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A B S T R A C T   

The individual differences among children with autism spectrum disorder (ASD) may make it challenging to 
achieve comparable benefits from a specific exercise intervention program. A new method for predicting the 
possible outcomes and maximizing the benefits of exercise intervention for children with ASD needs further 
exploration. Using the mini-basketball training program (MBTP) studies to improve the symptom performance of 
children with ASD as an example, we used the supervised machine learning method to predict the possible 
intervention outcomes based on the individual differences of children with ASD, investigated and validated the 
efficacy of this method. In a long-term study, we included 41 ASD children who received the MBTP. Before the 
intervention, we collected their clinical information, behavioral factors, and brain structural indicators as 
candidate factors. To perform the regression and classification tasks, the random forest algorithm from the su-
pervised machine learning method was selected, and the cross validation method was used to determine the 
reliability of the prediction results. The regression task was used to predict the social communication impairment 
outcome following the MBTP in children with ASD, and explainable variance was used to evaluate the predictive 
performance. The classification task was used to distinguish the core symptom outcome groups of ASD children, 
and predictive performance was assessed based on accuracy. We discovered that random forest models could 
predict the outcome of social communication impairment (average explained variance was 30.58%) and core 
symptom (average accuracy was 66.12%) following the MBTP, confirming that the supervised machine learning 
method can predict exercise intervention outcomes for children with ASD. Our findings provide a novel and 
reliable method for identifying ASD children most likely to benefit from a specific exercise intervention program 
in advance and a solid foundation for establishing a personalized exercise intervention program recommendation 
system for ASD children.   

Introduction 

Autism spectrum disorder (ASD) is a life-long neurodevelopmental 
disability that manifests in early childhood (Lord et al., 2020, 2018). The 
main symptoms of ASD are social communication impairments (SCI) and 
restricted and repetitive behaviors (RRB). The prevalence of ASD among 
children in the United States has increased from 1 in 5000 in 1975 to 1 in 

36 in 2023, according to data from the Centers for Disease Control and 
Prevention (Maenner et al., 2023). According to a nationwide multi-
center population study, the prevalence of ASD in Chinese children was 
approximately 1 in 143 (Zhou et al., 2020). ASD has evolved from a rare 
disease to a primary public health concern impacting children’s survival 
and development. 

Physical exercise can promote the development of children’s 
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physical fitness (Clemente et al., 2022), cognitive function (Anzeneder 
et al., 2023), and brain plasticity (El-Sayes et al., 2019) and have sig-
nificant advantages, including low cost, simple implementation, and 
limited side effects (Chen et al., 2021). In recent years, physical exercise 
has gradually attracted the attention of researchers and has been applied 
to the rehabilitation and treatment of children with ASD (Haghighi 
et al., 2022). A growing body of research suggests that exercise inter-
vention can improve behavioral outcomes, including stereotypical 
behavior, social-emotional function, cognitive ability, and attention, in 
children with ASD (Bremer et al., 2016). A non-randomized crossover 
study indicates that ball-tapping exercise intervention can effectively 
improve stereotypical behaviors in children with ASD (Tse et al., 2018). 
Zhao et al. (2021) found that compared to the control group, children 
with ASD who participated in the therapeutic horseback riding program 
showed significant improvement in social interaction and communica-
tion skills. Toscano et al. (2022) reported that structured exercise pro-
grams could improve social interaction and stereotypical behavior in 
children with ASD, making it a potent adjunctive therapy. 

Although there is sufficient evidence for the positive effect of exer-
cise intervention on symptom performance in children with ASD, these 
interventions are neither equally effective nor effective for all partici-
pants. A study investigating the impact of yoga intervention programs 
for children with ASD found that not all participants could benefit 
equally from this program. Especially, 19% of participants did not 
receive satisfactory benefits (Rosenblatt et al., 2011). In recent years, 
precision medicine, aimed at determining individual uniqueness and 
predicting favorable or unfavorable effects, has become a major goal of 
healthcare. Understanding which individuals are most likely to have 
beneficial effects before intervention is crucial for maximizing the 
benefits of exercise intervention and achieving personalized treatment 
for children with ASD. However, previous studies on exercise inter-
vention in children with ASD have often been limited by traditional 
statistical analysis methods, focusing only on whether a specific exercise 
program has significantly improved the ASD child population while 
ignoring the possible differences in outcomes caused by individual 
uniqueness within the group. Therefore, it is necessary to investigate a 
new method to predict possible outcomes for children with ASD before 
receiving exercise intervention. 

Machine learning is an important approach to artificial intelligence 
in research. It aims to learn knowledge and laws from complex data to 
predict future behavior results and trends (Xu & Sun, 2023). Based on 
different learning methods, machine learning can be divided into su-
pervised machine learning and unsupervised machine learning (Nem-
atollahi et al., 2023). The supervised machine learning is mainly used for 
completing regression and classification tasks. Its input and output are 
specified, and it attempts to learn from the input the pattern of the ex-
pected output (Popović Krneta et al., 2023). The unsupervised machine 
learning is mainly used for completing clustering and dimension 
reduction tasks. Its output is not specified, and it aims to find connec-
tions between input data and discover potential patterns (Castiglioni 
et al., 2021). In recent years, supervised machine learning has been 
applied to predict mental disease outcomes, which helps predict which 
patients can benefit from specific intervention methods and which pa-
tients need to choose alternative treatment approaches (Sun et al., 
2022). In the depression, Pearson et al. (2019) performed regression task 
using an ensemble of elastic net and random forest (RF) to predict which 
depression patients can benefit from internet intervention. The results 
found that the ensemble method predicted more variance than the 
benchmark model. In the obsessive-compulsive disorder (OCD), Len-
hard et al. (2018) performed classification task to predict the outcome of 
internet-delivered cognitive behavior therapy in OCD adolescents. The 
results indicated that all machine learning algorithms performed well in 
the prediction of treatment response. In the attention deficit hyperac-
tivity disorder (ADHD), Kim et al. (2015) also performed classification 
task to predict the methylphenidate response of ADHD. The results 
found that the prediction performance of support vector machines was 

well and could assist in predicting treatment response in ADHD. How-
ever, few studies have applied the supervised machine learning method 
to predict the outcomes of an exercise intervention to improve the 
symptom performance of ASD children. The efficacy and practical value 
of this method have not yet attracted significant attention from 
researchers. 

In recent years, the positive effects of the mini-basketball training 
program (MBTP) for children with ASD have been confirmed. This 
program is characterized by its simplicity, consistency, and enjoyment 
(Cai et al., 2020). Therefore, using the study of the MBTP to improve the 
symptom performance of ASD children as an example, we predicted the 
possible intervention outcomes from the individual uniqueness in ASD 
children using the supervised machine learning method. Currently, it is 
unknown which variables may be reliable predictors of the outcomes of 
exercise interventions (including the MBTP). Reviewing existing 
research findings, we found that the core symptoms of children with 
ASD are strongly correlated with symptomatic severity (Bodfish et al., 
2000). Compared with normally developing children, ASD children are 
more susceptible to physical health problems (Toscano et al., 2019; 
Tyler et al., 2014). Cognitively, ASD children differ significantly from 
children with normal development, and it has been observed that defi-
cits in executive function contribute, at least in part, to SCI and RRB (Li 
et al., 2012). In addition, the SCI of children with ASD is associated with 
the gray matter volume (GMV) of the left dorsolateral superior frontal 
gyrus (Cheng et al., 2023). The RRB is associated with the atypical 
development of GMV in the cortex and subcortical region (Eisenberg 
et al., 2015). The MBTP positively affects the executive function (Wang 
et al., 2020) and physical health (Cai et al., 2021) of ASD children. The 
improvement of RRB following MBTP in children with ASD correlates 
with an increase in the GMV (Dong et al., 2020). The evidence presented 
above suggests that clinical information, physical fitness, executive 
function, and differences in GVM in children with ASD in 
pre-intervention may influence the outcomes of MBTP and should be 
considered important predictive variables. 

As previously stated, the individuality of children with ASD may 
make it difficult for them to achieve comparable benefits from specific 
exercise interventions. Therefore, a new method for predicting the 
possible outcomes of children with ASD must be explored to maximize 
the benefits of exercise intervention. In recent years, supervised machine 
learning has been applied to predict the outcomes of behavioral in-
terventions for mental disorders; however, few studies have used it to 
predict the outcomes of exercise interventions for children with ASD. 
Therefore, we used the study of the MBTP improving the symptom 
performance of children with ASD as a reference and applied the su-
pervised machine learning method to predict the possible intervention 
outcomes based on the uniqueness of children with ASD and investigate 
and validate the efficacy of this method. Our findings will help in 
identifying children with ASD who are most likely to benefit from a 
specific exercise intervention program and will serve as a foundation for 
the development of a personalized exercise intervention recommenda-
tion system for children with ASD. 

Methods 

Data 

Longitudinal data were obtained from a long-term research project 
that explored the effects of exercise intervention on symptom perfor-
mance in children with ASD (Cheng et al., 2023; Dong et al., 2020; 
Wang et al., 2020). This project has administered the MBTP to ASD 
preschoolers (ages 3–6) and school-aged children (7–12). In both 
studies, the same evaluation method and process, were used. To maxi-
mize the sample size included in the analysis, all ASD children from both 
studies who participated in the MBTP were combined for analysis. 
Finally, we included data from 41 children with ASD, including 37 boys 
and 4 girls, aged around 6 years (mean age: 6.2 years old, range: 3–12). 
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Studies inclusion criteria were: (i) Han nationality, (ii) children 
diagnosed with ASD via DSM-5, (iii) all ASD children need the consent of 
their guardians to participate in the study, (iv) having the scanning 
conditions for magnetic resonance imaging, such as no implanted metal 
in the body. Exclusion criteria were: (i) history of head trauma, (ii) 
additional psychiatric and/or neurological diseases including epilepsy 
and phenylketonuria, (iii) visual and/or hearing impairments, (iv) 
involvement in a basketball training program in the past six months, (v) 
physical disability or other health conditions where physical exercise is 
not allowed (acute phase after fracture). Studies have obtained ethical 
approval from the Ethics and Human Protection Committee of the 
Affiliated Hospital of Yangzhou University and have been registered 
with the Chinese Clinical Trial Registry (ChiCTR1900024973). In 
addition, written informed consent from the parents/guardians of each 
ASD child was also obtained. 

Mini-basketball training program (MBTP) 

Two certified physical education teachers conducted the MBTP, and 
operational details can be found in published articles based on the data 
from these studies (Cai et al., 2020; Wang et al., 2020). The MBTP is 
divided into three phases, as shown in Table 1. A single exercise session 
consists of four parts, in the order of introduction, warm-up exercise, 
MBTP, and relaxation. The MBTP was conducted five times per week for 
12 weeks. Each session lasted 40 min, and the exercise intensity level 
was moderate. 

Candidate predictors 

At baseline, we collected basic demographic information (including 
age and sex), clinical information, physical fitness, executive function, 
and brain structure indicators of children with ASD as candidate factors. 
Clinical information included not only symptomatic severity, but also 
SCI and RRB. They are important information that can be seen as the 
severity of core symptoms in children with ASD before intervention. 
Physical fitness included body mass index (BMI), speed-agility, muscle 
strength, flexibility, and balance. The executive function included 
working memory, regulation and inhibition. The brain structure data 
included the GMV of the entire brain. 

Children with ASD had their symptomatic severity evaluated using 
the Childhood Autism Rating Scale (CARS) and clinical assessment re-
ports (Schopler et al., 1980). The total score of this scale is 60 points, and 
the scoring criteria are: no ASD (total score < 30 points), mild to mod-
erate ASD (30–37 points), and severe ASD (37–60 points, with at least 5 
items scoring above 3 points). The Social Response Scale Second Edition 
(SRS-2) was used to evaluate SCI in children with ASD. The reliability of 
this scale has been confirmed (Bruni, 2014). The scale calculates the 
total score, and the severity of the SCI increases as the score increases. 

The Repetitive Behavior Scale-Revised (RBS-R) was used to evaluate the 
RRB of children with ASD (Bodfish et al., 2000). The scale was revised by 
Bodfish et al. with excellent reliability and validity (Martínez-González 
& Piqueras, 2018). On the scale, the total score is recorded, and the 
severity of the RRB increases as the score increases. 

China’s manual of physical fitness evaluated the physical fitness of 
ASD children (Cai et al., 2021). The BMI was defined as weight 
(kg)/height (m2). The 2 × 10-m shuttle run test was used to evaluate 
speed-agility. Two parallel lines were drawn on the floor, 10-m apart. 
ASD children should run back and forth as quickly as possible, crossing 
each line with their feet each time. The shorter the time, the better their 
speed and agility. This trial was conducted twice, and the best of the two 
attempts was recorded (s). The standing long jump test was used to 
evaluate muscle strength. ASD Children place their feet together behind 
the jump rope and spring as far forward as possible. Repeat the exami-
nation three times and record your highest score (cm). The sit-and-reach 
test is used to evaluate flexibility. ASD children sit on the floor, with the 
evaluator keeping their legs straight and slowly extending forward as 
much as possible, recording the best result of two attempts (cm). The 
balance beam test was used to evaluate the balance. ASD children stand 
on the starting point facing the balance beam (length 3 m, width 10 cm, 
height 30 cm) with their arms outstretched to the side. After hearing the 
’start’ command, move forward. The shorter the time it takes to cross the 
finish line, the better the balance, as measured by the stopwatch used by 
the evaluator. Repeat the test twice, keeping the best score (s). If the test 
cannot be completed or the time exceeds 30 s, record it as 30 s. 

The Childhood Executive Functioning Inventory (CHEXI) was used to 
assess the executive function of children with ASD (Thorell & Nyberg, 
2008). This scale has good reliability and validity, and can be used as an 
evaluation tool for executive function in Chinese children (Wei et al., 
2018). There are 24 items on the scale, which was initially divided into 
four subscales: working memory, planning, regulation and inhibition. 
Wei et al. (2018) found that the correlation between working memory 
and planning ability in the four-factor model was 0.97, suggesting that 
the two factors can be combined into working memory, and the 
three-factor structure (working memory, regulation, and inhibition) 
fitted the data well. All questions are scored in reverse, so the higher the 
dimensional score, the greater the deficits in the respective executive 
function components. 

The images were acquired using a 3.0T GE Healthcare whole-body 
high-speed imaging system with echo planar imaging (GE Discovery 
MR750w 3.0T). The scanning parameters of the T1-MPRAGE structural 
image were as follows: repetition time = 7.20 ms, echo time = 3.06 ms, 
thickness = 1.00 mm, flip angle = 12 ◦, acquisition matrix size = 256 ×
256, and field of view = 256 × 256 mm. The SPM-based CAT12 toolbox 
was used to preprocess the T1-MPRAGE structural image. The pre-
processing mainly included: (i) image quality inspection; (ii) image 
registration to the standard space of the Montreal Neurological Institute 
(MNI) according to the DARTEL method; (iii) segmentation of the 
whole-brain into gray matter, white matter, and cerebrospinal fluid. 
Then, the DPABI software package was used to further process the 
preprocessed images. In the ROI signal extractor of DPABI software, a 
widely used Anatomical Automatic Labeling (AAL) template was 
selected as Mask to extract the GMV of 116 brain regions (Liu et al., 
2020). 

Outcomes 

In previous studies that applied supervised machine learning 
methods to predict the outcomes following interventions in mental 
diseases, both regression models and classification models have been 
used in cases. In addition, the original form of the outcome variable in 
this study is the score of the scale, which is not only a continuous var-
iable, but also can be transformed into a categorical variable. Therefore, 
both the two main tasks of supervised machine learning (regression and 
classification) will be discussed.  

Table 1 
Mini-basketball training program.  

Phase Goal Content Duration 

Phase I Standardize classroom 
routines; 
Increase children’s 
interest in mini- 
basketball 

Classroom routines (taking 
turns, waiting, obeying, etc.); 
Simple basketball training 
(roll and throw the ball, etc.) 

2 weeks 

Phase 
II 

Improve children’s 
mini-basketball skills; 
Improve their social 
communication skills 

Basic basketball skill 
(dribbling, passing, etc.); 
Peer coordination training 
(passing and catching the ball, 
relay racing, etc.) 

8 weeks 

Phase 
III 

Improve children’s 
cooperative ability, 
social 
skills, and 
collectivization 

Group game based on mini- 
basketball (basketball-dribbling 
relay, basketball-passing relays, 
basket-moving shooting, etc.) 

2 weeks  
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The dataset’s label (target variable) must be a continuous variable 
for the regression task. We define the label of the regression task as the 
difference between the core symptom performance of ASD children 
before and after exercise intervention. The SCI outcome of ASD children 
was defined as the difference in SRS-2 scale scores following the MBTP, 
and the RRB outcome was defined as the difference in RBS-R scale 
scores. To avoid similar redundant expressions, we only performed a 
regression task on the SCI outcome in children with ASD. 

The classification task requires categorical variable labels in the 
dataset. There is currently no clear grading standard for the outcome of 
core symptoms in children with ASD. To investigate the possible varying 
degrees of benefits, hierarchical agglomerative clustering (HAC) anal-
ysis based on Ward linkage method was performed on the SCI and RRB 
outcomes following the MBTP in children with ASD (Bakkelund, 2021; 
Kruse et al., 2017). Based on HAC results (Fig. 1), we clustered the 
dataset into two clusters, with 24 samples clustered into cluster 1 
(58.5%) and 17 samples clustered into cluster 2 (41.5%). The results of 
the Mann Whitney U test indicated that the SCI outcome (z = − 4.886, p 
< 0.001) and RRB outcome (z = − 4.1, p < 0.001) of cluster 2 were 
better than those of cluster 1. Therefore, we defined Cluster 1 as a fair 
outcome group and Cluster 2 as a better outcome group. Finally, the 
labels for the classification task were defined as two categories: fair 
outcome and better outcome. 

Supervised machine learning method 

Feature engineering 
Firstly, we performed Z-score standardization on the data to elimi-

nate the problem of dimensional differences between variables and then 
conducted the statistical analysis. In this study, p < 0.05 was considered 
statistically significant, and p < 0.08 was defined as marginal signifi-
cance. For the regression task, Pearson correlation analysis was used to 
determine the relationship between candidate factors and the SCI 
outcome in children with ASD. For the classification task, Spearman 
correlation analysis was performed to quantify the correlation between 
candidate factors and core symptom outcomes in children with ASD. We 
initially selected candidate factors with statistical significance 
(including marginal significance) as predictors and included them in the 
corresponding supervised machine learning task. Finally, if the feature 
dimensions initially included in the regression or classification task are 
large (for example, the sample size is far less than 10 times the number of 

features), we will use principal component analysis (PCA) to reduce 
dimensionality (Greenacre et al., 2022) and extract principal compo-
nents with an eigenvalue greater than 1 (Kaiser, 1960). 

Algorithm selection 
The RF algorithm was selected for supervised machine learning 

tasks. It can perform regression and classification tasks. The RF is an 
ensemble of many decision trees. It uses the bootstrap method to 
randomly select M samples from the raw dataset and then reinsert them 
to make them eligible for subsequent sampling. Repeat this process to 
obtain K-independent subsets of data and then train K decision tree 
learners accordingly. Finally, all decision tree learners are combined, 
and each learner is given an equal weight (Paul et al., 2018). In addition, 
RF is an ensemble learning method, its prediction performance is su-
perior to the traditional supervised machine learning algorithm, and has 
a strong generalization ability (Breiman, 2001). 

Grid search and cross validation 
We used grid search method to adjust hyperparameters in regression 

and classification task. The grid search was used to generate a list of all 
possible values of each parameter in the estimation function, after which 
the values in each list were combined to generate a grid, and each grid 
was used as training a model. After the fitting function had tried all 
combination results, it returned the most suitable learner and auto-
matically adjusted to the best parameter combination (Kim, et al., 
2023). 

Regarding the randomness of calculations, we have adopted the k- 
fold cross validation method in regression and classification tasks (Lin 
et al., 2022). The cross validation method uses randomly selected data 
subsets to fit multiple supervised machine learning models, thereby 
determining the reliability of the predicted outcomes (Marouf et al., 
2022). In this study, we fitted an RF model for each cross validation in 
the regression and classification tasks, and repeated the process three 
times. Each model was trained on two-thirds of the data and used to 
predict the retained one-third of the samples. The regression task in-
cludes three RF regression models, and the classification task includes 
three RF classification models. 

Evaluation indicators 
Each RF regression model’s predicted and actual results will be 

represented graphically in the regression task. In addition to reporting 

Fig. 1. The results of hierarchical agglomerative clustering.  

Z. Sun et al.                                                                                                                                                                                                                                      



International Journal of Clinical and Health Psychology 23 (2023) 100409

5

the explained variance of each model to evaluate their predictive per-
formance (Muñoz-Organero & Queipo-Álvarez, 2022), we will also 
report the average of the explained variance to evaluate the overall 
performance of the regression task. The confusion matrix for each RF 
classification model will be drawn in the classification task (Walther 
et al., 2022). The description of the confusion matrix is shown in Table 2. 
Similarly, the accuracy of each model will also be reported (Wu et al., 
2023), and the final average accuracy will be reported to evaluate the 
overall performance of the classification task. In addition, the permu-
tation test based on p-values will be used to verify the final classification 
result. In permutation test, class labels are permuted, and then randomly 
assign ’incorrectly’ to the samples. This approach allows us to measure 
the probability that the predictions are the result of chance (Cruz-Tirado 

et al., 2023). 
For the regression task, the closer the explained variance is to 1, the 

better the model’s predictive performance. For the classification task, 
the closer the accuracy is to 1, the better the model’s predictive per-
formance. The modeling flowchart of supervised machine learning is 
shown in Fig. 2. 

Results 

Regression task 

With respect to demographic information, we did not observe sig-
nificant sex-related difference concerning SCI outcome (t(39) = − 0.383, 
p = 0.704), and there was no significant correlation between age and SCI 
outcome (r = 0.11, p = 0.495). The regression task used Pearson cor-
relation analysis to investigate the relationship between other candidate 
factors and the SCI outcome in ASD children. As shown in Fig. 3, in 
clinical information and behavioral factors, the SCI outcome of children 
with ASD were correlated with baseline RRB (r = 0.343, p = 0.028), 
muscle strength score (r = − 0.328, p = 0.036), flexibility score (r = −

0.301, p = 0.056), and speed-agility score (r = 0.494, p = 0.001). In the 
brain structure indicators, the GMV of 15 brain regions were correlated 
to the SCI outcome of ASD children, including the left orbital part of 
superior frontal gyrus (r = 0.284, p = 0.072), the right orbital part of 
superior frontal gyrus (r = 0.295, p = 0.062), the right opercular part of 
superior frontal gyrus (r = 0.424, p = 0.006), the left triangular part of 

Table 2 
Confusion matrix.  

Confusion matrix Actual value 

Fair Better 

Predictive value Fair TF FF 
Better FB TB 

Note: TF is the number of samples whose actual value is fair, and the model 
correctly predicts that it is fair. FF is the number of samples whose actual value is 
better, and the model incorrectly predicts that it is fair. TB is the number of 
samples whose actual value is better, and the model correctly predicts that it is 
better. FB is the number of samples whose actual value is fair, and the model 
incorrectly predicts that it is better. 

Fig. 2. The modeling flowchart of supervised machine learning.  
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inferior frontal gyrus (r = 0.376, p = 0.015), the right triangular part of 
inferior frontal gyrus (r = 0.281, p = 0.075), the left orbital part of 
inferior frontal gyrus (r = 0.282, p = 0.074), the left gyrus rectus (r =
0.294, p = 0.063), the right gyrus rectus (r = 0.279, p = 0.077), the left 
lingual gyrus (r = 0.303, p = 0.054), the left superior occipital gyrus (r =
0.278, p = 0.079), the left middle occipital gyrus (r = 0.293, p = 0.063), 
the left fusiform gyrus (r = 0.357, p = 0.022), the right superior parietal 
gyrus (r = 0.342, p = 0.029), the right supramarginal gyrus (r = 0.293, p 
= 0.063), and the right thalamus (r = 0.309, p = 0.05). 

Initially, the Pearson correlation included 19 predictors, and we 
conducted PCA to retain the main data components. As shown in 
Table 3, we extracted four principal components with eigenvalues 
greater than 1, defined as PC 1, PC 2, PC 3, and PC 4. The cumulative 
variance contribution rate was 77.35%. Among them, GMV held a sig-
nificant weight in PC 1, while clinical information and behavioral fac-
tors held a significant weight in PC 2. Finally, we selected four principal 
components for the regression task to predict the SCI outcome following 
the MBTP in children with ASD. 

After determining the predictors, we used the cross validation 
method to fit three RF regression models to predict the SCI outcome 
following the MBTP in ASD children. In Fig. 4, each row shows an RF 
regression model established in each cross validation. Taking the first RF 
regression model as an example, the left figure shows the dataset divi-
sion of the first cross validation. The first column contains samples with 
a data index of 1–10 (from top to bottom), and so on. The last column 
contains 11 samples with a data index of 31–41. The test set contains 
samples marked in red, while the rest is the training set. The graph in the 
middle is a regression tree in the first RF regression model. This 
regression tree randomly selected 18 samples, starting with node PC 1 ≤
0.689 is the first judgment condition, with six samples not meeting the 
condition and predicted to be − 0.685, and 12 samples meeting the 
condition. Then, with node PC 4 ≤ 0.189 in the second judgment 

Fig. 3. The partial results of Pearson correlation analysis. 
Note: SCI is social communication impairments, RRB is restricted and repetitive behaviors, and BMI is body mass index. 

Table 3 
The results of the principal component analysis.  

Factors PC 1 PC 2 PC 3 PC 4 

RRB 0.042 0.354 − 0.266 0.743 
Muscle strength 0.031 − 0.468 0.372 0.341 
Flexibility 0.112 − 0.44 − 0.488 − 0.032 
Speed-agility − 0.009 0.614 0.21 − 0.219 
ORBsup.L − 0.281 − 0.083 0.168 0.011 
ORBsup.R − 0.277 − 0.032 0.02 − 0.073 
IFGoperc.R − 0.211 0.043 0.094 0.025 
IFGtriang.L − 0.262 − 0.013 0.186 − 0.031 
IFGtriang.R − 0.27 − 0.086 0.085 0.154 
ORBinf.L − 0.267 − 0.175 0.005 0.054 
REC.L 0.269 − 0.077 0.154 − 0.093 
REC.R − 0.275 − 0.064 0.116 − 0.075 
LING.L − 0.274 − 0.007 − 0.225 − 0.125 
SOG.L − 0.251 0.027 − 0.255 0.013 
MOG.L − 0.251 0.084 − 0.337 0.092 
FFG.L − 0.266 0.017 − 0.098 − 0.044 
SPG.R − 0.244 0.079 − 0.308 − 0.071 
SMG.R − 0.21 0.112 0.235 0.231 
THA.R − 0.221 0.03 − 0.058 0.387 
Eigenvalue 11.02 1.85 1.13 1.06 
Variance contribution 56.59% 9.5% 5.82% 5.44% 

Note: RRB is restricted and repetitive behaviors, ORBsup.L and ORBsup.R are the 
left and right orbital part of superior frontal gyrus, IFGoperc.R is right opercular 
part of inferior frontal gyrus, IFGtriang.L and IFGtriang.R are the left and right 
triangular part of inferior frontal gyrus, ORBinf.L is left orbital part of inferior 
frontal gyrus, REC.L and REC.R are the left and right gyrus rectus, LING.L is the 
left lingual gyrus, SOG.L is the left superior occipital gyrus, MOG.L is the left 
middle occipital gyrus, FFG.L is the left fusiform gyrus, SPG.R is the right su-
perior parietal gyrus, SMG.R is the right supramarginal gyrus, and THA.R is the 
right thalamus. 
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condition, with six samples met this condition and were predicted to be 
− 0.015, while six samples not met this condition and predicted to be 
0.499. The final prediction result of the first RF regression model is the 
average of the prediction results of all regression trees. The right figure 
shows the comparison between the prediction and the actual values. The 
abscissa represents the data index of the test set of the first RF regression 
model, while the ordinate represents the SCI outcome for these ASD 
children. In the regression task, the explained variance of three RF 
regression models was 40.35%, 21.1%, and 30.35%. The final average 
explained variance of the regression task was 30.58%. In addition, we 
used the feature_importances_ function in RF to extract the feature 
importance (range: 0-1). The importance of PC 1, PC 2, PC 3, and PC 4 
was 0.38, 0.31, 0.02, and 0.29, respectively. 

Classification task 

With respect to demographic information, the Chi-squared test result 
of sex and core symptom outcome had no statistical significance (χ2 =

0.808, p = 0.369), and there was no significant correlation between age 
and core symptom outcome (r = 0.055, p = 0.731). In the classification 
task, Spearman correlation analysis was used to quantify the relation-
ship between other candidate factors and core symptom outcomes in 
children with ASD. As shown in Fig. 5, in clinical information and 
behavioral factors, the core symptom outcome of children with ASD was 
correlated to RRB (r = 0.429, p = 0.005), muscle strength score (r = −

0.287, p = 0.069), and speed-agility score (r = 0.282, p = 0.074) at 

baseline. In the brain structure indicators, no correlation was observed 
between the GMV of any brain region and the core symptom outcome of 
ASD children. Therefore, we selected RRB, muscle strength score, and 
speed-agility score as predictors for the classification task to predict core 
symptom outcomes following the MBTP in children with ASD. 

Similarly, we used cross validation to fit three RF classification 
models to predict the core symptom outcome following the MBTP in 
children with ASD. In Fig. 6, each row shows an RF classification model 
established in each cross validation. Using the first RF classification 
model as an illustration, the figure on the left depicts the dataset par-
titioning of the initial cross-validation. The test set contains red-marked 
samples, while the remaining samples were used for training. The graph 
in the middle was a classification tree in the first RF classification model. 
This classification tree randomly selected 18 samples. The first criterion 
was the node speed-agility ≤ − 0.695, with seven samples met the 
condition and were predicted as a Fair outcome group, and 11 samples 
did not. Then, taking the node muscle strength ≤ − 0.487 as the second 
criterion, five samples met this condition and were predicted as a Fair 
outcome group. Six samples did not meet this condition and were pre-
dicted as a Better outcome group. The final prediction result of the first 
RF classification model was the majority vote of all classification trees, 
as shown on the right side of the confusion matrix. In the classification 
task, the accuracy of the three RF classification models was 57.14%, 
64.29%, and 76.92%. The final average accuracy of the classification 
task was 30.58% (permutation test, iterations = 1000, p = 0.024). We 
also used the feature_importances_ function to extract the feature 

Fig. 4. The results of regression task. 
Note: The optimal hyperparameters determined by grid search are mainly: (i) n_estimators = 6; (ii) max_depth = 3; (iii) min_samples_leaf = 6; (iv) min_samples_split 
= 2; (v) max_features = 2. 
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importance. The importance of RRB, muscle strength, and speed-agility 
was 0.57, 0.27, and 0.16, respectively. 

Discussion 

To maximize the benefits of exercise intervention, we used the study 
of the MBTP improving the symptom performance of ASD children as an 
example, applied the supervised machine learning method to predict the 
potential benefits of ASD children based on their uniqueness, and 
investigated and validated the efficacy of this method. Our findings 
indicated that the supervised machine learning method could predict 
potential benefits before an exercise intervention for ASD children. 

We found that baseline RRB, muscle strength, flexibility, speed- 
agility, and GMV of 15 brain regions were predictors for the SCI 
outcome in ASD children. The baseline RRB, muscle strength, and speed- 
agility were predictors for core symptom outcomes in ASD children. To 
begin with, the SCI outcome and core symptom outcome of ASD children 
were positively correlated with baseline RRB, indicating that the more 
severe the RRB before the intervention, the better the outcomes of the 
MBTP. The RRB may limit the development of social skills in ASD 
children (Leekam et al., 2011). In contrast, ASD children with more 
severe RRB before intervention will achieve better intervention out-
comes in the RRB symptom (r = 0.489, p = 0.001), providing them with 
more opportunities for communication. Besides, the SCI outcome and 
core symptom outcome of ASD children were negatively correlated with 
muscle strength and speed-agility at baseline, indicating that the worse 
the muscle strength and speed-agility before the intervention, the better 
the possible intervention outcomes. A previous study has shown that the 
MBTP improves muscle strength, speed agility, and SCI in ASD children 
(Cai et al., 2021). This may be because the MBTP has a larger capacity 
for improvement in ASD children with poorer physical fitness compared 
to those with better physical fitness, thereby better improving their core 

symptoms. To confirm this potential relationship, further exploration is 
needed. Finally, the SCI outcome of ASD children was positively corre-
lated with the GMV of 15 brain regions, indicating that ASD children 
with larger GMV in these brain regions may achieve better SCI out-
comes. In addition, the three sub-dimensions of executive function were 
not correlated with the SCI outcome and core symptom outcome of ASD 
children, indicating that differences in executive function before 
receiving MBTP may not affect the benefits of ASD children. 

We applied the RF algorithm in supervised machine learning to 
complete the regression and classification tasks. One advantage of 
choosing the RF algorithm is that it can visualize the decision tree 
learners, which opens the "black box" in the decision-making process 
(Dreiseitl & Ohno-Machado, 2002). In the regression task, we use the SCI 
outcome of children with ASD as the target variable. The explainable 
variance of the three RF regression models was 40.35, 21.1, 30.35%, and 
the average explainable variance was 30.58%, which predicted the SCI 
outcome following the MBTP in ASD children. In addition, we used 
dimensionality reduction methods to extract four principal components 
in feature engineering. Although their cumulative variance contribution 
rate reached 77.35% (Cao et al., 2022), some data information loss is 
still unavoidable. In the classification task, we used the core symptom 
outcome groups of ASD children as the target variable. The accuracy of 
the three RF classification models was 57.14, 64.29, 76.92%, and the 
average accuracy was 66.12%, which distinguished the core symptom 
outcome groups following the MBTP in ASD children. Few studies have 
applied the supervised machine learning method to predict the out-
comes of exercise intervention for ASD children. There is no similar 
study for us to compare the model’s prediction performance. 

Several limitations of this study should be noted. Firstly, the data for 
this study comes from a longitudinal research project for a special 
population, and the sample size is insufficient. Future work on pre-
dicting the outcomes of exercise intervention in ASD children should use 

Fig. 5. The partial results of Spearman correlation analysis 
Note: SCI is social communication impairments, RRB is restricted and repetitive behaviors, BMI is body mass index. 
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larger samples, which will help us improve prediction performance 
using complex models such as convolutional neural networks (Marro-
n-Esquivel et al., 2023). Secondly, it is unclear which variables may 
serve as reliable predictors of exercise intervention outcomes. We have 
selected some clinical information, behavioral factors, and brain struc-
tural indicators. Still, future research should not be limited to the 
selected factors. The genetic characteristics (Hodges et al., 2020) and 
neuroanatomical differences (Aglinskas et al., 2022) in ASD children 
should also be evaluated as potential predictors. Finally, since only one 
exercise intervention program was included in this study, we do not 
know how these ASD children would react to other exercise in-
terventions. Ideally, different models can be established to predict the 
outcomes of different exercise intervention programs. Through further 
integration, recommend the most suitable exercise intervention pro-
gram for each ASD child. 

Conclusion 

Our results confirmed that the supervised machine learning method 
can be applied to predict the outcomes of exercise intervention for 
children with ASD. Using the study on the efficacy of the MBTP for 
improving the core symptoms of ASD children as an example, the RF 
models can predict the SCI outcome and core symptom outcome 

following the MBTP from the individual uniqueness in ASD children. 
Our findings provide a new and reliable method for identifying ASD 
children who are most likely to benefit from a specific exercise inter-
vention program in advance and lay a solid foundation for establishing a 
personalized exercise intervention program recommendation system for 
ASD children. 
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