Different forms of learning flatten the curve in
different ways

Increased adherence to social distancing through awareness of
ill individuals and through social construction of concern both
reduced epidemic severity but also resulted in strikingly differ-
ent epidemic outcomes (figure 4; electronic supplementary

material, figure S2). When individuals increased adherence
owing to awareness, the height of the epidemic peak was
reduced but the time to reach the peak was not (electronic sup-
plementary material, figure S1). By contrast when individuals
became more likely to be adherent to social distancing through
social construction both the height of the epidemic peak and
the length of time between the start of an outbreak and epi-
demic peak increased. This resulted in the timing of epidemic
peaks becoming more variable between communities (elec-
tronic supplementary material, figure S3) which may have
important implications for mitigation.
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Social construction (responding to the adherence of
communication neighbours) had a much greater impact on
mitigating epidemic severity than the awareness -effect
(responding to the illness of communication neighbours).
However, low levels of social construction were much less
effective (figure 4) with only moderate influence of adherent
neighbours having a substantial mitigating effect when initial
levels of concern were lower. By contrast, increases in the
impact of awareness had a more linear effect on epidemic
severity (figure 4). Results were qualitatively similar regardless
of the modularity or homophily of the network.

(c) Social construction of concern is particularly
important for later-hit communities

Increased adherence through social construction, and to a
lesser extent awareness, helped later-hit communities dispro-
portionately. Rather than being more severe, outbreaks in
these communities were no worse or even less severe than
those in communities hit earlier (electronic supplementary
material, tables S1-52) when social construction was strong.
Similarly, to the previous result, this outcome was weaker
and/or less likely to be achieved with only weak social con-
struction (electronic supplementary material, tables S1-52).
The importance of social construction in preventing more
severe outbreaks in communities hit later was greatest
when the infection layer of the multiplex network was
more modular (Q,¢ = 0.6), i.e. in the cases where the steepest
increase in epidemic severity over time would have occurred
in the absence of social construction (electronic supplemen-
tary material, tables S3-S5). We also found some evidence
that the mitigating effects of social construction and aware-
ness were more likely to overlap (cancel each other out to
some extent) when there was matching homophily and
high modularity (Qe=0.6) in both layers or when there
was no homophily but the modularity of the communication
layer was lower than that of the infection layer (electronic
supplementary material, tables S3-S5).

(d) The reassurance effect when communication
neighbours are healthy amplifies differences

In the absence of social construction, the reassurance effect of
people becoming more relaxed in their probability to adhere
to social distancing over time is critical for epidemic dynamics.
When social construction of concern is absent, or only has
a weak effect, then a strong reassurance effect causes outbreaks
within communities to be more severe on average and dispro-
portionately impacts later-hit communities so that outbreaks
tend to be much more severe (figure 5a). It also reduces
variability in outbreak peaks between communities (electronic
supplementary material, figure S4) resulting in greater
population-level synchrony in epidemic dynamics.

However, when social construction is stronger, the link
between epidemic severity and the reassurance effect is no
longer present (figure 5b). Similar outcomes are observed
even when the tendency to adhere would otherwise decline
quickly over time in the absence of knowing anyone who is sick.

This result is caused by there being a very strong relationship
between epidemic severity and the minimum proportion of each
community adherent to social distancing (figure 6; electronic
supplementary material, figure S5). When people pay more
attention to the concern of their network neighbours, the pro-
portion of non-adherent people remains low even in later-hit
communities (figure 6; electronic supplementary material,
figure S5). As above, the effectiveness of social construction in
preventing the adverse effects of reassurance has a steep
threshold, meaning that maintaining the importance of social
norms throughout an outbreak is important.

After controlling for other factors, the correlation between
the strength of the reassurance effect and both epidemic
severity and the increase in epidemic severity over time
was relatively consistent between the nine networks mod-
elled (electronic supplementary material, figures S6-S7).
The correlation was weakest in network 2 when the infection
layer and communication layer were both more modular
(Qre1=0.6), and there was no homophily according to
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predisposition (i.e. people interacted with people of the same
and different predispositions equally). Both of these features
could potentially mean an individual’s perceived risk more
accurately matches the actual local prevalence of infection.

4. Discussion

Our results clearly show the importance of all the considered
mechanisms (awareness of infection, social construction and
reassurance) in driving concern and shaping the ongoing
dynamics of disease progression through distinct social com-
munities. Understanding how each mechanism acts, both
independently and synergistically, will be of critical impor-
tance in accurately anticipating infection risks in large,
heterogeneous populations. One clear, unfortunate impact
of effective protective behaviours that serve to buffer or insu-
late a community from early disease spread is that they can
foster social reassurance, degrading concern in the need to
maintain them [53]. It may therefore be that, in the absence
of further interventions, communities hit later in the outbreak
may be paradoxically less well aligned towards behavioural
defences than if those communities had experienced greater
numbers of infections earlier on.

For the spread of COVID-19, these results indicate the
potential for a “perfect storm’. The delay between behavioural
response and local increase in disease prevalence hinders
concern-based protective behaviours, whether based on
observational awareness or social construction. The infection
network structure of the United States is itself a modular
patchwork centred around towns and cities of vastly different
population sizes [54]. The corresponding communication net-
work is also clearly highly modular and highly homophilic in

its belief structures regarding infection risks and behavioural
decisions during COVID-19 [47], and this can extend to pol-
itical decision-makers themselves [55]. This creates patchy
echo boxes of communities that do not experience the same
risks at the same times, even while centralized reporting dis-
cussed COVID-19 risk nationwide. Consequently, policy such
as ‘stay at home’ orders in populations that had not interna-
lized social norms of increased concern nor experienced
sufficiently high levels of infection probably insulated these
communities from widespread transmission and allow reas-
surance to decrease concern, and therefore belief in the
need for action. Instead, the normalization of the perceived
risk of infection before the actual escalation of local disease
incidence slows or prevents the uptake of other protective
behaviours when introduced (as has been seen with other
disease interventions, e.g. [56]). Initially less affected areas
may instead be better served to plan and prepare (both prac-
tically and psychologically) to more effectively mount
mitigation efforts when disease inevitably arrives.

Our model indicates the value of policies based on the
normalization of protective behaviours when the population
may be most accepting of, and therefore adherent to them
owing to their perceived risk of infection. Timing and scaling
the magnitude of interventions to match both individually
observable disease incidence and the socially constructed
concern for disease risks in each community can reduce the
likelihood that interventions are rejected over time and so
be more effective in the longer term. Dynamic protective pol-
icies are not novel. Models based only on epidemiology and
healthcare capacity have already proposed pulsed strategies
for ‘shelter in place’ orders, in some cases suggesting that
these pulses could continue even until there is sufficient vac-
cine coverage to achieve herd-immunity levels of protection
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[13]. We propose that such dynamic policies should also
monitor and account for community-level concern, as has
been found useful in the context of response to natural disas-
ters and threats from climate change [57-59]. Critically, we do
not suggest that mitigation efforts should respond to concern-
driven demand, but instead that policies can anticipate
when they might be well enough received to enable con-
cern-driven acceptance and adherence. Vaccination is an
excellent example—MMR inoculation can eradicate regional
measles, mumps and rubella risks, but outbreaks in highly
developed and resource-rich nations still occur owing to par-
ental refusal of vaccination, with current public health efforts
now also focused on increasing vaccine acceptance [60-62].
We propose that policy for non-pharmaceutical interventions
should follow the same path and incorporate an explicit focus
on the public concern.

One route to promoting more prolonged adherence to
recommendations is to lessen the reassurance effect. Once
normalized, behaviours may be passively (rather than
actively) maintained, meaning that reassurance is less likely
to decrease their observance. Strong, reinforced social
norms are critical in maintaining a community’s adherence
to protective behaviours over time. The maintenance of
these protective behaviours will remain important in the
longer term as the failure to maintain social distancing pol-
icies can result in asymmetric epidemic curves and plateaus
of high death rates [63]. It is likely that there are sensitive win-
dows during which the perception of risk is high enough to
foster the adoption of protective behaviours that can be nor-
malized before reassurance undermines the concern that
promotes their adoption. We call this the behaviourally recep-
tive phase. In situations where populations are initially
highly concerned then one such phase will occur early in
an outbreak (although this may not always be the case). Find-
ing approaches that effectively combat reassurance will be
integral to the success of intervening early in an outbreak.
Asking community leaders to be vocal about true community
risk can support ongoing social construction of concern and
strengthen social norms around protective behaviours (i.e.
‘maven’ effects, as in [27]). Municipal efforts to support
families with loved ones who have been diagnosed may
meaningfully amplify awareness in ways that combat reas-
surance while focusing on positive aspects of community
rather than individual fear and isolation.

While our model represents an important step in advancing
coupled behavioural-epidemiological models, there are limit-
ations to consider. First, we made simplifying assumptions
that could be altered to extend the insights provided and
test different aspects of coupled behavioural-epidemiological
dynamics. For example, we assumed in our study that social
construction could only amplify rather than reduce concern.
In reality, individuals may reduce their concern if those they
communicate with are non-adherent, and this could increase
the impact of the reassurance effect and make it harder for
social construction to flatten the curve. Similarly, we assumed

1. Moghadas SM et al. 2020 Projecting hospital
utilization during the COVID-19 outbreaks in the

different groups in our study (whether different age/risk [ 8 |

groups or different predispositions) responded to the local
prevalence of infection and adherence in the same way and
did not include variability in the ability of individuals to
socially distance. Differences in response between these
groups could also further amplify some of the effects revealed
by our model or cause variation in impact among commu-
nities. Real-world communities are also likely to vary, and
the impact of differences in their size and/or interconnected-
ness (we only explored a small number of potential network
structures here) is worthy of further investigation. Epidemiolo-
gically, our model ignored the role of fully asymptomatic
infections (i.e. those who never develop symptoms of disease
[64)) in driving disease spread without a concomitant impact
in the communication layer. If the probability of remaining
asymptomatic is partially age-dependent [65], then communi-
cation neighbourhoods among similarly aged individuals
may exacerbate differences between community-driven
risk perception. Beyond limitations to the model itself, there
are obvious, immediate, additional questions that need to
be considered. These range from characterizing regional
differences in the overlap between communication and
infection network layers, through understanding how our
three mechanisms of learning contribute to individual behav-
iour over time, to extending beyond these to consider new
learning mechanisms.

Social learning affects not just the public response [66] but
also policy decisions [67], and models have explored the
interaction between mitigation measures—such as hospitaliz-
ations, lockdowns or digital tracing—with infection rate
[68-71]. Our work has demonstrated the critical and inextric-
ably intertwined roles that social construction of risk
perception, community awareness of disease incidence, and
reassurance effects from local absence of active cases can
have on the success of outbreak mitigative policies. We see
footprints of these effects in the observed dynamics of the
COVID-19 pandemic as we write, and we advocate for
additional discussion building on these explicit insights to
become a greater focus for both research and policy.

See https://github.com/matthewsilk/CoupledDy-
namics NetworkPaper/.
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