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Abstract: The coordination chemistry of the N-heterocyclic carbene ligand IMes(NMe2)2, derived from
the well-known IMes ligand by substitution of the carbenic heterocycle with two dimethylamino
groups, was investigated with d6 [Mn(I), Fe(II)], d8 [Rh(I)], and d10 [Cu(I)] transition-metal centers.
The redox behavior of the resulting organometallic complexes was studied through a combined exper-
imental/theoretical study, involving electrochemistry, EPR spectroscopy, and DFT calculations. While
the complexes [CuCl(IMes(NMe2)2)], [RhCl(COD)(IMes(NMe2)2)], and [FeCp(CO)2 (IMes(NMe2)2)](BF4)
exhibit two oxidation waves, the first oxidation wave is fully reversible but only for the first complex
the second oxidation wave is reversible. The mono-oxidation event for these complexes occurs on the
NHC ligand, with a spin density mainly located on the diaminoethylene NHC-backbone, and has
a dramatic effect on the donating properties of the NHC ligand. Conversely, as the Mn(I) center in
the complex [MnCp(CO)2 ((IMes(NMe2)2)] is easily oxidizable, the latter complex is first oxidized on
the metal center to form the corresponding cationic Mn(II) complex, and the NHC ligand is oxidized
in a second reversible oxidation wave.

Keywords: redox-active ligands; N-heterocyclic carbene; organometallic complexes; EPR spec-
troscopy; DFT calculations

1. Introduction

Since the isolation of the first free N-heterocyclic carbene (NHC) by Arduengo in
1991 [1], and the pioneering work of Herrmann in homogeneous catalysis as early as
1995 [2], NHCs were established as privileged ligands in organometallic chemistry and
catalysis [3–7], and NHC-complexes found various promising applications as photolumi-
nescent species [8] and metallodrugs [9], or in material chemistry [10]. This remarkable
development was mainly driven by the aptitude of NHC ligands to stabilize transition
metals in a wide range of oxidation states, due to their strong electronic donation properties,
and to the good steric protection they offer [11,12]. Interestingly, while NHCs were first
considered as fully innocent, pure-spectator ligands, the seminal report by Tumanskii
and Apeloig in 2007 shows that imidazole-derived NHC ligands are also able to accept
and delocalize radicals, or some spin density, within their heterocyclic scaffold [13], and,
hence, that they could also be considered as redox-active ligands [14–18]. In parallel, redox-
active NHC ligands were designed on purpose, by combining the carbenic heterocycle
with some known redox-active moieties, such as ferrocene [19–22], cobaltocenium [23],
quinone [24–26], o-aminophenols [27–31], or more recently, a naphthalene diimide back-
bone [32,33]. The redox-active NHC ligands allowed the design of redox-switchable cata-
lysts by a strong modification of the electronic properties through a redox stimulus [7,34],
or permitted the access to multiple oxidation states of the complexes.
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We entered this area of chemistry in 2018, by reporting preliminary studies on the
redox behavior of the thiourea ANMe2 and A(NMe2)2, derived from the mono-substituted 4-
(dimethylamino)imidazol-2-ylidene IMesNMe2 and the di-substituted 4,5-bis(dimethylamino)
imidazol-2-ylidene IMes(NMe2)2, respectively (Figure 1) [35]. While we studied the latter
amino-derived NHCs mainly in the direction of organometallic catalysis with remarkable re-
sults [36–40], we actually initiated this program by considering the analogy between the NHC
backbones and the electron-rich tri- and tetra-aminoethylene moieties, which are well-known
electron-rich reducing agents [41,42]. We indeed show that both thioureas are redox-active,
due to the presence of the dimethylamino groups onto their backbone. While ANMe2 can
be oxidized mono-electronically to the corresponding persistent radical-cation [ANMe2]•+,
A(NMe2)2 exhibits two oxidized forms, namely, the radical cation [A(NMe2)2]•+ and the diamag-
netic dication [A(NMe2)2]2+ and both are remarkably stable. Thus, we decided to extend this
study to the case of the transition-metal complexes of the diamino-substituted IMes(NMe2)2

ligand (1), and we report herein that this NHC ligand exhibits redox-active behavior with
a variety of metal centers.
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1H NMR spectrum of 2 is particularly simple, as only four singlets are observed, due to 
the C2v symmetry of the molecule, and to the equivalence of the twelve protons of the 
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The redox behavior of complex 2 was first examined by cyclic voltammetry (CV) 
measurements (Figure 2b), and compared to the parent unsubstituted complex 

Figure 1. Redox behaviors of the thiourea ANMe2 and A(NMe2)2 derived from the amino-decorated
IMesNMe2 and IMes(NMe2)2, respectively, and of the transition-metal complexes of IMes(NMe2)2,
subject of the present study.

2. Results and Discussion

2.1. Redox Properties of IMes(NMe2)2 Copper(I) Complex 2

We started our investigation by studying the behavior of the copper(I) complex [CuCl(1)]
(2), which is synthesized by reacting the free stable NHC 1, generated from 1·HOTf by depro-
tonation with one equivalent of potassium bis(trimethylsilyl)amide (KHMDS), with an excess
of CuCl and NaCl at room temperature (Figure 2a). These unusual conditions are necessary to
avoid the competitive formation of the cationic homoleptic complex [Cu(1)2]+ under standard
conditions (1 equivalent of CuCl) [43]. The 1H NMR spectrum of 2 is particularly simple, as
only four singlets are observed, due to the C2v symmetry of the molecule, and to the equiv-
alence of the twelve protons of the NMe2 substituents, as already observed in the previous
complexes of ligand 1 [36,39,40]. The redox behavior of complex 2 was first examined by
cyclic voltammetry (CV) measurements (Figure 2b), and compared to the parent unsubstituted
complex [CuCl(IMes)] (Figure S1). While complex [CuCl(IMes)] displays no clear oxidation
wave, the bis-amino-substituted complex 2 features two fully reversible one-electron transfer
processes at E1/2 = +0.71 V, and +1.11 V vs. SCE. This CV pattern is highly similar to that
observed for the corresponding thiourea A(NMe2)2 [35], with the exception that both oxidation
processes in 2 occur at higher potentials. This suggests that the redox events in complex 2
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might also be located on the NHC ligand, and prompted us to explore in more detail the
mono- and di-oxidized complexes [2]+ and [2]2+.
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Figure 2. (a) Synthesis of complex 2 and subsequent chemical oxidation reaction to form [2]+.
(b) Cyclic voltammogram of complex 2 (Pt working electrode, 1 mM in CH2Cl2 with 0.1 M Bu4NPF6 as
the supporting electrolyte, 200 mV · s−1 scan rate; potentials are calibrated against Fc/Fc+ as internal
standard with E1/2 (Fc/Fc+) = +0.46 V vs. SCE). (c) X-band EPR spectrum of [2]+ in CH2Cl2/toluene
solution (1:1) at room temperature: microwave frequency = 9.6508 GHz, mod. ampl. = 0.1 mT,
power = 2 mW. Simulation parameters: giso = 2.00338, lw = 0.05 + 0.1 mT (Gaussian + Lorentzian)
(d) Isotropic hyperfine coupling constants obtained by DFT computation and by simulation. (e) DFT-
optimized structure of [2]+, and representation of the SOMO (isodensity value of 0.05 a.u.).

Complex 2 was chemically oxidized using an equimolar amount of 1,1′-diacetylferrocenium
tetrafluoroborate ([Fc(Ac)2](BF4), E1/2 = +0.95 V [44]) in CH2Cl2 at−40 ◦C, to give a deep blue
solution of the one-electron oxidized species [2]+, which was characterized immediately by
EPR spectroscopy at room temperature in CH2Cl2/toluene (1:1) solution (Figure 2c). The
X-band EPR spectrum of [2]+ is consistent with a delocalized organic radical (Landé factor
of giso = 2.00338), and displays a symmetrical, hyperfine splitting pattern. The simulated
spectrum fits perfectly with the experimental spectrum, and is composed mainly of hyperfine
interactions between the radical and twelve equivalent protons (aH = 18.6 MHz), with the
two exocyclic nitrogen atoms (aN = 16.1 MHz) and with the copper center (aCu = 36 MHz),
and, to a lower extent, by a hyperfine coupling constant with the two nitrogen atoms of the
diaminocarbene unit (aN = 3.8 MHz) (Figure 2d). The optimized geometry computed by DFT
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for [2]•+ confirms that the copper center remains linear and dicoordinate, which is in agreement
with a Cu(I) center, and shows, in particular, a planarization of the two exocyclic nitrogen atoms
(ΣN = 359.5◦ and 359.6◦), with a twist of the NMe2 plane relative to the carbenic heterocycle
of ca. 34◦, most probably due to steric congestion, as already encountered in the related
thiourea derivative [A(NMe2)2]•+. Similarly, the SOMO orbital of [2]+ is mainly localized on the
bis(dimethylamino)ethylene backbone, involving C−N π-antibonding and C−C π-bonding
characters, with small contributions of the carbene and copper centers (Figure 2e). The DFT-
computed hyperfine coupling (hfc) constants are consistent with the hfc values obtained from
the simulation of the EPR spectrum. The DFT calculation distinguishes two groups in particular
for the hydrogen atoms from the NMe2 groups, depending on whether they are localized on the
inner or outer methyl groups, and gives two distinct hfc coupling constants of aH = 22.3 MHz
and aH = 18.9 MHz. Eventually, the mono-oxidized complex [2]+ is shown to be stable in
solution for 2–3 h at room temperature.

We then tried to generate the di-oxidized complex [2]2+. Due to the high potential
observed for the second oxidation wave in CV (E1/2 = +1.11 V vs. SCE), strong oxidizing
agents were employed. Thus, complex 2 was reacted at a low temperature (−50 ◦C) with
2.5 equivalents of [N(p-BrPh)3](SbF6) (Magic Blue, E1/2 = +1.16 V vs. SCE) or [NO](SbF6)
(E1/2 = +1.46 V vs. SCE), but only mixtures of unidentified products were detected by
NMR, and even if the reaction mixture was indeed diamagnetic, no definite conclusion
could be drawn on the nature of [2]2+.

Overall, this first study confirms that NHC ligand 1 behaves as a redox-active ligand
in organometallic complexes, and that the mono-oxidized complex [2]+ is generated and
characterized by EPR spectroscopy.

2.2. Redox Properties of IMes(NMe2)2 Dicarbonyl Rhodium(I) Complex 3

We then turned our attention to the rhodium carbonyl complex [RhCl(CO)2(1)] (3) that
we had previously synthetized [36], with the aim of evaluating the overall donor properties
of the NHC by means of IR spectroscopy [11].

The cyclic voltammogram of complex 3 displays a first reversible oxidation wave
at E1/2 = +0.71 V vs. SCE, and a second irreversible oxidation process at Epa = +1.26
V vs. SCE (Figure 3b), whose reversibility may be restored at higher scan rate (10 V
· s−1). Interestingly, the first oxidation wave of 3 occurs at the same potential as for
complex 2, and, hence, corresponds to an oxidation of the NHC backbone. To confirm the
nature of the mono-oxidized state [3]+, we then carried out the chemical oxidation of 3
using one equivalent of 1,1′-diacetylferrocenium tetrafluoroborate in CH2Cl2 at −20 ◦C
(Figure 3a), and analyzed [3]+ by EPR spectroscopy in CH2Cl2/toluene solution (1:1) at
room temperature. Unlike the Cu(I) compound [2]+, the Rh(I) complex [3]+ is stable under
these conditions only for several minutes. Analogously to [2]+, the EPR spectrum of [3]+

features a symmetrical hyperfine coupling pattern (Figure 3c), which is perfectly simulated,
taking into account hyperfine interactions between the single electron and the twelve
hydrogen atoms of the NMe2 groups (aH = 18.8 MHz) and with the two exocyclic nitrogen
atoms (aN = 15.6 MHz). These values are very close to those calculated for [2]+, and are
corroborated by DFT calculations, which give similar hfc values for those interactions.
In addition, the DFT calculations indicate two much smaller hyperfine couplings with
the two endocyclic nitrogen atoms and with the 103Rh center (I = 1

2 ), which were not
resolved in the experimental spectrum. The experimental and simulated EPR spectra
and the computed SOMO orbital in [3]+ (Figure 3d) are, thus, in agreement with an
organic radical delocalized on the bis(dimethylamino)ethylene backbone of the NHC
ligand IMes(NMe2)2, leaving the Rh(I) center untouched, as already observed for the thiourea
A(NMe2)2 and the Cu(I) complex 2. Therefore, it is possible to quantify the effect of the
mono-oxidation of the IMes(NMe2)2 ligand on its electronic properties by recording the IR
spectra of complexes 3 and [3]+, as the average frequency of the two νCO bands in the
complexes [RhCl(CO)2(NHC)] in CH2Cl2 is linearly correlated to the Tolman electronic
parameter (TEP) value of the NHC ligand [45,46]. While the carbonyl stretching in 3
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are measured at 1992 and 2075 cm−1 (TEP = 2047 cm−1), the two bands shift to higher
frequencies upon oxidation to [3]+ and are observed at 2010 and 2090 cm−1 (TEP = 2060
cm−1).
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working electrode, 1 mM in CH2Cl2 with 0.1 M Bu4NPF6 as the supporting electrolyte, 200 mV · s−1

scan rate; potentials are calibrated against Fc/Fc+ as internal standard with E1/2 (Fc/Fc+) = +0.46
V vs. SCE). (c) X-band EPR spectrum of [3]+ in CH2Cl2/toluene solution (1:1) at room temperature:
microwave frequency = 9.65225 GHz, mod. ampl. = 0.05 mT, power = 5 mW. Simulation parameters:
giso = 2.00354, lw = 0.4 mT (Gaussian). (d) DFT-optimized structure of [3]+, and representation of
the SOMO (isodensity value of 0.05 a.u.). (e) Isotropic hyperfine coupling constants obtained by
DFT computation and by simulation. (f) IR spectra of complexes 3 (in red) and [3]+ (in blue) in
2250–1850 cm−1 range in CH2Cl2 solution.

A scale of TEP values of selected, relevant NHC ligands is depicted in Figure 4. While
the ligand IMes(NMe2)2 is a better donor than the regular IMes, the mono-oxidized cationic
radical [IMes(NMe2)2]•+ is a quite weak electron-donor, and is an even weaker donor than the
naphthoquinone-annelated IMesNQ (TEP = 2056.6 cm−1) [22,47], the (amino)(amido)carbene
SIMes=O (TEP = 2058 cm−1) [48], and the cationic IMes(NMe3)+ (TEP = 2055.7 cm−1) [49].
However, it remains a greater donor than the least electron-donating NHC ligands rep-
resented by the diamidocarbene SIMes(=O)2 (TEP = 2068 cm−1) [50], the cationic NHC B
(TEP = 2067 cm−1) [51], or the dicyano-substituted NHC C (TEP = 2067 cm−1) [52]. Interest-
ingly, the difference in TEP values of 13 cm−1 between the two redox states of IMes(NMe2)2
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indicates that the latter constitutes a new class of redox-switchable NHC ligand, with the
previous examples relying mainly on the incorporation of redox-active ferrocene-derived
moiety, or of a naphthoquinone, into the NHC skeleton [7,53]. Moreover, the relatively high
shift between the two oxidation states IMes(NMe2)2 / [IMes(NMe2)2]•+ can be explained by
the fact that the redox event in IMes(NMe2)2 occurs directly onto the carbenic heterocycle
and, thus, has a strong effect on the electron-donating properties of the carbenic center.
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2.3. Redox Properties of Half-Sandwich IMes(NMe2)2 Fe(II) and Mn(I) Complexes [4](BF4) and 5 

The study continued with the two isoelectronic d6, 18e-valence electron half-
sandwich complexes [CpFe(CO)2(1)] ](BF4) ([4](BF4), and [CpMn(CO)2(1)] (5) of Fe(II), and 
Mn(I), respectively. Complex [4](BF4) was synthesized through a slight modification of 
the synthetic procedure reported by Guerchais for [CpFe(CO)2(IMes)]I [54]. The free stable 
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2.3. Redox Properties of Half-Sandwich IMes(NMe2)2 Fe(II) and Mn(I) Complexes [4](BF4) and 5

The study continued with the two isoelectronic d6, 18e-valence electron half-sandwich
complexes [CpFe(CO)2(1)] ](BF4) ([4](BF4), and [CpMn(CO)2(1)] (5) of Fe(II), and Mn(I), re-
spectively. Complex [4](BF4) was synthesized through a slight modification of the synthetic
procedure reported by Guerchais for [CpFe(CO)2(IMes)]I [54]. The free stable carbene 1
was first reacted with the precursor [CpFe(CO)2I] in the dark to generate the intermediate
[CpFe(CO)2(1)]I, and the iodide anion was then exchanged in situ for the non-coordinating
tetrafluoroborate anion BF4

−, to yield the complex [4](BF4) in 43% isolated yield (Scheme 1).
It is of note that the anion metathesis is found to be crucial for the photostability of complex
[4](BF4). The Mn(I) complex [CpMn(CO)2(1)] (5) was synthesized according to a classi-
cal UV light-induced substitution of one carbonyl by the free carbene 1 from cymantrene
[CpMn(CO)3] [55], and was isolated in very good yield. Both complexes were fully char-
acterized by spectroscopic and analytical methods, and their molecular structures firmly
established by single-crystal X-ray diffraction analysis (Figure 5). Beyond the expected piano-
stool coordination geometries around the metal and the metal−CNHC bond lengths, which are
within the classical range for such complexes [54,55], the C4−C5 bond lengths are characteris-
tic of a double C=C bond (1.35 Å) [56], and the pyramidalization of the two exocyclic nitrogen
atoms (ΣN ~ 350◦) indicates that the nitrogen lone pairs do not interact with the π-system of
the carbenic heterocycle, as previously observed in other complexes [36,39,40].
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selected bond lengths (Å) and angles (deg). Ellipsoids drawn at 30% probability level. Hydrogen
atoms and counter-anions omitted for clarity.

While complexes [4](BF4) and 5 are isoelectronic, their cyclic voltammograms differ
substantially (Figure 6). The iron complex [4](BF4) shows a similar electrochemical behavior
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to those of previously studied derivatives 2 and 3, with a reversible oxidation wave at
E1/2 = +0.84 V vs. SCE, and an irreversible second oxidation process at Epa = +1.36 V vs.
SCE, which indicates that the NHC ligand 1 is still the location where the redox process
takes place. Conversely, the much more electron-rich Mn(I) complex 5 exhibits three
oxidation processes at E1/2 = +0.08 V, +0.75 V, and +1.33 V vs. SCE, with the two first being
fully reversible and the latter only partially. The potential at +0.08 V vs. SCE of the first
additional oxidation wave lies in the typical range of potentials for the oxidation of Mn(I) to
Mn(II) centers in a series of [CpMn(CO)2(NHC)] reported by us [57,58] and others [59], and,
thus, corresponds to a metal-centered oxidation process. The lower potential of this process
for 5 (E1/2 = +0.08 V vs. SCE), compared to the process for the parent [CpMn(CO)2(IMes)]
(E1/2 = +0.16 V vs. SCE), is also consistent with the more electron-donating character of
ligand 1, relative to the IMes ligand.
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Figure 6. (a,b) Cyclic voltammograms of complexes 4 and 5, respectively (Pt working electrode,
1 mM in CH2Cl2 with 0.1 M Bu4NPF6 as the supporting electrolyte, 200 mV · s−1 scan rate; potentials
are calibrated against Fc/Fc+ as internal standard with E1/2 (Fc/Fc+) = +0.46 V vs. SCE). (c) X-
band EPR spectrum of [4]2+ in CH2Cl2/toluene solution (1:1) at room temperature: microwave
frequency = 9.5042 GHz, mod. ampl. = 0.1 mT, power = 5 mW. Simulation parameters: giso = 2.0006,
lw = 0.43 mT (Gaussian) (d) Isotropic hyperfine coupling constants obtained by DFT computation
and by simulation for [4]2+. (e) X-band EPR spectrum of [5]+ in CH2Cl2/toluene solution (1:1) at room
temperature: microwave frequency = 9.6513 GHz, mod. ampl. = 0.5 mT, power = 2 mW. Simulation
parameters: giso = 2.0537, aMn = 150.2 MHz, and lw = 1.98 mT (Gaussian). (f,g) DFT-optimized
structures for [4]2+ and [5]+, respectively, and representation of SOMO (isodensity value of 0.05 a.u.).
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These first assumptions are confirmed by the study of the mono-oxidized species
[4]2+ and [5]+. The Fe-complex [4]2+ is generated chemically by oxidation with 1,1′-
diacetylferrocenium tetrafluoroborate, and the resulting red/purple solution analyzed
by X-band EPR and IR spectroscopies at room temperature (Figure 6). The same hyperfine
coupling pattern is observed as encountered for the previous complexes [2]+ and [3]+, and
is perfectly fitted by hyperfine couplings with the 12 hydrogen atoms (aH = 18.1 MHz) and
the two nitrogen atoms (aN = 16.2 MHz) of the exocyclic NMe2 groups. IR monitoring of
[4](BF4) oxidation in CH2Cl2 shows the partial formation of new species [4]2+, evidenced
by the appearance of νCO bands at 2054 and 2015 cm−1, which gradually decompose
at room temperature, precluding its isolation. The average νCO value for [4]2+ exhibits
a ~12 cm−1 higher frequency shift relative to that of the starting product, thus, showing
similar behavior as observed in case of Rh(I) complexes 3/[3]+ (vide supra). The calculated
SOMO of [4]2+ is also in agreement with the experimental data, and confirms that the
radical is mainly localized on the bis(dimethylamino)ethene backbone of ligand 1. The
Mn(I) complex 5 is readily oxidized using one equivalent of AgSbF6 to yield the oxidized
complex [5](SbF6), which is isolated in pure form in 91% yield as black crystals. The X-band
EPR spectrum of [5]+ recorded at room temperature is consistent with a Mn(II) metal
center, as the Landé factor of giso = 2.0537 deviates significantly from an organic radical,
and the spectrum is composed of only six equidistant peaks arising from the hyperfine
coupling between the unpaired electron and the 55Mn nucleus (I = 5/2, abundance = 100%,
aMn = 150.2 MHz). This Mn(I)-to-Mn(II) transformation in [5](SbF6) is also confirmed by
IR (Figure S2), UV–vis (Figure S3), and paramagnetic 1H NMR spectroscopy, exhibiting
similar features to the previously observed [Cp(CO)2Mn(IMes)](BF4) analogue [54], as well
as by an X-ray diffraction analysis of single crystals (Figure 4). Finally, DFT calculations of
[5]+ show that the SOMO is mainly located on the Mn center. In particular, the molecular
structure of [5](SbF6) shows that the metrics within the NHC ligand 1 remain about the
same compared to the non-oxidized complex 5, especially on the diaminoethene backbone.
As expected for such Mn(II) NHC complexes, the Mn1−C3 bond [2.0440(18) Å] (DFT in
vacuo: 2.015 Å) is a little elongated, relative to the Mn1—C3a bond in 5 [2.021(2) Å] [57].

The full reversibility of the second oxidation wave in the CV of 5 then prompted us
to explore the oxidation of [5](SbF6). The latter is cleanly oxidized by using one more
equivalent of AgSbF6 in CH2Cl2 to give a dark blue solution, from which the dicationic
complex [5](SbF6)2 is isolated as a black powder in 80% yield. In contrast to the first
metal-centered oxidation of complex 5, leading to ca. 120 cm−1 high frequency shift of
νCO bands, the average stretching CO frequencies are much less affected upon the [5]+ →
[5]2+ transformation (+7.5 cm−1), being consistent with the occurrence of electron transfer
at the NHC ligand. The intense absorption at 578 nm observed in the UV–vis spectrum
of [5](SbF6)2 (Figure S3) is similar to that observed for the radical cation of [A(NMe2)2]•+

(590 nm), previously attributed to the electronic transition involving SOMO orbital by
TD-DFT calculations [32]. Important changes are worth mentioning in the molecular
structure of [5](SbF6)2 as compared to [5](SbF6) and 5 (Figure 5), especially on the NHC
backbone. Indeed, the two exocyclic nitrogen atoms are no longer pyramidalized but planar
[ΣN3 = 359.4◦, ΣN4 = 359.6◦], the C4−C5 bond of the imidazolyl ring is elongated [+0.11 Å]
relative to C4−C5 bonds in 5 and [5]+, and the C4−N3 and C5−N4 bonds are shortened
[ca. −0.06 Å] relative to the corresponding bonds in 5 and [5]+. This is consistent with
a π-delocalization through the bis(dimethylamino)ethene backbone N3−C4−C5−N4 of
a radical cation, as already calculated in the previous complexes. Moreover, the strong
shortening of the Mn1−C3 bond [1.923(11) Å] in [5]2+ relative to 2.0440(18) Å in [5]+, is
consistent with an enhanced π-backbonding from the Mn center into the more π-acidic,
oxidized ligand 1•+. It is of note that this example represents the shortest Mn−NHC bond
reported in the literature, being comparable only with two Mn(I) and Mn(IV) complexes
bearing pincer (1.9360(16)) Å [60] and tripodal (1.938(2)) Å [61] imidazol-2-ylidene ligands,
respectively. From a magnetic point of view, both the triplet state (S = 1) and broken
symmetry state (Ms = 0) are quasi-isoenergetic (i.e., within DFT error, a few tens of cm−1).
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This does not allow us to conclude what the spin ground state of [5]2+ is (S = 1 or S = 0),
and what is expected to be observed by EPR.

As it turns out, no signal is detected by recording the EPR spectra of complex [5](SbF6)2
at various temperatures (from 4.2 K to room temperature). DFT only predicted that the
two single electrons are expected to be weakly magnetically coupled. The fact that no
EPR signal is observed could be due to a relatively high zero-field splitting constant of
the EPR spectrum of the S = 1 (typically D > 1 cm−1), possibly associated with very short
relaxation times. These features would lead either to low-field (X-band) EPR silent S = 1
system (D > 1cm−1) [62], or to a very broad EPR signal (very short relaxation times) [63],
which is lower in intensity than the detection limit of our EPR spectrometer.

3. Materials and Methods

All manipulations were performed under an inert atmosphere of dry nitrogen by
using standard vacuum line and Schlenk tube techniques. Glassware was dried at 120 ◦C
in an oven, for at least three hours. THF, diethyl ether, pentane, toluene, and CH2Cl2 were
dried using an innovative technology solvent purification system.

Imidazolium triflate IMes(NMe2)2·HOTf (1·HOTf) [36], [RhCl(CO)2(IMes(NMe2)2)] [36],
and [CpFe(CO)2I] [64] were prepared according to procedures in the literature. Following
one such procedure, 1,1′-diacetylferrocenium tetrafluoroborate was prepared through the
oxidation of 1,1′-diacetylferrocene by benzoquinone/HBF4·OEt2 [65]. CuCl was purified
by dissolution in the minimum of concentrated HCl, followed by precipitation by adding
distilled water, and filtration through a fritted funnel. The off-white powder was dried
carefully and stored in a glovebox. Technical quality [CpMn(CO)3] was purified by the
crystallization from hexane, as described earlier [66]. The 0.5 M solution of KHMDS
in toluene was prepared by weighing 2.0 g of solid KHMDS (stored in a glovebox) in
a volumetric flask, and adding toluene to complete to 20 mL. AgSbF6 (Aldrich) was stored
in the glovebox. All other reagents were commercially available, and used as received.

NMR spectra were recorded on Bruker AV300 or AV400 spectrometers. Chemical
shifts are reported in ppm (δ) compared to TMS (1H and 13C), using the residual peak of
deuterated solvent as internal standard [67]. Solution IR spectra were recorded in 0.1 mm
CaF2 cells using a PerkinElmer Frontier FT-IR spectrometer, and given in cm−1 with relative
intensities in parentheses. UV–vis spectra were recorded on a Perkin Elmer Lambda
950 UV/Vis/NIR spectrometer in 1 cm quartz cell under nitrogen atmosphere (CH2Cl2,
10−4 M sample concentration). Elemental analyses were performed by the microanalytical
service of the LCC, and mass spectra (ESI mode) by the mass spectrometry service of the
“Institut de Chimie de Toulouse”.

X-band EPR data were recorded using Elexsys ESP 500 and EMX Brüker EPR spec-
trometers. Typical settings: 2 mW microwave power and 0.1 mT modulation amplitude.
For all species, spectra recorded with lower modulation amplitudes do not reveal more
lines or different patterns (data not shown). Landé factors were measured by comparison
with a reference DPPH sample (g = 2.0036). The numerical simulation of EPR spectra was
performed using EasySpin software [68].

Chloro-(1,3-dimesityl-4,5-bis(dimethylamino)imidazol-2-ylidene)copper(I) (2).
A solution of KHMDS (0.5 M in toluene, 610 µL, 0.31 mmol, 1.1 equiv) was added

dropwise to a solution of 1·HOTf (150 mg, 0.278 mmol) in THF (15 mL), at 0 ◦C. After
10 min, CuCl (55 mg, 0.56 mmol, 2 equiv.) was added as a solid, followed by NaCl (97.3 mg,
1.66 mmol, 6 equiv.), and the solution was stirred at room temperature for 1.5 h. After the
evaporation of THF, the crude product was dissolved in toluene, and filtered over Celite.
The toluene was evaporated, and the resulting brownish solid was washed with pentane,
to afford complex 2 (133 mg, 96%) as a white powder.

1H NMR (400 MHz, CDCl3): δ = 6.96 (s, 4H, CH Mes), 2.58 (s, 12H, N−CH3), 2.33 (s,
6H, CH3 para), 2.12 (s, 12H, CH3 ortho).

13C{1H} NMR (101 MHz, CDCl3): δ = 171.8 (N2C−Cu), 138.9, 135.2, 134.3, 133.9 (CAr),
129.5 (CHMes), 43.3 (N−CH3), 21.3 (CH3 para), 18.3 (CH3 ortho).



Molecules 2022, 27, 3776 11 of 17

MS (ESI, positive mode): m/z (%): 494 (100) [M–Cl + MeCN]+.
HRMS (ESI): m/z calcd. for C27H37N5

63Cu+: 494.2345, found 494.2354, εr = 1.8 ppm.
Generation and EPR characterization of [2]+.

Solid 1,1′-diacetylferrocenium tetrafluoroborate (4.2 mg, 12 µmol, 1.0 equiv.) was
added to a solution of complex 2 (5.8 mg, 12 µmol, 1.0 equiv.) in CH2Cl2 (1 mL) at –40 ◦C.
After 5 min, 50 µL of the reaction mixture was syringed in an EPR tube at room temperature,
which was completed with 50 µL of toluene. The EPR spectrum was immediately recorded.
Compound [2]+ was stable for at least 3 h at room temperature.

Generation and EPR characterization of [3]+.

Solid 1,1′-diacetylferricinium tetrafluoroborate (4.3 mg, 12 µmol, 1.0 equiv.) was added
to a solution of complex 3 (7.0 mg, 12 µmol, 1.0 equiv.) in CH2Cl2 (1 mL), at −20 ◦C. The
solution became violet. After 5 min, 50 µL of the reaction mixture was syringed in an EPR
tube at room temperature, which was completed with 50 µL of toluene. The EPR spectrum
was immediately recorded.

(η5-Cyclopentadienyl)-Dicarbonyl-(1,3-Dimesityl-4,5-Bis(Dimethylamino)Imidazol-2
-ylidene)iron (II) Tetrafluoroborate [4](BF4).

A solution of KHMDS (0.5 M in toluene, 380 µL, 0.19 mmol, 1.02 equiv.) was added
dropwise to a solution of 1·HOTf (100 mg, 0.185 mmol) in toluene (5 mL), at 0 ◦C. After
30 min, the toluene was evaporated, in order to remove HMDS, and the crude product
was dissolved anew in 5 mL toluene, and filtered over Celite under nitrogen. The toluene
was evaporated, and the carbene was dissolved in dry THF (5 mL). CpFe(CO)2I (61.8 mg,
0.2 mmol, 1.08 equiv.) was added as a solid in the dark (under visible light irradiation,
a carbonyl ligand can be removed and replaced by the iodine counter-anion). The solution
was stirred for 1 h at room temperature, and THF was evaporated (always in the absence
of light). The solid was taken up in dichloromethane (5 mL), degassed water (5 mL) and
NaBF4 (61.5 mg, 0.56 mmol, 3 equiv.) were added, and the reaction mixture was stirred
for 30 min. The organic phase was isolated, dried over Na2SO4, and evaporated. The
yellow solid was eventually washed with ether, and crystallized by the slow diffusion
of a dichloromethane solution in diethyl ether, to afford [4](BF4) (67 mg, 54%) as yellow
crystals, some of which were suitable for X-ray diffraction.

1H NMR (400 MHz, CDCl3): δ = 7.07 (s, 4H, CH Mes), 4.73 (s, 5H, CH Cp), 2.54 (s, 12H,
NCH3), 2.39 (s, 6H, CH3 para), 2.09 (s, 12H, CH3 ortho).

13C{1H} NMR (101 MHz, CDCl3): δ = 209.8 (Fe−CO), 162.7 (N2C−Fe), 140.6, 139.7,
136.3, 134.6 (CAr), 130.0 (CHMes), 86.3 (CHCp), 43.5 (N−CH3), 21.3 (CH3 para), 18.7(CH3 ortho).

IR (CH2Cl2) νCO 2045 (s), 2001 (s) cm−1.
MS (ESI, positive mode): m/z (%): 362 (100) [M − BF4]+

HRMS (ESI): m/z calcd. for C32H39N4O2
56Fe+: 567.2422, found 567.2432, εr = 1.8 ppm.

Generation and EPR characterization of [4]2+

Solid 1,1′-diacetylferrocenium tetrafluoroborate (4.2 mg, 12 µmol, 1.0 equiv.) was
added to a solution of complex [4](BF4) (7.8 mg, 12 µmol, 1.0 equiv.) in CH2Cl2 (1 mL),
at –20 ◦C. After 5 min, 50 µL of the reaction mixture was syringed in an EPR tube at
room temperature, which was completed with 50 µL of toluene. The EPR spectrum was
immediately recorded. Compound [4]2+ was stable for at least 3 h at room temperature.

IR (CH2Cl2): νCO 2054 (s), 2015 (s) cm−1.
(η5-Cyclopentadienyl)-Dicarbonyl-(1,3-Dimesityl-4,5-Bis(Dimethylamino)Imidazol-

2-Ylidene)Manganese (I) (5).
To a suspension of 1·HOTf (216 mg, 0.4 mmol) in toluene (30 mL), a solution of KHMDS

(0.9 mL of 0.5 M, 0.45 mmol, 1.1 equiv.) was added, and the resulting, slightly yellow
solution was sonicated for 5 min, and then stirred at RT for 15 min. CpMn(CO)3 (82 mg,
0.4 mmol, 1 equiv.) was added, and the reaction mixture was irradiated with UV light
(370–380 nm), using a custom LED-based reactor (ca. 15W power), until νCO bands of the
product at the measurements of 1904 and 1831 cm–1 ceased to increase (ca. 1h). The toluene
was evaporated under vacuum, and the residue was purified by column chromatography
on silica (1 × 6 cm). A slightly yellow band containing traces of cymantrene was eluted
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with 10:1 hexane/toluene mixture, followed by yellow–orange band of the target product.
The solution was evaporated under vacuum, and the crude product was crystallized from
ether/hexane mixture at –20 ◦C, to afford 5 (195 mg, 86%) as yellow crystals. Single crystals,
suitable for X-ray diffraction, were obtained from concentrated solution in toluene at room
temperature.

1H NMR (400 MHz, C6D6): δ = 6.92 (s, 4H, CH Mes), 4.02 (s, H, CH Cp), 2.23(s, 12H,
NCH3), 2.20 (s, 18H, CH3 Mes).

13C{1H} NMR (101 MHz, C6D6): δ = 234.7 (Mn−CO), 198.0 (N2C−Mn), 138.1, 137.2,
137.1, 136.5 (CAr), 129.4 (CHMes), 81.8 (CH Cp), 43.4 (N−CH3), 21.2 (CH3 para), 19.3 (CH3 ortho).

IR (CH2Cl2): νCO 1904 (s), 1830 (s) cm−1.
UV–vis (CH2Cl2): λ 387 nm (ε 1400 M−1 cm−1).
Elemental analysis: calcd (%) for C32H39MnN4O2 (MW = 566.6): C 67.83, H 6.94, N

9.89; found: C 68.15, H 7.20, N 9.91.
(η5-Cyclopentadienyl)-Dicarbonyl-(1,3-dimesityl-4,5-Bis(Dimethylamino)Imidazol-

2-Ylidene)Manganese (II) Hexafluoroantimonate ([5](SbF6)).
To a stirred yellow solution of complex 5 (142 mg, 0.25 mmol) in CH2Cl2 (5 mL), solid

AgSbF6 (86 mg, 0.25 mmol, 1 equiv.) was added, in one portion, at −20 ◦C. The color of the
reaction turned green–brown, and the precipitate of metallic silver gradually appeared. The
reaction mixture was warmed to room temperature, and stirred for 15 min. IR analysis of
the aliquot shows the quantitative conversion of the starting material, and the appearance
of new bands at νCO 2027 and 1950 cm−1, belonging to the oxidation product [5](SbF6).
The solvent was evaporated under vacuum; the residue was again dissolved in CH2Cl2
(2 mL), and filtered through Celite. Diethyl ether (20 mL) was added dropwise to the
resulting green–brown solution under vigorous stirring, to induce the precipitation of the
product. The supernatant was removed by decantation, and the precipitate was washed
with additional Et2O (5 mL), and dried under vacuum to give [5](SbF6) (182 mg, 91%) as
black microcrystalline powder. Single crystals, suitable for X-ray diffraction, were obtained
by vapor diffusion of ether into a concentrated solution of [5](SbF6) in dichloromethane.

1H NMR (400 MHz, CD2Cl2, 25 ◦C): δ 14.09 (5H, w 1
2

= 1300 Hz, Mn−Cp), 8.13 (4H,
w 1

2
= 70 Hz, CHMes), 6.67 (6H, w 1

2
= 300 Hz, Me), 5.96 (12H, w 1

2
= 150 Hz, Me), 2.47 (12H,

w 1
2

= 180 Hz, Me).

IR (CH2Cl2): νCO 2027 (s), 1950 (s), νC=C 1665−1600 (m br) cm−1.
UV–vis (CH2Cl2): λ1 434 (ε 1200 M−1 cm−1), λ1 662 nm (ε 550 M−1 cm−1).
Elemental analysis: calcd (%) for C32H39F6MnN4O2Sb (MW = 802.4): C 47.90, H 4.90,

N 6.98; found: C 48.17, H 5.09, N 6.64.
(η5-Cyclopentadienyl)-Dicarbonyl-(1,3-Dimesityl-4,5-Bis(Dimethylamino)Imidazol-

2-Ylidene)Manganese (II) (bis)Hexafluoroantimonate ([5](SbF6)2).
To a stirred yellow solution of complex [5](SbF6) (105 mg, 0.13 mmol) in CH2Cl2 (5 mL),

solid AgSbF6 (45 mg, 0.13 mmol, 1 equiv.) was added, in one portion, at −20 ◦C. The color
of the reaction mixture immediately changed to deep blue, and black precipitate appeared.
The reaction mixture was slowly warmed to room temperature, stirred for additional
30 min, and the volatiles were removed under vacuum. The residue was repeatedly
extracted with CH2Cl2 under sonication (6 × 5 mL), combined dark blue solutions were
filtered through Celite, and Et2O (25 mL) was added dropwise under vigorous stirring, to
induce the precipitation of the product. The supernatant was removed by decantation, and
the precipitate was washed with ether (10 mL) and dried under vacuum to give [5](SbF6)2
(108 mg, 80%) as deep violet powder. Single crystals, suitable for X-ray diffraction, were
obtained by the layering of toluene on the solution of [5](SbF6)2 in CH2Cl2 at −20 ◦C.

1H NMR (400 MHz, CD2Cl2, 25 ◦C): δ 8.60 (8H, w 1
2

= 300 Hz, Mn−Cp + Me), 7.11 (4H,
w 1

2
= 35 Hz, CHMes), 5.04 (3H, w 1

2
= 25 Hz, Me), 2.73–2.05 (several overlapping signals of

variable width, 18H, Me), 1.26 (3H, w 1
2

= 13 Hz, Me), 0.85 (3H, w 1
2

= 30 Hz, Me).

IR (CH2Cl2): νCO 2024 (s), 1968 (s), νC=C 1602 (s) cm−1.
UV–vis (CH2Cl2): λ1 386 (ε 2400 M−1 cm−1), λ2 590 nm (ε 8000 M−1 cm−1).
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Elemental analysis: calcd (%) for C32H39F12MnN4O2Sb2×CH2Cl2 (MW = 1123.1): C
35.29, H 3.68, N 4.99; found: C 35.32, H 3.72, N 4.79.

Electrochemical studies
Cyclic voltametric measurements were carried out with a Autolab PGSTAT100 poten-

tiostat, controlled by GPES 4.09 software. Experiments were performed under argon at
room temperature, in a homemade airtight three-electrode cell. The reference electrode
consisted of a saturated calomel electrode (SCE) separated from the solution by a glass frit.
The counter electrode was a platinum wire of ca. 1 cm2 apparent surface. The working
electrode was a Pt microdisk (0.5 mm diameter). The supporting electrolyte, [nBu4N](PF6)
(99% electrochemical grade), was dried at 120 ◦C and stored under Ar. The CH2Cl2 so-
lutions of 2, 3, [4](BF4), and 5 used for the electrochemical studies were typically 10−3 M
in complex, and 0.1 M in supporting electrolyte. Before each measurement, the solutions
were degassed by bubbling Ar, and the working electrode was polished with a polishing
machine. Potentials are referenced to the SCE, and were calibrated using the Fc/Fc+ couple,
by adding ferrocene (10−3 M) at the end of the experiments. Under the experimental
conditions employed in this work, the half-wave potential (E1/2) of the Fc+/Fc couple in
CH2Cl2 occurs at E1/2 = +0.46 V vs. SCE. Cyclic voltametric studies include the study of the
compounds in oxidation, and in reduction at various scan rates (from 50 mV/s to 10 V/s).

X-ray diffraction analyses. X-ray diffraction data were collected on a Bruker SMART /
APEX II diffractometer ([4](BF4)), an Oxford diffraction Gemini diffractometer (5), an Xcal-
ibur Gemini Ultra diffractometer ([5](SbF6)), or on a Bruker D8/APEX II/Incoatec Mo IµS
Microsource diffractometer ([5](SbF6)2) using, in most cases, MoKα radiation (λ = 0.71073 Å,
graphite monochromator), besides complex [5](SbF6), for which CuKα radiation (λ = 1.54184 Å,
graphite monochromator) was used. Crystal and structure refinement details are given
in the Table S1. All calculations were performed on a PC compatible computer using the
WinGX system [69]. The structures were solved using the SIR92 program [70], which re-
vealed in each instance the position of most of the non-hydrogen atoms. All the remaining
non-hydrogen atoms were located by the usual combination of full matrix least-squares re-
finement, and difference electron density syntheses using the SHELX program [71]. Atomic
scattering factors were taken from the usual tabulations. Anomalous dispersion terms
for the Mn and Fe atoms were included in Fc. All non-hydrogen atoms were allowed
to vibrate anisotropically. The hydrogen atoms were set in idealized positions (R3CH,
C–H = 0.96 Å; R2CH2, C–H = 0.97 Å; RCH3, C–H = 0.98 Å; C(sp2)–H = 0.93 Å; Uiso 1.2 or
1.5 times greater than the Ueq of the carbon atom to which the hydrogen atom is attached),
and their positions refined as “riding” atoms. After completing the initial structure solution
of complexes [5](SbF6) and [5](SbF6)2, it was found that ca. 10% and 37% of the total cell
volume was filled with disordered solvent, accounting for 84 and 386 electrons per unit
cell, respectively. These solvent molecules, likely to be Et2O in partial occupation in case of
[5](SbF6) and CH2Cl2/toluene for [5](SbF6)2, could not be well-modelled in terms of atomic
sites, and the SQUEEZE procedure [72] was, therefore, applied to the data to remove this
contribution. CCDC 2170556-2170559 contains the supplementary crystallographic data for
the structures unveiled in this paper. These data can be obtained, free of charge, from the
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4. Conclusions

Following a first study on the thiourea derivatives, we then conducted a complete
exploration of the redox behavior of a series of transition-metal complexes supported by
the NHC ligand IMes(NMe2)2 (1), whose carbenic heterocycle is substituted by two dimethy-
lamino groups. The ability of ligand 1 to act as a redox-active ligand is shown through
different spectroscopic, and even crystallographic, techniques on the oxidized forms of the
complexes. In a similar behavior to the thiourea derivative, the two dimethylamino groups
in 1 play a critical role in the stabilization of the mono-oxidized ligand [IMes(NMe2)2]•+

(1•+) in the complexes, by allowing an efficient delocalization of the spin density over the
diaminoethene backbone. Conversely, the bis-oxidized state of the ligand is not generated

www.ccdc.cam.ac.uk/data_request/cif
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in these complexes. The oxidation process of the NHC ligand is shown to have a pro-
found effect on its overall electronic donation, leading to a new redox-switchable NHC.
An obvious limitation of this ligand is a relatively high oxidation potential, which would
limit its implementation in organometallic catalysis. We are, therefore, considering further
developments, aimed at improving both the accessibility and stability of the oxidized forms
of the NHC ligands, by changing the nature and location of the redox-active moiety, the
NHC platform, and/or the denticity of the NHC ligand. Investigations along those lines
are currently being performed in our laboratories.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27123776/s1: SI containing IR, UV-Vis, and NMR spectra,
crystallographic information and the atomic coordinates of the calculated structures [73–76].
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