
Oncotarget1118www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 5

AID-induced remodeling of immunoglobulin genes and B cell 
fate

Brice Laffleur1,2, Nicolas Denis-Lagache1,2, Sophie Péron1,2, Christophe Sirac1,2, 
Jeanne Moreau1,2 and Michel Cogné1,2,3

1 Limoges University, Limoges France ; 
2 Centre National de la Recherche Scientifique,
 3 Institut Universitaire de France, Limoges, France

Correspondence to: Michel Cogné, email:cogne@unilim.fr 
Keywords: AID; B cell fate; BCR, immunoglobulin genes
Received:  October 28, 2013 Accepted: December 12, 2013 Published: December 14, 2013

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT:
Survival and phenotype of normal and malignant B lymphocytes are critically 

dependent on constitutive signals by the B cell receptor (BCR) for antigen. In addition, 
either antigen ligation of the BCR or various mitogenic stimuli result in B cell activation 
and induction of activation-induced deaminase (AID). AID activity can in turn mediate 
somatic hypermutation (SHM) of immunoglobulin (Ig) V regions and also deeply 
remodel the Ig heavy chain locus through class switch recombination (CSR) or locus 
suicide recombination (LSR). In addition to changes linked to affinity for antigen, 
modifying the class/isotype (i.e. the structure and function) of the BCR or suddenly 
deleting BCR expression also modulates the fate of antigen-experienced B cells.

1. AID FUNCTION AND SITES OF ACTION

Activation-induced deaminase (AID), an ancestral 
AID/APOBEC family member, deaminates DNA cytidines 
into uridines within immunoglobulin (Ig) variable (V) 
regions in all vertebrate species carrying B cells, thus 
supporting their Ag-driven diversification through gene 
conversion (GCV) and/or somatic hypermutation (SHM) 
[1]. It also diversifies expression of Ig heavy chain (IgH) 
constant (CH) regions in frogs, birds and mammals, who 
have developed class switch recombination (CSR) of CH 
genes. 

AID was first identified as specifically expressed 
during the antigen-driven B cell maturation that mostly 
occurs in germinal centers (GC) of peripheral lymphoid 
organs [2]. It is mandatory for SHM and CSR [3] while its 
defect in patients results in hyper-IgM immune deficiency 
[4]. Its random mutagenic activity alters V domain 
complementarity determining regions, and thus modulates 
BCR (and later on antibody) binding affinity in a selection 
process where SHM is coordinated with cell competition 
for optimal intra-GC interactions with antigen-presenting 
cells [5]. In some mammals, especially in cattle, AID-
mediated SHM can also begin in fetal gut associated 
lymphoid tissues prior to any contact with exogenous 

antigens [6].
Biochemically, G:U mismatches created through 

AID deamination can be processed in several ways, 
preferentially leading to mutations rather than repair 
within Ig genes. In « phase 1 » mutations, direct replication 
across a G:U mismatch can generate transitions from G:C 
to A:T base pairs. Base excision repair (BER) and uracil 
removal by uracil N-glycosylase (UNG) instead generate 
abasic sites, which subsequently undergo DNA nicking 
by apurinic/apyrimidinic endonuclease, and are repaired 
during replication by error-prone DNA polymerases as 
both transitions and transversions. G:U mismatches can 
also be processed by the mismatch repair (MMR) pathway 
involving MSH2/MSH6, with associated error-prone DNA 
polymerases and then result in patches of « phase 2 » 
mutations at both G:C and (preferentially) A:T base pairs 
around targeted cytosines. 

Primary regulation of AID activity in B cells relies 
on its strictly controlled tissue-specific and stage-specific 
expression upon cell activation, due to control of the level 
of AID transcripts by both ubiquitous and lymphoid-
specific transcription factors (Pax-5, STAT6, SP1, C/EBP) 
and miRNAs (miR155 and miR181b). This ensures high 
AID expression only in activated B cells with appropriate 
signals, as occurring within GCs upon interaction with 
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follicular dendritic cells and T follicular helper cells. 
In addition, AID can appear at low levels in some bone 
marrow developing B cells upon stimulation of toll like 
receptors (TLR) [7, 8].

AID requires transcription of target regions and 
also preferentially deaminates cytosine into uracil 
within WRC motifs (W = A/T, R = A/G) [9]. Besides 
potential constraints concerning the “accessibility” of 
target DNA, another major link between AID targeting 
and transcription is that AID loading onto Ig genes 
requires physical interaction with stalled RNAPII and 
bound Spt5 that occurs immediately downstream from 
transcription start sites [10]. The RNAPII associated 
polymerase associated factor (PAF) complex also helps 
recruit AID [11]. CH regions are protected from AID 
attack due to the absence of RNAPII pausing. Switch 
(S)-region transcription before AID recruitment is under 
the control of cytokine-dependent germline promoters 
preceding CH regions and a series of B cell activation-
dependent transcriptional enhancers located in the 3’ 
regulatory region (3’RR) of the IgH locus [12–15]. 
While AID generates mutations in V regions, it initiates 
DNA breaks (DSBs) in S regions, thereby promoting 
large deletions [16, 17]. DSBs activate the ubiquitous 
DNA damage response, which is then resolved through 
classical (C-) or alternative non-homologous end joining 

(A-NHEJ). Recruitment of 53BP1 and Rif1 [18] to broken 
DNA ends (and subsequent formation of γH2AX foci) is 
required for protection of DNA ends from resection before 
repair and ligation by C-NHEJ rather than A-NHEJ [19, 
20]. AID recruitment to both V and S regions (and S-S 
region synapses, likely favored by IgH locus DNA loops) 
requires IgH 3’RR enhancer activity elements [13] [15] 
[14] [21] [22]. Multiple 3’RR genetic alterations affected 
transcription of AID targeted regions [12–15]. However, 
transcription was often partially reduced while being 
associated with complete CSR and/or SHM blockades. 
In addition to boosting transcription, the 3’RR thus likely 
promotes AID activity through epigenetic changes of 
targets, or by attracting and recruiting AID and/or AID 
partners. Figure 1 resumes the different targets of AID in 
the IgH locus.

2. CSR AND BCR CLASS-SPECIFIC 
CONTROL OF B CELL FATE

2.1. Structure and function of the B Cell Receptor

The B cell receptor is composed of a membrane-
bound immunoglobulin (mIg) associated with the 

Figure 1: AID targeting of the IgH locus. Upon B cell activation, induced AID expression  remodels Ig gene V regions through SHM 
or eventually gene conversion (GCV), generating B cell receptors of improved affinity for antigen. B cells, in parallel or later, diversify 
the BCR class through class switch recombination (CSR). Locus suicide recombination (LSR) eventually joins the switch µ region (Sµ) 
with one of the like-switch (LS) repetitive regions located within the 3’ regulatory region (3’RR), then deletes all IgH constant genes and 
switches off BCR expression, thus leading to B cell death.
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disulfide-linked heterodimer transducing module CD79A 
/ CD79B (Igɑ / Igß). The mIg is composed of two heavy 
(H) and two light (L) chains, each including a variable (V) 
domain encoded after RAG-mediated recombination of Ig 
gene segments (for review [23]). Within mIgs, constant (C) 
regions carry additional transmembrane and cytoplasmic 

domains which support interactions with Igɑ/ß and then 
accessory receptors and downstream intracellular signaling 
cascades including the src kinases Syk, Lyn and adaptor 
proteins such as BLNK for interactions with PLCγ2, PI3K, 
calcium and glucose transporters. IgH C domains confer 
their class specific effector functions to the corresponding 

Figure 2: BCR class and signaling cascades. Some specific functions of the various BCR classes are indicated (left). Specific 
transcription factors expressed before CSR to a given class (and eventually after CSR) are mentioned (middle). Each BCR class is 
represented as a membrane Ig associated with the Igɑ/ß signaling modules (right). The three amino acids (KVK) of the IgM and IgD BCR 
and longer intra-cytoplasmic tails of other classes are shown. The main signaling proteins and pathways that are common or most likely 
specific to these BCR classes are represented (right).
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secreted Ig.  

2.2. IgM/IgD BCR

While all mIg associate with the Igɑ/ß complex 
to constitute the BCR, signaling from this complex has 
mostly been studied for IgM [24][25]. The membrane µ 
HC has multiple roles by first providing differentiation 
signals during early development, survival signals in 
resting B cells and activation signals during peripheral 
antigen-dependent maturation (Figure 2). IgM and IgD 
have an identical intracellular positively charged short 
tail (including residues KVK). Replacement of µ by δ HC 
expression resulted in a modest phenotype and suggested 
that IgM and IgD can signal in a roughly similar manner 
[26]. This replacement completely deleted both mIgM 
expression and secretion of soluble IgM. The main feature 
of the resulting phenotype was delayed affinity maturation 
of immune humoral responses, i.e. a phenotype similar to 
mice simply lacking the secreted form of IgM [26][27]. 
It was also shown later that, despite their roughly normal 

peripheral B cell compartments, mice in which µ HC was 
replaced by δ HC expression had a partial blockage of 
pro-B to pre-B transition due to lack of autonomous pre-
BCR signaling normally provided by a glycosylation site 
within the µ chain CH1 domain [28]. 

IgD-deficient mice have also been generated 
through gene targeting and only showed slightly reduced 
B-cell spleen and lymph node compartments with higher 
mIgM expression than wt B cells. Early and late B cell 
differentiation, GC formation and humoral responses to 
immunization were unaffected [29]. However, a later study 
showed autoantibodies accumulating in IgD-deficient/lpr 
mice, suggesting that mIgD plays a role in B cell tolerance 
and limits auto-reactive B cell differentiation into plasma 
cells [30]. 

2.3. mIgG BCR

There are clear qualitative differences in BCR 
signaling and responses to antigen that are conferred by 
IgG vs IgM HC tails [31] (Figure 2). IgG carry longer 

Figure 3: AID-modulation of B cell fate in the context of lymphoid tissues. After V(D)J recombination and IgM expression, 
recently emerged B cells circulate as transitional cells and can be committed to various compartments depending upon BCR signalling 
(Notch2 expression and weak BCR tonic signaling commit B cells to a marginal zone fate). After maturation into IgM+, IgD+ cells, naïve 
B cells encounter T-dependent Ag and undergo cognate interactions with pre-TFH cells. B cells then initially activate in extra-follicular foci 
and differentiate into short-lived plasma cells, or participate with TFH in the formation of GCs where their BCRs will be deeply remodeled 
by SHM (mostly in the proliferating dark zone) or CSR (mostly in the GC light zone), or eventually LSR. The GC reaction will yield both 
memory cells and plasma cells, some being long-lived and surviving after their migration to several protective niches (spleen red pulp, 
bone marrow, MALT…).
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and highly conserved cytoplasmic tails.  Deletion or 
replacement of the IgG tail with an IgM tail in mice 
resulted, for unexplained reasons, in lower levels of 
membrane expression and also strikingly disturbed 
IgG1 memory, showing that the IgG tail is necessary 
for high-titer IgG secretion and IgG1-switched memory 
cell survival [32]. In contrast, studies in transgenic mice 
carrying IgM, IgG or IgM/G (IgM with an IgG tail) BCRs 
of identical antigen specificity for hen-egg lysozyme, 
showed that the IgG tail increased production of plasma 
cells during extra-follicular T cell−dependent antibody 
reactions [33].  It was also observed in B cell transfectants 
that signaling through the mIgG BCR, but not through 
mIgM nor mIgD, was resistant to CD22-mediated signal 
inhibition [34]. However, this CD22-independence was 
not confirmed by other detailed studies in primary cells 
from transgenic or knock-in mice [31][35]. Rather, it was 
then suggested that IgG enhancement of intracellular 
calcium responses did not reflect independence from 
CD22 inhibition or changes in tyrosine phosphorylation, 
ERK signaling, or global gene induction, but increased 
differentiation into marginal zone cells, extrafollicular 
proliferation, and plasma cell differentiation. Despite 
increased Ca2+ responses, several BCR ligation 
response genes showed lower induction by the IgG tail, 
in agreement with the observation that marginal zone B 
cell differentiation is favored by conditions that decrease 
BCR signaling [36]. This includes poor CCR7 induction 
by antigen ligation of the IgG BCR, while before entry 
into follicles, CCR7 is known to attract B cells to CCL19/
CCL-21-rich T-zones rather than towards the marginal 
zone.

Premature expression of IgG rather than IgM in 
B cell progenitors also resulted in abnormal pre-BCR 
signaling and partial blockage of pro-B to pre-B cell 
transition, emphasizing that mIgM is optimal for early B 
cell maturation. In contrast, maintenance of mIgG+ cells 
might be less dependent on Igα/β  than mIgM+ cells [35]. 
These observations led Goodnow’s group to propose a 
“less-is-more” hypothesis where decreased induction 
of some BCR response genes might increase plasma 
cell formation, and to globally conclude that signaling 
differences between IgG and IgM BCR classes were 
qualitative rather than quantitative [31]. 

In comparison to IgM, another specific signaling 
feature of mIgG (shared with mIgE), is recruitment of the 
adaptor Grb2, which can bind to a tyrosine of the mIgG 
intracellular tail upon phosphorylation, and then modulate 
signaling and increase cell proliferation [37]. Interestingly, 
Grb2 is a modulator of cell signaling by tyrosine kinase 
receptors, with the dual function, in some instances, 
to decrease basal signaling while increasing signals 
emanating from receptor ligation [38]. 

Another feature of the mIgG1 cytoplasmic tail was 
demonstrated: enhancing early BCR oligomerization 

that immediately follows ligation of membrane bound 
antigen leading to increased Syk recruitment and calcium 
mobilization [39]. Importantly, a recent study has shown 
that the strong tendency of mIgG1 cells to differentiate 
into plasma cells is restricted to those Ag-experienced 
cells and then translated into Bach2 repression, thus 
clearly involving more than just mIgG intracellular tail 
structure [40]. 

2.4. mIgA BCR

Few studies have explored a potential role for mIgA 
in conferring specific properties to memory mIgA+ B cells 
in comparison to naive mIgM+ cells (Figure 2). mIgA  
cross-linking raises intracellular calcium concentrations 
so that mIgA+ B cells residing in mucosa associated 
lymphoid tissues (MALT) can mediate IgA responses 
to local immunization [41][42]. As for IgG, it was also 
shown by targeted deletion in the mouse, that the Cα 
membrane anchoring region allowing mIgA expression, is 
necessary for differentiation of IgA secreting cells in vivo 
[43]. The μMT mutation removing Cμ membrane exons 
and IgM/IgD expression did not result in a complete B 
cell defect but resulted in accumulation of IgA+ plasma 
cells in MALT, also suggesting that B cell progenitors 
can undergo CSR to mIgA, survive under expression 
of this BCR and then differentiate into ASCs [44]. That 
early B cell development can be ensured by expression of 
membrane α HC has been shown in the α1KI model where 
the Sµ region of the mouse IgH locus was replaced with an 
Ig HC ɑ1 gene [45].

In α1KI mice, a partial defect in pre-B cells was, 
however, noticed, indicating that the α-class pre-BCR 
was less efficient than  μ-class pre-BCR for signaling 
completion of V(D)J rearrangement upon assembly 
of a functional pre-BCR or BCR complex. This was 
reminiscent of data in mice with premature expression of 
membrane γ HC instead of µ/δ [35].

Despite this developmental defect, B cells 
accumulated in lymphoid organs of ɑ1KI mice including 
spleen follicles, marginal zone, lymph nodes, Peyer’s 
patches and the peritoneal B1 compartment. Splenic 
marginal zone and follicular B cell numbers were affected 
in the same proportion, in contrast to the increased 
marginal zone differentiation reported in mice expressing 
an IgG BCR [31, 35]. As mentioned in a previous study 
[32], BCR density appeared lower in ɑ1KI than in wt 
mice, despite normal association of mIgA1 with Igɑ/ß. 
Another feature of mIgA-driven B cell differentiation in 
ɑ1KI mice was the abundance of plasma cells, affecting 
to the same extent long-lived (accumulated) and short-
lived (recently differentiated) plasma cells. Rather than 
just compensatory plasma cell accumulation in response 
to B cell lymphopenia, the α1KI intrinsic commitment to 
plasma cell differentiation was also manifested in vitro by 
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higher differentiation of B cells activated by BCR cross-
linking or mitogens into CD138+ cells. 

Interestingly, normal human blood mIgA+ cells 
also include a high proportion of CD38 expressing cells, 
a marker of engagement in plasma cell differentiation 
[46]. It should also be noticed that the IgA BCR has been 
shown to be sensitive to CD22 inhibition as for IgM 
[47]. In addition, a recent study demonstrated a specific 
transcriptional program for mIgA+ memory cells, notably 
depending upon high RORɑ expression, while mIgG2a+ 
cells were intrinsically dependent upon high expression 
of T-bet [48]. 

2.5. mIgE BCR

Secreted IgE is the least prevalent Ig class in 
blood, with only nanograms per milliliter compared to 
micrograms for IgD and milligrams for other classes 
in healthy populations. Maintaining low IgE levels is 
controlled by stringent mechanisms in order to restrict 
the very potent effects and side-effects of IgE immune 
responses. The IgE molecule is evolutionarily conserved 
and present in all mammalian species studied. In contrast 
to its active role in immune responses against parasites, 
IgE can also be deleterious and mediate atopic diseases 
of various intensities (eventually lethal in the case of 
anaphylactic shock). 

Production of the double-sworded IgE antibody thus 
requires tight regulation, for which multiple mechanisms 
might be at work. IgE expression was first postulated to be 
restrained at the CSR level. Whereas IgG1 and IgE class 
switching can be both induced by IL4 in mice, in vitro 
experiments most often show lower switching frequency 
to IgE than to IgG1 [49]. Preferential CSR to Cγ1 might 
thus reflect intrinsic differences between the 10kb-long 
Sγ1 and the much shorter SƐ region. Furthermore, IgE 
class switching is often a sequential process with an IgG1 
intermediate [50]. Interestingly, direct CSR to IgE (without 
prior IgG1 CSR) occurs preferentially in immature B cells, 
and this feature may reflect epigenetic marks modulating 
accessibility of the IgH locus during B cell differentiation 
[51].

Beyond IgE CSR, it is clear that expression of mIgE 
BCR is mandatory for further differentiation into IgE 
secreting plasma cells (Figure 2). Mice deleted for IgE 
membrane exons have reduced (by more than 95 percent) 
serum IgE levels and fail to develop antigen specific IgE 
responses [52]. To a milder extent, replacement of the IgE 
tail with the much shorter IgM tail also decreased (~50%) 
IgE secretion [52]. It was also shown that treatment of 
mice with an antibody specifically targeting a mIgE-
specific epitope on mIgE+ cells efficiently inhibited 
secreted IgE production [53][54], further suggesting that 
mIgE+ B cells are a necessary step for differentiation of 
IgE secreting plasma cells.

In this regard, a structural feature of the Cε gene 

was postulated to restrain the production of membrane-
type Cε transcripts which drive mIgE expression. Whereas 
all documented Ig genes have classical polyA sites 
(AATAAA) after both their secretory (CH3 or CH4) and 
membrane (M1/M2) exons, human and mouse Cε genes 
carry an atypical polyA site downstream from the M2 
exon [55]. By comparing the sequence of CƐ genes in 
the IMGT data base (http://www.imgt.org), we observed 
that a canonical AATAAA sequence downstream from CƐ 
M2 was absent in all published mammalian IgH loci. This 
conserved suboptimal polyA site may down-regulate the 
ratio of membrane- vs secreted-form Cε mRNA transcripts 
during alternative splicing of murine (and human) 
Cε primary transcripts [56] and thus limit mIgE BCR 
expression . In an utmost form, CƐ gene membrane exons 
are lacking in one lineage of primates, the tarsiers [55].

Despite these limitations, mIgE expression can be 
characterized in vitro in human or mouse stimulated B 
cells and has also been characterized in a B lymphoma cell 
line [57]. Exploring mIgE expression requires rigorous 
staining protocols eliminating passive binding of soluble 
IgE to FcεRII receptors (whose expression is strongly 
induced in the presence of IL4) [58]. 

While present in a single (short) form in most 
mammalian species, mIgE is additionally present in 
humans and apes as a long isoform generated through 
alternate splicing of the M1 exon, and including either 
a long (66 amino acids) or a short (14 amino acids) 
extracellular membrane proximal domain (EMPD) 
between CH4 and the transmembrane domain. Both 
human mIgE isoforms have been expressed as functional 
BCRs in transfected B cells, showing that the short 
isoform was more efficiently transported to the cell surface 
and that its ligation resulted in growth inhibition of the 
WEHI immature B cell line, similar to mIgM BCR [59]. 
The EMPD domain was shown to be necessary for B cell 
activation through mIgE ligation in transfectants from the 
mature B cell line A20, while its deletion yielded a form of 
mIgE with proapoptotic activity upon ligation [60]. 

Another particularity of the IgE BCR is the 
intracellular tail structure, and phage display experiments 
identified 2 proteins interacting with the IgE tail. HS1-
associated protein X-1 (HAX-1) notably seems to be 
associated with the IgE specific YANIL motif (where Y is 
a potentially phosphorylated tyrosine) of the intra-cellular 
tail and may influence BCR mediated Ag-internalization 
and cognate Ag-presentation to T cells [61]. Hematopoietic 
progenitor kinase 1 (HPK1) was also shown to interact 
with mIgE and mIgG (but not mIgM) tails and could 
differentially affect signaling from these receptors [62]. 
IgE committed B cells were also shown to be exquisitely 
sensitive to inhibition through ligation of LXR receptors, 
potentially due to increased CD23 expression and in turn 
down-regulating IgE production [63].

In order to study IgE responses in vivo, different 
mouse models have been developed and characterized. 
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Xiong et al used T and B monoclonal mice (with anti-
chicken ovalbumin (OVA) T cell receptor transgenes 
and anti-influenza hemagglutinin (HA) knock-in B 
cell receptor genes on a RAG1-deficient background), 
immunized with OVA-HA and OVA-PEP1 (a variant of 
HA) and a classical model of helminth infection in wt 
mice. They showed that IgE+ cells were found outside 
the GC (in contrast to IgG1 cells) and displayed a plasma 
cell transcriptional program. They also showed that IgEs 
accumulate hypermutation and affinity selection (and 
are able to bind the PEP1 Ag) and proposed a sequential 
maturation program: a pre-IgE phase with SHM and 
affinity maturation in IgG1+ cells and a post-IgE-
switching phase where IgE+ rapidly differentiate into 
plasma cells [64]. In another study this team used the 
same T/B monoclonal model and immunized wt or hMT 
mice (which are deficient for IgG1 populations) with 
NP19KLH Ag. They demonstrated that high affinity IgE 
Abs responsible for anaphylactic reactions were generated 
through the sequential µ/γ1/Ɛ CSR pathway (and were 
absent in hMT mice), with IgG1 intermediate cells 
supporting SHM and affinity selection. In contrast, low 
affinity IgE producing cells were generated through direct 
µ/Ɛ CSR, were less mutated, and may play a beneficial 
role during anaphylaxis, by competing with high affinity 
Ab for FcƐR1 binding [65]. 

Two transgenic models were created to study rare 
IgE+ cells in vivo. The first model used a GFP reporter 
system by inserting a bi-cistronic GFP reporter gene 
downstream from the mouse IgE M2 exon. The long 
human EMPD domain was introduced upstream to the 
IgE M1 exon, resulting in a chimeric IgE BCR with an 
additional EMPD domain (allowing specific detection 
of these cells but denaturing the natural architecture of 
this receptor). This model was subjected to helminth 
infection by N. brasiliensis and TNP-OVA immunization. 
In contrast to previous models, this strategy demonstrated 
IgE+ cells in GC and suggested the existence of IgE+ 
memory and plasma cells [66]. In another model, the T2A 
strategy tagged IgE+ cells by linking the Cε M2 exon 
with Venus (a derivative of yellow fluorescent protein) 
and used a viral 2A sequence enabling expression of 2 
proteins from a single ORF. Translation of Venus was thus 
linked to translation of a nearly normal mIgE (except for 
an additional 17 amino acid peptide). These mice and wt 
mice were immunized with NP-KLH and infected with 
N. brasiliensis. This model suggested that IgE+ cells can 
differentiate into GC B cells during primary immune 
responses and confirmed a strong propensity of these 
cells to differentiate rapidly into plasma cells which were 
mostly short-lived [67]. In agreement with this conclusion, 
another model where membrane IgE exons were replaced 
by membrane IgG1 exons suggested that IgE+ plasma 
cells have an intrinsically lower chance than IgG1+ cells 
to migrate towards the chemokine CXCL12 and thus to 
contribute to the long-lived plasma cell pool [68]. 

3. LSR ELIMINATION OF B CELLS   

B cell fate can also be more dramatically modified 
by AID after CSR-like events resulting in complete 
deletion of the IgH CH gene cluster and thus inducing 
B cell death through locus suicide recombination (LSR) 
(Figure 1) [16].

During AID-mediated competition that occurs 
among B cells within germinal centers, a few with high 
affinity are selected (Figure 3). Besides these winners, 
many cells are losers or undesired responders deserving 
elimination. Although some unfavorable mutations of V 
regions can promote apoptosis [69], abundant survival 
signals from the GC microenvironment might also activate 
or maintain bystander cells with useless or eventually 
harmful BCRs (the latter having, for example, acquired 
specificity for self or environmental antigens after random 
remodeling of V sequences). Since class-switched 
antibodies are potent actors of auto-immunity and/or 
hypersensitivity, means for restricting CSR and reentry 
of class-switched cells into SHM would help ensure the 
specificity of immune responses. Yet, how the post-GC 
repertoire is controlled remains poorly understood. 

The 3’RR contains several enhancers with strong 
B-lineage specificity [70,71]  undergoing chromatin 
remodeling upon B cell activation and controlling V 
region SHM as well as germline transcription and CSR to 
most C genes [72–83]. In all mammalian species studied, 
the 3’RR also features inverted repeats and stretches 
of repetitive DNA with structures similar to that of S 
regions [84–87], showing multiple 5bp repeats eventually 
arranged within higher order (49bp) repeats. Such “like 
S” stretches (LS regions) flank both sides of the 3’RR and 
are also interspersed with 3’ enhancers. Similarly to the 
germline transcription of S regions preceding CSR, the 
3’RR is transcribed by RNA polymerase II in activated 
B cells [88].

3’RR elements regulate AID-mediated SHM and 
CSR by physically interacting with AID-targeted IgH 
promoters [70, 74, 79, 80, 89]. Since 3’RR enhancer 
elements and LS regions are themselves transcribed, it 
was logically found that they also undergo SHM and DNA 
breaks. AID-initiated junctions then occur in activated 
B cells between Sµ and 3’RR LS regions and delete 
the complete C gene cluster, thereby eliminating BCR 
expression (or Ig secretion for cells engaged in plasma cell 
differentiation). Given that BCR expression is mandatory 
for B cell survival, this process termed “locus suicide 
recombination” (LSR) necessarily leads to B cell death.

How the CSR/LSR balance is finely regulated 
in vivo remains to be determined. Beyond IgH locus 
accessibility, intra-GC interactions govern the selection 
of high affinity class-switched cells. In this context, 
LSR might contribute to B cell homeostasis and lead to 
death of suboptimally stimulated cells, while optimal 
stimulation would promote CSR and survival of selected 
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antigen-specific B cell clones. LSR could then help shape 
the peripheral B cell repertoire and ensure BCR antigen 
specificity. 

4. DEVELOPMENT AND FEATURES OF 
MEMORY B CELLS 

B cell responses to T-dependent antigens involve 
germinal center reactions featuring B cell proliferation 
and expression of AID for SHM and CSR in parallel 
interactions with follicular dendritic cells and T follicular 
helper cells that will help select those B cells with the 
highest affinity for Ag. GC reactions peak after 7 days and 
wane after a few weeks, once having generated long-lived 
plasma cells and memory B cells with an affinity matured 
BCR. Besides intra-GC competition between B cells for 
limited antigen, soluble antibody feedback also ensures 
inter-GC communication concerning  access to antigen  
[90]. Secreted antibodies were thus shown to inhibit or 
even terminate GC proliferation with an efficiency directly 
correlated with their affinity for antigen [90]. Interestingly 
in the absence of T cell help, soluble antigen might also 
inhibit GC development [91].

Regarding the prolonged maintenance (eventually 
lifelong) of GC-born memory B cells, it was shown that 
Ag-persistence within lymphoid organs is unnecessary 
[92]. Rather, further reintroduction of Ag into the 
organism will trigger memory cell differentiation into 
plasma cells, with or without parallel formation of new 
GC [93]. A recent study by Reynaud and colleagues 
followed Ag-specific memory B cells for up to 1 year in 
mice and showed that while GCs waned a few weeks after 
immunization by a soluble antigen, they persisted up to 
10 months after immunization with a particulate Ag [94]. 
Several types of memory cells were demonstrated in the 
latter model: either IgM+IgD+, or IgM-only, or class-
switched (and then mostly mIgG1+). Ag-experienced 
cells were located in the spleen T cell zone, red pulp, and 
follicles, with very few in the marginal zone. Upon transfer 
into pre-immunized recipient animals, the mIgM+ subset 
gave rise to centroblasts, part of them switching to IgG1, 
and to a small proportion of Ag-specific IgM+ plasma 
cells. The mIgG1 subset yielded Ag-specific IgG1 plasma 
cells and maintenance of a mIgG1+ memory pool. While 
the average number of mutations was stable in persisting 
memory B cells, it was increased upon differentiation of 
mIgM+ memory cells into centroblasts, showing that such 
cells can reenter new cycles of AID-mediated affinity 
maturation.

In another model, two layers of Ag-specific B 
memory cells were demonstrated, either mIgM+ or having 
undergone class switching (swIg+ memory cells). The 
mIgM+ memory cells were very stable and long-lived, 
able to form GC when transferred into a naïve animal 
but inhibited upon the presence of soluble Ag-specific Ig 
(then inhibiting GC formation). The swIg+ memory cells 

persisted for a shorter time, and mostly differentiated 
into plasmablasts upon activation but kept the ability 
to be activated even in the presence of preexisting 
antibodies. This led to the proposition that memory 
1) initially relies on swIg+ cells, able to be rapidly 
activated and yield antibodies even in the presence of 
preexisting serum antibodies, and 2) later relies on long-
lived mIgM+ memory cells, able to form new GC once 
initial antibodies have vanished [93]. If this model can be 
generalized, “early” memory responses would classically 
overwhelmingly involve class-switched antibodies, while  
“late” memory responses would be expected to recapitulate 
the kinetics of the primary response, first with IgM (albeit 
with low affinity) then followed with high affinity class-
switched antibodies. Interestingly, it was recently shown 
in a model of bacterial infection that in vivo depletion 
of the mIgM memory B cells abrogated the IgG recall 
responses to specific Ag challenge, demonstrating that 
mIgM cells were then required for humoral memory, and 
underwent CSR and plasma cell differentiation upon Ag 
re-challenge [95].

Upstream of GC reactions, some specific functions 
have been reported during immune responses for B cells 
with low affinity BCRs. For example, mouse B1 cells 
show polyreactivity and bind multiple exogenous antigens 
or auto-antigens with low affinity, being responsible for 
generation of natural antibodies that preexist prior to any 
antigenic challenge and play an innate function. Some 
tissue B cells binding antigens with low affinity (notably 
in lung, with intra-nasally administered antigens) have 
also been demonstrated to shuttle and carry antigens 
towards spleen follicles, then initiating GC formation 
by resident B cells with higher affinities [96]. BCR 
independent Ag-binding by B cells was also reported for 
marginal zone B cells recognizing particulate antigens 
within immune complexes through complement or Fc 
receptors, which were also postulated to carry antigens 
towards FDCs within follicles [97]. Human and mouse 
MZ B cells might somehow differ although they both 
respond to T-independent antigens. While mouse MZ B 
cells have mostly unmutated BCRs and do not recirculate, 
human IgM+IgD+CD21highCD27+ B cells recirculate in 
blood and carry mutated Ig and Bcl6 genes. Their V(D)
J repertoire is very large without  clonal restrictions and 
hallmarks of antigen-induced activation, similar to naive 
cells and in contrast to GC mIgM+ cells, suggesting that 
MZ B cells provide a GC-independent IgM memory layer 
[98]. MZ B cells likely differentiate through an innate 
extracellular TLR-dependent pathway allowing AID 
induction outside GC, as demonstrated in both mouse and 
humans for immature B cells then undergoing CSR and 
SHM [99][7]. A helper role for neutrophils in the induction 
of MZ B cell CSR, SHM and plasma cell differentiation 
was also demonstrated during T-independent responses to 
bacterial antigens [100]. 
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5. LYMPHOMAGENESIS AND BCR 
SIGNALS  

AID also induces mutations and breaks in numerous 
non-Ig genes, many of which (but not all) are transcribed 
in B cells, and many of which overlap with translocation 
or recombination sites found in B cell lymphomas or 
correspond to repetitive DNA sequences. [101,102]. 
Studies of B cell malignancies since the early 1980s also 
identified a number of translocations linking oncogenes 
such as c-MYC, c-MAF, CYCLIN D1, and BCL2 to 
breakpoints located within Ig loci. Some of these events 
were recurrently identified as the clonal driving forces 
of lymphomagenesis. This pointed to a major role of 
errors in the processes of antibody gene diversification 
in tumorigenesis. Recently, it was also shown that 
breakpoints located outside Ig loci constitute frequent side 
targets of AID attacks in activated B cells. It is thus now 
clear that in B cell malignancies as in normal B cells, AID-
induced mutations accumulate on multiple loci including 
those of Ig (with the higher level of error-prone repair after 
AID deamination), BCL6 and a large list of oncogenes 
and tumor suppressors.[101] Precise characterization 
of translocation breakpoints and development of 
whole genome sequencing showed that mutations and 
recombinations detected in activated B cells and in tumors 
with mature B cell phenotypes all carry hallmarks of WRC 
sequence-specific AID on-target and off-target attacks.
[103,104] In addition, more than half of translocations 
seen in immature B cell malignancies also show 
breakpoints at sites of AID deamination corresponding 
to mCG dinucleotides and might imply the combined 
action of AID, RAG and ARTEMIS. [105,106]  However, 
this issue can still be debated and it is noteworthy that 
lymphoma breakpoints targeting CG dinucleotides were 
also recently identified by A. Nussenzweig and colleagues, 
as early replicating fragile sites susceptible to AID-
independent genomic instability [107].

Besides the role of translocations, it is important to 
note that BCR signals most likely play a crucial role in 
lymphomagenesis. These signals might vary with SHM 
of V regions, which probably modulate interactions of 
malignant cells with various endogenous ligands. Indeed, 
N-glycosylation sites carrying high-mannose glycans and 
created by SHM within V domains are a frequent feature 
of follicular lymphoma cells, and may promote B cell 
interactions with lectins such as DC-SIGN [108]. The 
BCR Ig class might also somehow control the phenotype 
of B cell malignant proliferations. Indeed, it is well known 
that plasmacytic lymphomas overwhelmingly express 
mIgM (in striking contrast with myelomas, where the 
secreted Ig is always a non-IgM class). In diffuse large 
B cell lymphomas, it was recently shown that ABC cases 
mostly express mIgM, while GC cases overwhelmingly 
express IgG or IgA [109]. 

Autonomous BCR signaling in chronic lymphocytic 

leukemia cases was also recently demonstrated, but 
appeared independent from the mutated or unmutated 
BCR status [110]. 

Finally a number of AID-mediated mutations 
affecting proteins of BCR- or TLR-signaling cascades 
and resulting in constitutive B cell activation have been 
observed in many different types of lymphoproliferation 
[111,112]. 

6. CONCLUSIONS 

Early B cell differentiation is optimally driven 
through expression of germinally encoded and diversified 
IgM molecules. This generates transitional B cells that 
are affected to the various mature B cell compartments 
and then express variable levels of IgM and IgD. Such 
cells can then undergo either Ag-dependent (within B cell 
follicles) or Ag-independent (for splenic marginal zone B 
cells), AID remodeling of their Ig V regions through SHM 
or GCV. Cell survival, fate and phenotype are all highly 
dependent at that time on constitutive signals provided 
by the BCR. Either antigen ligation of the BCR and/or 
stimulation by various TLR ligands can additionally result 
in B cell activation and rapid AID induction. By improving 
BCR affinity for antigen by SHM, AID will help select 
follicular cells having the strongest interactions with 
antigen exposed at the surface of FDC along the process 
of SHM, as winners of the competition for activation and 
survival signals provided by FDC and TFH cells within 
the GC. In parallel, these interactions further stimulate 
expression and accessibility of the IgH locus then resulting 
in CSR for expression of a new BCR with conserved 
Ag-specificity but new signaling functions. Finally in 
some instances, another dramatic IgH remodeling event 
implying complete deletion of the IgH locus C region 
through a “sterile CSR” (also defined as ”locus suicide 
recombination” or LSR), can occur and result in loss of 
BCR expression and B cell death. 
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