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The systematic variation of diameters in branched networks has
tantalized biologists since the discovery of da Vinci’s rule for trees.
Da Vinci’s rule can be formulated as a power law with exponent
two: The square of the mother branch’s diameter is equal to the
sum of the squares of those of the daughters. Power laws, with
different exponents, have been proposed for branching in circula-
tory systems (Murray’s law with exponent 3) and in neurons (Rall’s
law with exponent 3/2). The laws have been derived theoretically,
based on optimality arguments, but, for the most part, have not
been tested rigorously. Using superresolution methods to measure
the diameters of dendrites in highly branched Drosophila class IV
sensory neurons, we have found that these types of power laws
do not hold. In their place, we have discovered a different diameter-
scaling law: The cross-sectional area is proportional to the number
of dendrite tips supported by the branch plus a constant, corre-
sponding to a minimum diameter of the terminal dendrites. The
area proportionality accords with a requirement for microtubules
to transport materials and nutrients for dendrite tip growth. The
minimum diameter may be set by the force, on the order of a few
piconewtons, required to bend membrane into the highly curved
surfaces of terminal dendrites. Because the observed scaling differs
from Rall’s law, we propose that cell biological constraints, such as
intracellular transport and protrusive forces generated by the cyto-
skeleton, are important in determining the branched morphology of
these cells.
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Branched networks are ubiquitous in nature, ranging in size from
watercourses and trees to cellular organelles and the cytoskele-

ton (1–6). Often, branch diameters change systematically throughout
the network, with proximal branches thicker than distal ones. This
variation is usually interpreted as an adaptation to, or consequence
of, the flow of materials and/or information through the network
(7, 8). To describe the changes in diameter over branch points,
allometric (or scaling) relations of the form

dpm = dpd1 + dpd2 , [1]

have been proposed, based mainly on theoretical arguments (see
below), where dm(dd1, dd2) is the mother (daughters) diameter
(definitions in SI Appendix, Fig. S1) and p is the exponent.
Among the most well-known laws are da Vinci’s rule for trees
(p = 2) (9), Murray’s law for vascular and pulmonary systems
(p = 3) (7), and Rall’s law for neuronal processes (p = 3/2) (10).
In this work, we ask whether neuronal dendrites obey these or
other scaling laws.
Scaling laws have been derived theoretically using optimality

arguments. For example, Murray’s law for the vasculature minimizes
the frictional dissipation associated with moving fluid through pipes,
given a fixed volume of blood (7). Rall’s law minimizes the prop-
agation time of action potentials (11) and the decrement of graded
electrical signals across dendrite branch points (12) (SI Appendix);
it assumes that the density of ion channels is constant, and the
cost of building or maintaining the surface area of the dendrite is

minimized. Da Vinci’s law has been reformulated as the “pipe
model” for plants, in which a fixed cross-section of stems and
branches is required to support each unit amount of leaves (13).
Experimental support for scaling laws, however, is scarce because
of the difficulties of imaging entire branched networks and because
intrinsic anatomical variability may obscure precise laws (14). Thus,
it is an open question whether scaling laws such as Eq. 1 apply in
biological systems.
To quantitatively test diameter-scaling laws in neurons, it is

necessary to study cells in which all the dendrite diameters can
be measured. This criterion is satisfied by Drosophila larval class
IV dendrite arborization neurons, which serve as a model system for
studying dendrite morphogenesis (15). These neurons, which have
up to 2,000 branches, form an approximately planar network array
(16) that tiles the external surface of the larvae like chain mail (17)
(Fig. 1 A and B) and function as sensory receptors of nociceptive
(18) and proprioceptive (19) inputs. They can be marked with a GFP-
tagged membrane protein expressed under a cell-specific promoter
(20). We developed a superresolution method to measure even
the finest dendrite diameters in these cells and have discovered a
diameter-scaling law that differs from Eq. 1 and that holds
throughout development.

Results
Dendrite Branch Diameters Are Precisely Measured Using a Superresolution
Method. To test scaling laws, accurate measurements of dendrite
branch diameters in class IV dendrites are essential. Conventional
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To study the systematic variation of dendrite diameters, we
established a superresolution method that allows us to resolve
dendrite diameters in Drosophila class IV dendritic arborization
neurons, a model cell for studying branching morphogenesis.
Interestingly, the diameters do not follow any of the known
scaling laws. We propose a different scaling law that follows
from two concepts: Terminal branches have the smallest di-
ameters, whose average is about 230 nm, and there is an in-
cremental increase in cross-sectional area needed to support
each additional terminal branch. The law is consistent with the
growing dendritic tips making the primary metabolic demand,
which is supplied by microtubule-based transport. If the law
generalizes to other neurons, it may facilitate segmentation in
connectomic studies.
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image-analysis techniques based on thresholding techniques (14,
21, 22) cannot resolve the diameters of the finest dendrites (<300
nm). To accurately measure dendrite diameters, we developed a
superresolution method that uses Monte Carlo (MC) optimization
to fit simulated images (SI Appendix, Fig. S2 and Materials and
Methods) to experimental images obtained by spinning-disk con-
focal (SDC) microscopy (Fig. 1 C and D). The simulated images
are model dendrites (hollow cylinders with uniformly distributed
fluorophores on their surfaces) convolved with the point-spread
function (PSF) of the confocal microscope. The experimental im-
ages are z stacks. The principle behind the method is that even for
the thinnest dendrites, a best fit to the experimental data is obtained
by using a cylinder of nonzero diameter (i.e., the cylinder gives a
better fit to the data than a line). Even though the lateral res-
olution for the confocal microscope is ∼200 nm (full-width at
half-maximum [FWHM] ≈ 0.5λ/numerical aperture [NA], where
NA = 1.2 is the NA of the water-immersion objective and λ ≈
520 nm is the emission wavelength), the method can resolve the
diameters of synthetic images (simulated images with added noise;
SI Appendix, Fig. S2) below 150 nm (Table 1), which is less than
the diameter of the finest dendrites in these cells.
Our simulations provide good fits to the intensity profiles of

thick class IV dendrites (Fig. 1C), which have two peaks with a

dip in the middle. This shows that a cylinder is a good model for
the dendrite. Further validation of the model comes from the inferred
FWHM of the PSF (Fig. 1E, right), which is in good agreement with
that measured by using tetra-speck beads (Fig. 1F). Thus, the thicker
dendrites serve as an in vivo calibration of the PSF. The profiles
of the terminal dendrites do not show a dip (Fig. 1D). Never-
theless, the fitting gave an optimal FWHM of the PSF that was in
good agreement with that of the thicker dendrites (Fig. 1E). This
shows that the fitting procedure is robust and that the inferred
diameters are reliable.

Dendrite Branch Diameters Do Not Obey Known Scaling Laws. Before
testing scaling laws, we first confirmed that dendrite branches have
well-defined diameters. We imaged one to three arbors of den-
dritic trees from six fully developed third-instar larvae (∼132 h
after the time the egg was laid; egg lay was defined as time zero).
We measured diameters using the superresolution method at three
positions along 306 branches from the six larvae, avoiding locations
where the membrane bulged due to the presence of membrane-
bounded organelles. We measured the normalized diameter and
the normalized displacement along the branch, where zero dis-
placement is toward the cell body (definitions in Fig. 2A). The di-
ameter decreased only slightly along the length: the slope was −2.3%,

Fig. 1. Measurements of dendrite branch diameters by SDC and SIM. (A) Third-instar larva expressing GFP in its class IV neurons. One cell in abdominal
segment 3 (A3) is boxed. Anterior is left. (B) Maximum projection image of a class IV neuron from the A3 segment constructed from 76 stacks (separated by 0.2
μm) from a SDC microscope (Nikon spinning disk, 50-μm pinholes, 40× water-immersion objective, NA = 1.25) of a 92-h after-egg-lay larva (Shits1;;ppkCD4-
tdGFP). The distance of the dendrites from the coverslip is color-coded: The cells are mostly within a depth of ∼12 μm, about 4% of their width. This dendritic
tree has three arbors emerging from its cell body. (C and D) Maximum-intensity-projection images of a thick dendrite with leaf number 277 (C) and a terminal
dendrite with leaf number 1 (D) from two ∼132-h larvae expressing tdGFP (60× water-immersion objective, NA = 1.2). The yellow boxes with width 1.1 μm
indicate the regions of the dendrite where the intensity profiles of the middle section of the confocal stacks are shown below the images. Electron numbers
are calculated based on sCMOS camera sensitivity. Black squares are experimental measurements (the SEs based on photon shot noise are mostly smaller than
the markers). Gray triangles are simulations (the SEs based on 60 simulations are mostly smaller than the markers). The FWHMs from the PSF fits are 260 ±
8 nm in C and 266 ± 34 nm in D (n = 6 fits, mean ± SD). The inferred diameters are 815 ± 13 nm in C and 231 ± 29 nm in D (n = 6 fits, mean ± SE). (Scale bars, 5
μm.) (E) FWHM of PSF obtained from dendrites with different leaf numbers. Mean and SD are 251 ± 15 nm (n = 48 branches) for leaf no. 1 and 259 ± 13 nm
(n = 35) for leaf no. 50–300. Red lines are mean and SD. Data are from two 132-h larvae. (F) PSF FWHMs of 100-nm-diameter tetra-speck beads (Upper Inset)
measured from intensity profiles along the x axis and y axis (Lower Inset). Dashed fitting curves were generated from convolution of 100-nm beads with PSF.
Mean and SD of the PSF FWHMs are 244 ± 7 nm (n = 99) and 261 ± 7 nm (n = 99). Red lines are mean and SD. The PSF FWHMs of the examples profiles are
239 nm (x axis) and 263 nm (y axis), respectively. (Scale bar, 1 μm.) (G and H) Maximum intensity projections of deconvolved SIM image of a thicker (G) and a
thinner dendrite (H). Curve-fitting gave inferred diameters of 610 ± 24 nm and 200 ± 9.2 nm (mean ± SD, n = 6) and inferred FWHMs of the PSF of 106 ±
5.3 nm and 109 ± 5.3 nm (mean ± SD, n = 6). (Scale bars, 1 μm.)
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much smaller than the average diameter change from the proxi-
mal, mother branch (−18%) and to the distal, daughter branches
(−11%) (Fig. 2B). Thus, branch segments do not taper apprecia-
bly, and diameters change primarily across branch nodes.
To test the scaling law of Eq. 1, we calculated the exponents, p,

for 253 branch points in six cells from the six 132-h larvae that
were used in Fig. 2B. These branch points sampled the full range of
branch orders. The mean exponent of 7.2 (Fig. 2C) does not sup-
port any of the aforementioned scaling laws (i.e., Rall, da Vinci, and
Murray). Furthermore, the wide range of exponents (SD = 8.8) is
not consistent with any specific scaling law. Alternative allometric
relations are therefore required.

The Systematic Change of Dendrite Diameters Can Be Described by an
Alternative Scaling Law.Among a wide range of allometric relations
that we tested, we discovered an approximately linear relationship
between the leaf number, n, of a branch (n is defined as the number
of tips that the branch supports; Fig. 3A and SI Appendix, Fig. S3)
and the branch’s cross-sectional area (A): A = βn + A0, where β is
the slope and A0 is the y intercept (Fig. 3B). Because the leaf
number in a bifurcating network satisfies the simple allometric
relation nm = nd1 + nd2, where nm (nd1, nd2) is the leaf numbers
of the mother (daughters), the linear relationship implies an
alternative allometric scaling law:

d2m + d20 = d2d1 + d2d2, [2]

where d20 = 4A0=π (see SI Appendix for derivation). A nonzero in-
tercept A0 implies that there is a minimum dendrite diameter: The
terminal branch with one tip has a diameter d1 = (d20 + 4β=π)1=2.
To test whether the exponent equals two, which corresponds

to cross-sectional area, is the most appropriate, we fit the experi-
mental data from the six 132-h larvae to dp = βn + dp0. This scaling
law provided a good fit (Fig. 3C), and the exponent p was narrowly
distributed with an average of 1.97, close to that for the cross-

sectional area (Fig. 3D). Thus, our modified scaling law with a
minimum diameter and an area dependence provides a good
description of diameter scaling in class IV dendrites.

Minimum Diameter.A minimum diameter is well supported by the
data. First, the y intercept in Fig. 3B is significantly greater than
zero (p ≪ 0.005, Student’s t test using the mean and SE in the
Fig. 3 legend). And second, the intensities of the terminal branches
are similar to those of their mothers (Fig. 3 E and F), consistent
with terminal branches (leaf no. 1) having similar diameters to
their mothers (leaf no. 2). If there were no minimum diameter and
the scaling law with exponent two continued across the most
distal branch point, we would expect the daughter intensity to be
1=√2 ≅ 70% that of the mother (dashed line in Fig. 3F). How-
ever, the measured intensities of the terminal branches are close to
those of their mothers: 93% ± 13% (mean ± SD, n = 20; Fig. 3F).
Note that if there were less transport of fluorescent protein into
the distal branch, we would expect a further reduction in intensity
below 70%, contrary to what was observed. Thus, the minimum
diameter in the scaling law is well supported experimentally. The
small scatter in the diameter measurements from the SDC images,
with a coefficient of variation of 0.14 ≅ 0.13/0.9, confirms that the
precision of the diameter measurement using this method is high.
The minimum diameter deduced by using our superresolution

method from the SDC images was 231 ± 29 nm (mean ± SD, n =
81). To provide an independent estimate of dendrite diameters,
we imaged third-instar larvae using structured illumination mi-
croscopy (SIM; Materials and Methods). Because SIM has roughly
twice the resolution of the SDC, the edges of the dendrites are
resolved, even for some terminal ones (Fig. 1 G and H). The av-
erage diameters of the terminal dendrites in third-instar class IV
cells inferred from the SIM images (Materials and Methods and SI
Appendix, Fig. S4) were 195 ± 38 nm (mean ± SD, n = 17), similar
to those measured from the SDC images (231 ± 29 nm, mean ±
SD, n = 81). The terminal diameters ranged from 158 to 297 nm
(SDC) and 140 to 287 nm (SIM) (SI Appendix, Fig. S5). This

Table 1. Accuracies of diameter measurements

Cylinder properties Diameters (nm)

Synthetic images (ground truth) 144 216 432 648 864
Inferred diameters, mean ± SD 140 ± 25 222 ± 16 422 ± 24 659 ± 22 880 ± 19

The superresolution method was applied to synthetic images (which included photon shot noise) with model
diameters in the top row (SI Appendix, Fig. S2). The inferred diameters after fitting the simulated images to the
synthetic images are in good agreement with the model diameters. n = 18 simulations.
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Fig. 2. Dendrite branch diameters do not obey existing scaling laws. (A) Definitions of diameters and branch length. (B) Scaled diameters (d=d, where d is the
mean diameter of the branch) plotted against scaled position along the branch (x/l, where l is the total length of the branch). Two branches were selected for
each branch order between 0 and 34 for six neurons from six 132-h larvae. The number of diameter measurements from each neuron ranged from 90 to 204.
The black dashed line represents the linear regression with slope −0.023 ± 0.013 (±SE, P = 0.078; t test, not significant at the 95% confidence level). The left
and right magenta filled circles are the mean diameters of the mothers and the daughters, respectively. (C) Histogram of values of the exponent p for 253
dendrite branch points from the six 132-h larvae. The average exponent is 7.2, and the SD is 8.8. Inset shows an enlarged view with magenta filled circles,
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agreement validates our SDC superresolution method and shows
that the average terminal diameter is on the order of 200 nm.

Scaling Is Invariant over Development. Class IV neurons grow through-
out larval development from a cell breadth of ∼60 μm at 24 h to ∼400
μm at 132 h (SI Appendix, Fig. S6). To complete the description
of allometric scaling, we applied our scaling relation dp = βn + dp0
over all stages of development. Fig. 4 shows that the scaling pa-
rameters are roughly constant throughout development. The aver-
age value over developmental time of the exponent p is 2.40 ± 0.80,
(mean ± SD, 31 larvae), corresponding approximately to area
scaling (Fig. 4A). The average value over developmental time of
the cross-sectional area per leaf is 1,980 ± 685 nm2 (± SD, 31
larvae) (Fig. 4B). The average value of the terminal diameter
(d1 = (dp0 + β)1=p) is 235 ± 14 nm (± SD, 31 larvae) (Fig. 4C) and

is independent of developmental time (SI Appendix, Fig. S7). Thus,
the scaling law holds throughout the development of class IV cells.
While there is substantial variability in the exponent over larval de-
velopment, the exponent is more tightly centered around p = 2 in the
older larvae (Fig. 4A); this tightening of the distribution is evidence
for a maturation process that adjusts diameters over development.

Discussion
Our data show that scaling laws of the form Eq. 1, which includes
Rall’s law, do not hold for Drosophila class IV neurons: There is
no one exponent that accounts for diameter changes across all
bifurcations. The reason for the variability in exponents is that the
branches in class IV cells have a minimum diameter, according to
Eq. 2, so that the daughters in more distal branches have similar
diameters to their mothers. Equal mother–daughter diameters
correspond to an infinite exponent. For more proximal dendrites,
by contrast, we found that the exponent approaches two. As a con-
sequence, there is a broad range of exponents, the great majority of
which exceed the Rall exponent of 3/2. This finding agrees with
studies in crustacean somatogastric ganglion neurons (14) and
mammalian dendrites and axons (11, 23), in which the exponents
varied from 0.5 to 4 (95% range), with medians between 2 and 3.
The deviation from Rall’s law has potential functional conse-

quences. If we assume that electrical signals propagate passively
in the dendrites of class IV cells and that the decrement in signal
amplitude across each branch point is minimized (12), then the
larger diameters of daughters than predicted by Rall’s law must
be compensated for by an increase in membrane conductance
(i.e., higher ion-channel density) in the daughters (SI Appendix).
If electrical signals propagate actively and the propagation time
across branch points is minimized, a similar compensation is re-
quired. Thus, the failure of the earlier scaling laws, and, in par-
ticular, Rall’s law, suggests that there may be a trade-off between
cell geometry and molecular localization.
The class IV diameter data fit the modified scaling law (Eq. 2

with p ≅ 2): The area increases in proportion to the increase in
the number of dendrite tips, and there is a minimum diameter of
terminal branches. The extra cross-sectional area per tip is 2,000
nm2. The average terminal diameter is 230 nm, measured by
SDC microscopy, and 195 nm by SIM. These values are similar to
those obtained by electron microscopy, where the finest dendrites
ranged in diameter from 130 to 240 nm [figure 2 in Han et al.
(16)], though chemical fixation can lead to shrinkage of ∼20%.
We hypothesize that our modified scaling law arises from cell

biological and developmental constraints. The increase in cross-
sectional area (p = 2) with dendritic tip number is consistent with
dendritic tips making the major nutritional and energetic de-
mands on the dendrite, as expected if the primary mechanism by
which dendrites grow is through tip extension (24). If nutrient
demand is proportional to the number of tips, and the velocity of
intracellular transport is independent of dendrite diameter, as
expected if motor-driven transport has a constant speed, then the
nutrient supply would be proportional to the cross-sectional area.
The very small amount of tapering observed over branch lengths is
also consistent with the branches themselves having a low meta-
bolic demand. The extra cross-sectional area per tip of 2,000 nm2

is similar to the area occupied by one microtubule and a 30-nm
vesicle carried along it by a motor protein (an ellipsoid with axes
35 and 70 nm) (Fig. 5). A similar calculation estimates the mini-
mum diameter of axons (25). Thus, our measured area increment
is consistent with the requirement that each additional tip be
served by a microtubule.
A proportionality between cross-section area and number of

synapses was found for foveal cone axons of adult monkey and
bipolar axons in cat retina (26), suggesting that an additional
microtubule may be required to convey materials toward and
away from each synapse in photoreceptors. Sensory dendrites of
class IV cells have no synapses. Instead input comes from the

Fig. 3. Scaling of bifurcating dendrites. (A) Definition of the leaf number of
a bifurcating tree. (B) Cross-sectional area vs. leaf number for one 132-h
larva. Black dashed line indicates linear regression with slope β 1.36 ±
0.03 × 103 nm2 and y-intercept 4.6 ± 0.1 × 104 nm2. (B, Inset) Log–log plot. (C)
Branch diameter vs. leaf number for six 132-h larvae. The colored dashed
curves indicate the nonlinear fits to dp = βn + dp

0 for each neuron. The black
dashed curve shows fitting for all data points: p = 2.05 ± 0.06, d0 = 240 ±
3 nm (± SE; 1,389 data points). Filled symbols indicate zeroth, first, and
second branch orders, where the zeroth-order branch originates in the cell
body. (D) Histogram shows the distribution of values of the exponent p
fitted from: dp

m + d2
0 = dp

d1 + dp
d2 for 303 neuron branch points from six 132-h

larvae. The average exponent value, denoted by a magenta circle, is 1.97 ±
0.17 (± SD). (E) Maximum projection image of a bifurcation that has two
terminal, daughter branches labeled. The white boxed regions with lateral
width 1.1 μm indicate the regions of dendrite where the overall intensity
Im(Id1, Id2) for mother and daughters branches of 132-h larva were obtained.
(F) Intensity ratios of terminal daughters to the mother for 20 bifurcations
from four 132-h larvae. Red lines 0.93 ± 0.13 indicate mean and SD.
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environment. In this case, the growing dendrite tips, which are highly
dynamic structures that alternate between growing and shrinking
phases, may constitute the primary metabolic demand. Thus,
diameter scaling may be a consequence of the metabolic needs of
the cells, supporting the view that energetics is an important
design consideration in the nervous system (27).
One way to interpret the minimum cross-sectional area is that

each branch requires this minimum area for “housekeeping” func-
tions. Such functions include reinforcement of the plasma mem-
brane by the submembranous cortex, which contains actin and other
proteins and can be ∼100-nm thick (28). Only the cross-sectional
area above this minimum area is available to supply the dendritic
tips. In the wide, proximal dendrites, the minimum area is small
compared to the total area, whereas in the narrow, terminal den-
drites, most of the cross-section is taken up by this minimum area.
An interesting consequence of terminal dendrites having a

minimum diameter is that it sets a lower bound on the force re-
quired for dendrite growth. To extend a tube of membrane from a
low-curvature bilayer, a force, f, is required to bend the membrane
into a cylinder: f = 4πκ/d, where κ is the bending stiffness and d is
the cylinder’s diameter (29). Therefore, the smaller the diameter,
the larger the force. For a membrane stiffness of 40 pN/nm (30),
extension of a tip with an average diameter of 230 nm requires a
force of ∼2 pN. A terminal diameter of 180 nm, at the lower end
of the measured diameters, would require a force of 3 pN. The
force will be even higher if other structures, such as internal mem-
branes or cytoskeleton, also resist dendrite extension. This extension
force is similar to the force generated by a single growing microtu-
bule (31) or a single microtubule-based motor (32), which could
drive microtubule sliding (33). While terminal dendrites in class IV
cells can contain microtubules, as evidenced by EB1 comets (34),
there are examples of narrow terminal dendrites that contain no
microtubules, both in class IV cells and in the fly central nervous
system (35, 36). Therefore, extension may be driven by other
processes, such as actin polymerization (37). Dendrites have
similar diameters to actin-rich filopodia (38), which can generate
protrusive forces up to a few piconewtons (39). Thus, dendrite

formation could be driven by microtubules or actin filaments, or
their associated motor proteins. Irrespective of the molecular
mechanism, terminal dendrites with the observed diameters are
easier to build than narrower ones: They could be extended by a
single motor or filament, whereas much narrower dendrites would
require the concerted action of multiple motors and/or filaments.
Although these arguments are conjectural, they demonstrate

the plausibility that dendrite geometry is limited by cell biolog-
ical constraints. This is consistent with the argument of ref. 26
that the higher calibers of cone axons compared to rod axons are
not to minimize the decrement of graded signals or to quicken
their electrotonic spread, but, rather, to support the larger number
of microtubules that service the larger number of synapses in the
cones. In class IV dendrites, we propose that the scaling of cross-
sectional areas supports microtubules that service the growing
dendritic tips by providing the materials and possibly forces nec-
essary for dendrite growth (40, 41). Taken together, our data and
analysis support Cajal’s conjecture that “all of the morphological
features displayed by neurons appear to obey precise rules (e.g.
scaling laws) that are accompanied by useful consequences (e.g.
optimizing transport required for growth)” (42). Our modified
scaling law may generalize to other dendrites, where we postulate
that synapses impose the dominant metabolic demand. If the law
generalizes, it is expected to facilitate segmentation in connectomic
studies (43–45) because knowing the rules for dendrite morphology
will provide priors that constrain connectomic maps, just as
Ramachandran plots constrain and validate protein structures.

Materials and Methods
Drosophila melanogaster Strains. The Shibire strain Shits1;; ppk-CD4-tdGFP was
provided by Fernando Vonhoff (Department of Biological Science, University
of Maryland, Baltimore County). Shits1 is a temperature-sensitive mutation that
immobilizes the larva when the temperature is raised from 25.0 °C (the per-
missive temperature) to 30.5 °C (the nonpermissive temperature). These mu-
tants have normal development (SI Appendix, Fig. S8) and normal nociceptive
responses (SI Appendix, Fig. S9) at the permissive temperature.

The fly strain used for structure illumination imagingwas ppk-cd4-tdGFP (a
gift from Han Chun, Cornell University, Ithaca, NY).

Light-Avoidance Assay. To demonstrate that the Shibire strain has similar no-
ciceptive response to control strains (;;ppk-CD4-tdGFP), we performed light-
avoidance tests for both strains. Third-instar larvae were gently picked up from
the vial and placed on a glass slide. Light was delivered by a 488-nm laser
delivered into the SDC microscope through a 4×, NA-0.2 objective, yielding a
light spot of 4 mm × 4 mm and 0.22 mW/mm2 (high intensity for larvae). An
example of light avoidance is shown in SI Appendix, Fig. S9A. The imaging
light was long-pass-filtered (larvae are insensitive to moderate-intensity red
light). An avoidance response was scored when the animal stopped forward
movement or turned its head away from the light spot. The percentage of
positive responses was calculated and is shown in SI Appendix, Fig. S9B.

SDC Imaging. Embryos were collected for 2 h on apple juice agar plates with a
dollop of yeast paste and aged at 25 °C in a moist chamber. The plates con-
taining the first batch of embryos were discarded, as the dendrite morphology
of class IV neurons is less consistent in those animals (16). Larvae were
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immobilized individually on agarose pads (thickness 0.3 to 0.5 mm) sand-
wiched between a slide and a coverslip. The imaging was done by using a
spinning-disk microscope: the Yokogawa CSU-W1 disk (pinhole size 50 μm)
built on a fully automated Nikon TI inverted microscope with perfect focus
system, a scientific complementary metal-oxide semiconductor (sCMOS) cam-
era (Zyla 4.2 plus sCMOS), and running Nikon Elements software. The Shibire
larvae were paralyzed at 30.5 °C during imaging. Individual neuron image
stacks used for superresolution measurements were acquired with a 60×, 1.2-
NA water-immersion lens with a z-step size of 0.16 μm. The whole-larva im-
ages were acquired with a 4×, 0.2-NA objective. To ensure that the neuronal
morphology was not altered at the nonpermissive temperature, each image-
acquisition process was completed within 20 min. Class IV neurons in A3–A5
segments from six or seven larvae were collected at each developmental stage.

Synthetic Image Construction. We simulated the images obtained by our SDC
microscope using the following four components (46, 47): 1) model object
Π(x)—the fluorophores randomly distributed on a cylinder surface, with pixel
size 9 nm. The fluorophore density, on the order of 1,000 μm−2, was based on
estimations of the single-fluorophore intensity in the spinning-disk micro-
scope. 2) Illumination field I(x)—the light intensity as a function of position.
The illumination field is described as a product of an x–y illumination and a z
modulation: I(x) = Ixv(x, y) × Iz(z). In practice, aberrations due to refractive-
index mismatches cause a dimming of the illumination with depth into the
sample (48). Since this overall dimming only depends on the depth z from the
interface, and not on the x–y position in the sample, it is natural to describe
the illumination field as a product of a uniform x–y illumination and a z
modulation. 3) PSF Pconf(x, x’ )—the image of an individual fluorophore due to
diffraction of light—was based on the Gibson and Lanni scalar model (49, 50);
it gave similar results to the vectoral-based PSF model (51). The pinhole size of
the confocal microscope (50 μm) was also incorporated into Pconf(x, x’ ) (52, 53).
4) Image noise B(x)—autofluorescent signal from the surrounding environ-
ment. These components were combined to form the simulated image
through convolution:M(x) = B(x) + ∫ d3x’I(x’ )II(x’ )Pconf(x − x’ ; x), which was
sampled at discrete pixel locations to get the final simulated image M(x) (in
units of photon number). These photons were then transformed into a
number of electrons based on quantum efficiency, shot noise, and the sCMOS
parameters. Then, the image was reduced to the desired camera
resolution—for example, 108 nm/pixel. These values were fed to an
electron-to-digital number converter (considering the readout noise) to obtain
synthetic images (47) (SI Appendix, Fig. S2).

Superresolution Method Based on MC Optimization. The superresolution
method generated simulated images M(x) without photon shot noise. The
tunable parameters of the optimization are the diameter of the model
cylinder, cylinder orientation and position, the FWHM of the PSF (x–y plane)
determined from sample refractive index (1.33 to 1.55), pinhole diameter
(1.6 to 2.5 Airy Unit), emission wavelength (500 to 550 nm), and amplitude
of the spatially uniform background (https://github.com/Maijia-cpu/Super-
resolution-Method). The fluorophore density 1,646/μm2 in the model was
chosen based on estimations from the absolute intensity of the experimental
images. At each step, a simulated image was generated based on the tuned
parameters. Then, a comparison between the simulated image and the ex-
perimental image was made. The MC optimization aimed to find the di-
ameter that minimized the square of the difference (54):

D = ∑
l

m=0

∑N
j=0(Imj

exp − Imj
sim)

2
Am

exp

N∑l
m=0Am

exp

,

where Imj stands for intensity profile across the cylinder as a function of
pixel number j and image sectionm of the stack, N stands for the total number
of pixels for image section m, and Am stands for total pixel intensity of image
section m. Subscript exp stands for experimental images, while sim stands for
simulated images. Six 1,000-step simulations were carried out for each branch
diameter detection. Averages were made over three model cylinder orienta-
tions: 0.0, 0.5, and 1.0 radians relative to the axial direction. Each simulation
gives the diameter that minimizes the square of the difference. The inferred
diameter is an average of diameters from six simulations.

Tetra-Speck Beads Measurements. We used tetra-speck beads of diameter
100 nm (Invitrogen, catalog no. T7279) for PSF FWHM characterizations. The
bead stock solution was diluted 100-fold ratio into BRB80 buffer with 0.2M KCl
and then flowed into a flow channel made by parafilm. The sample was im-
aged by using the same objective (60×, 1.2-NA water-immersion lens) used for
imaging larvae. The image resolution was 108 nm/pixel. To extract the PSF

from 100-nm diameter tetra-speck beads images, we modeled a 100-nm bead,
convolved it with a tunable PSF, and then fit it to the bead images of the
central part. The MC optimization was used to find the PSF that minimized the
square of the intensity difference. The results are shown in Fig. 1F. The PSF
FWHM shown in Fig. 1 E and F was measured with PSF resolution 9 nm/pixel.

Method for Obtaining Reconstructed SIM Images. The larvae were mounted in
50% glycerol in phosphate-buffered saline between a glass slide and a
coverslip. The raw images of the class IV neurons were collected by using a
DeltaVision OMX superresolution imaging system (GE Healthcare) equipped
with a monochrome sCMOS camera (PCO edge) and a 60× Plan Apo oil
objective (NA 1.42) (Olympus). The raw images were then reconstructed and
deconvolved by using the DeltaVision software (GE Healthcare) to obtain
three-dimensional SIM images.

Estimation of Diameters from SIM Images. The SIM images are deconvolved
and show “ringing” at the dendrite edges consistent with a Wiener-type
deconvolution. To estimate the diameter from these images, we used MC
optimization with the four tuning parameters: cylinder diameter, FWHM of
Gaussian-approximated PSF, Wiener filter constant, and slab thickness of the
central part of the image (more details can be found in SI Appendix). At each
step, a simulated image was generated based on the tuning parameters.
Then, a comparison between the simulated image and the experimental
image was made. MC optimization also aimed to minimize the squared

difference D = ∑
N

j=1
(Ijsim − Ijexp)2,where I stands for intensity profile across the

cylinder as a function of pixel number j. Subscript exp stands for experi-
mental images, while sim stands for simulated images. A more detailed
description can be found in SI Appendix.

Class IV Dendrite Tracing. To quantify dendrite morphology, z-series images
for a given neuron were projected onto a two-dimensional image file, and
dendrite arbors were traced by tree toolbox software (55). To improve ac-
curacy, the traces were further adjusted based on intensity profiles from
maximum-intensity-projection images. Leaf number, branch order, and
Strahler number (SI Appendix, Fig. S3) were measured from the traces.

Criteria for Selecting Dendrite Branches for Superresolution Analysis. Our
superresolution method aims to find diameters of hollow cylinders that best fit
dendrite branches. We analyzed branches longer than 5 μm. We avoided re-
gions containing endoplasmic reticulum (ER) or Golgi apparatus (examples can
be found in Fig. 1 and SI Appendix, Fig. S10) (56). Some zeroth-order branches
(connected to the soma) are rich in organelles and were not considered for this
reason. These regions have higher intensities or larger diameters. Outliers of
maximum intensity values and FWHM along the dendrite branches were first
identified. The corresponding parts of branches were then removed. The
remaining parts of the branches were then used for further analysis.

Scaled Diameters and Positions. After removing the parts of a branch that
contain ER or Golgi apparatus, the remaining parts of that branch can be
discontinuous. Through combining all remaining parts of the branch as a
whole, we obtained a “new” branch with all the above criteria satisfied.
Then, three positions were chosen at 1/3, 1/2, and 2/3 of the newly con-
structed branch, and branch diameters were calculated at corresponding
positions. The distance between the selected positions and the branch point
nearest the soma in the original branch geometry is denoted as xi (I = 1, 2, 3).

Mean diameter of each branch denoted by d is an average of di (i = 1, 2, 3).

Exponent pMeasurements. Previous scaling laws have the form: dp
m = dp

d1 + dp
d2.

The exponent p is estimated by minimizing the difference between the right-
and left-hand sides of the equation. To determine this value, we used the
function fsolve in MATLAB.

Data Availability. Detailed materials and methods are reported in SI Ap-
pendix. The code to perform MC simulation is available on GitHub (https://
github.com/Maijia-cpu/Super-resolution-Method). Raw images are available
on Dryad (doi:10.5061/dryad.wstqjq2mp).
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