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Capacitive deionization (CDI) is a promising electrochemical water treatment technology.

Development of new electrode materials with higher performance is key to improve

the desalination efficiency of CDI. Carbon nanomaterials derived from metal–organic

frameworks (MOFs) have attracted wide attention for their porous nanostructures

and large specific surface areas. The desalination capacity and cycling stability of

MOF-derived carbons (MOFCs) have been greatly improved by means of morphology

control, heteroatom doping, Faradaic material modification, etc. Despite progress has

been made to improve their CDI performance, quite a lot of MOFCs are too costly

to be applied in a large scale. It remains crucial to develop MOFCs with both high

desalination efficiency and low cost. In this review, we summarized three modification

methods of MOFCs, namely morphology control, heteroatom doping, and Faradaic

material doping, and put forward some constructive advice on how to enhance the

desalination performance of MOFCs effectively at a low cost. We hope that more efforts

could be devoted to the industrialization of MOFCs for CDI.

Keywords: capacitive deionization, nanocarbon, metal-organic framework, modification, desalination

INTRODUCTION

With the increasing shortage of water resources worldwide, the exploration of new methods for
water treatment has become one of the important ways to solve the problem (Xu et al., 2017b;
Sun et al., 2020a,b). Capacitive deionization (CDI) is considered a promising water treatment
technology with powerful competitiveness compared with reverse osmosis and electroosmosis
owing to its advantages of low energy consumption, environmental friendliness, and low cost
(Oren, 2008). It shows excellent performance in the fields of seawater desalination, brackish water
desalination, heavymetal ion removal (Hou et al., 2018), and element enrichment. So far, numerous
materials (especially carbon materials) have been developed for CDI electrodes, including activated
carbon (Wang et al., 2013; Luo et al., 2019), activated carbon nanofiber (ACF) (Wang et al., 2012),
carbon aerogel (CA) (Jung et al., 2007), carbon nanotubes (CNT) (Wang et al., 2011), graphene
(Xu et al., 2016b; Huang et al., 2019), ordered mesoporous carbons (OMCs) (Duan et al., 2015; Xu
et al., 2019c), etc. Among them, graphene is undoubtedly the most promisingly studied electrode
material for CDI mainly owing to its large specific area, low cost, and abundance (Li et al., 2012).
However, its poor salt adsorption capacity (SAC) limits its further application. The development of
CDI needs, first and foremost, low-cost and high-efficiency electrodes (AlMarzooqi et al., 2014).
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Carbon nanomaterials derived from metal–organic
frameworks (MOFs) have attracted wide attention recently
(Chaikittisilp et al., 2013; Xu et al., 2017a). Thanks to the porous
structures and tailored compositions of precursors (Yaghi and
Li, 1995; Wang, Z., et al., 2019), MOF-derived carbons (MOFCs)
show adjustable pore structures, large specific surface areas, and
good conductivity, giving them unparalleled CDI performance.
Since Yang et al. demonstrated that carbon derived from IRMOF-
1 has the potential as a high-performance CDI electrode material
(Yang et al., 2014), more and more MOFs have been used for
producing CDI electrodes, including the well-known zeolitic
imidazolate frameworks (ZIFs) (Liu et al., 2015b; Wang et al.,
2017; Gao et al., 2018), Materials Institute Lavoisier (MILs) (Xu
et al., 2016a; Wang, K., et al., 2019), and MOF-5 (Chang et al.,
2015). Modifications, such as morphology control, heteroatom
doping (Wang et al., 2014; Xu et al., 2015), and Faradaic material
doping, have been further studied to construct nanomaterials
with more reasonable structures and compositions. As a result,
the SAC and cycling stability of MOFCs have been greatly
improved. Nevertheless, a considerable portion of MOFCs
are costly due to their complex synthesis and expensive
precursors, which limits their application in a large scale. The
efficient and low-cost modification of MOFCs still needs to be
systematically explored.

In this paper, the principle of CDI is given, including its
adsorption mechanism and requirements for electrode materials.
Thereafter, three commonmodificationmethods in the aspects of
morphology control by template, element doping, and Faradaic
material doping are summarized (Figure 1). Moreover, we put
forward some advice on cost control and discuss the future
development direction of MOFCs for the desalination industry.

THE PRINCIPLE OF CDI

A typical CDI cell consists of two electrodes placed in parallel
and saline water between them. The electrodes adsorb ions from
saline water when charged and release ions when discharged, so
as to desalinate feed water or recycle electrodes. The electrodes
can be categorized into non-Faradaic electrodes and Faradaic
electrodes according to the ion adsorption mechanism (Chen
et al., 2020; Lu et al., 2020). In most carbon-based CDI processes,
ions are usually stored in the electric double layers (EDLs) formed
within the pores of porous electrodes without the occurrence of
Faradaic reactions. For efficient and rapid desalination, electrode
materials therefore should meet at least the following properties:
(1) large specific surface area for ion storage and suitable pore
structure for rapid migration of ions, (2) high conductivity
for rapid transfer of electrons within the electrodes, (3) stable
electrochemical property for cycling stability, and (4) good
hydrophilicity (Yin et al., 2013; Liu et al., 2015a, 2017; Tang
et al., 2019). To achieve these aims, morphology control and
heteroatom doping have been frequently used. Aside from the
commonly used non-Faradaic electrodes, Faradaic electrodes are
also utilized to store ions mainly based on Faradaic reaction,
which have attracted wide attention for their typical high SAC
and cycling stability (Ding, Z., et al., 2019).

MODIFICATION OF MOFCS FOR
ENHANCED PERFORMANCE

Morphology Control With Templates
Although MOFCs have high specific surface areas and high
porosities, most MOF crystals are dissociative and solid particles,
which can lead to poor electrical conductivity and low accessible
surface area (Tang et al., 2016; Xu et al., 2020a). Morphology
control with templates, including MOF templates and external
templates (e.g., carbon materials, metal compounds, polymers),
may be an effective method to optimize the nanostructures and
composition of MOFCs (Dang et al., 2017; Xu et al., 2019b).
ZIF-8 is a typical subfamily of MOFs that has been widely
investigated for CDI application. Liu et al. prepared porous
carbon polyhedrons (PCPs) through direct carbonization of
ZIF-8, which showed an improved desalination performance
(with a SAC of 13.86mg g−1) and stability compared with
commercial AC (Liu et al., 2015b). Subsequently, Xu et al.
reported hierarchical porous carbon nanotubes (CNTs)/PCP
hybrid (hCNTs/PCP) fabricated via in situ insertion of CNTs
in ZIF-8 with a subsequent pyrolysis process. Thanks to its
novel CNT-inserted-PCP porous structure, high specific surface
area, and good electrical conductivity, the resultant hCNTs/PCP
exhibited a high SAC of 20.5mg g−1 and stable cycling stability
(Xu et al., 2016d). After that, Xu et al. synthesized integrated
MOF tubes by controlled growth of ZIF-8 nanocrystals on 3D
polymeric fibers with the subsequent dissolution of template
(Supplementary Figure 1). Afterwards, self-standing nitrogen-
doped carbon tubes (NCTs) with an ultrahigh SAC of 56.9mg
g−1 were obtained by thermal conversion of the resulting MOF
tubes (Xu et al., 2020b). The external templates can tune the
morphology of MOFCs effectively; however, their market price
might not be acceptable for practical application and sometimes
require complicated template removal operation (Dang et al.,
2017). More versatile and cheaper templates that effectively
controlled the morphology are needed (Dutta et al., 2016; Xu
et al., 2016c).

Heteroatom Doping
Heteroatom doping is a common modification method for
improving the electrochemical performance of carbon materials
(Li et al., 2018). Non-metallic elements or metal ions can be
evenly doped in MOFCs by simple carbonization of MOF
precursors containing target elements, which would contribute
to enhancing the comprehensive properties of carbon materials
including conductivity, hydrophilicity, and stability (Kurak and
Anderson, 2009; Zheng et al., 2011; Cheng et al., 2019; Xu
et al., 2019a). Gao et al. synthesized nitrogen-doped graphitic
carbon polyhedrons (NGCPs) by direct carbonization of ZIF-8.
NGCPs show a maximum SAC of 17.73mg g−1 and high salt
adsorption rate of 4.14mg g−1 min−1 and good regeneration
performance (Gao et al., 2018). Zhang et al. prepared N,
P, S co-doped hollow carbon polyhedron (denoted as ZIF-
8@PZS-C) derived from ZIF-8-based core–shell nanocomposites
(denoted as ZIF-8@PZS). The resultant ZIF-8@PZS-C displayed
an improved electrical conductivity, excellent hydrophilic, and
high SAC of 22.19mg g−1 (Zhang et al., 2018). Considering
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FIGURE 1 | Overview of modification methods of metal–organic framework (MOF)-derived carbons.

the performance fading of conventional carbon materials caused
by the formation of H2O2 due to the reduction of dissolved
oxygen in nature saline water, the introduction of oxygen
reduction mechanism will effectively improve the stability of
MOFCs (Luo et al., 2019). Xu et al. prepared nitrogen–iron-
doped carbon tubes (3D-FeNC tubes) derived from the 3D
interconnected MOF tubes (Supplementary Figure 2). Thanks
to its well-defined structure and enhanced oxygen reduction
ability, the 3D-FeNC tubes achieved both excellent salt removal
ability and cycling performance in oxygenated saline water (Xu
et al., 2020a). The research reveals that high-performance oxygen
reduction catalysts, such as Fe, N, and other heteroatom-doped
carbon materials (Zhang et al., 2020), can significantly improve
the continuous desalination performance of CDI. Heteroatom
doping enables MOFCs with higher desalination capacity, faster
adsorption rate, and more importantly, better stability. Dissolved
oxygen ubiquitous in natural water will eventually cause the
performance fading of carbon materials. By simply doping, the
stability of MOFCs can be greatly improved, which contributes
to their practical application for the desalination industry.

Faradaic Material Doping
Even though great progress has been made in improving
the CDI performance of MOFCs based on EDLs, further
improvement of SAC seems hard to achieve due to the limitation
of physical charge adsorption capacity (Suss et al., 2015; Zhao
et al., 2019). Inspired by the booming field of energy storage
such as sodium-ion battery and supercapacitor (Liu et al.,
2020). Faradaic materials have been investigated for CDI and
proved to be promising candidates with high SAC and cycling
stability (Tang, W., et al., 2019). Widely studied Faradaic
materials include transition metal oxides (e.g., MnO2, TiO2,
Na4Ti9O20), Prussian blue analogs, polyanionic phosphates
[e.g., FePO4, NaTi2(PO4)3, Na3V2(PO4)3], conducting polymers
(e.g., polypyrrole, polyaniline), MXenes, transition metal

dichalcogenides, and so on (Qin et al., 2019, 2020; Yu et al.,
2019). Yang et al. prepared hierarchically porous carbon-coated
zirconium oxide nanocubes (HCZ) derived from metal–organic
framework (Zr-UiO-66) for CDI electrodes. The asymmetrical
cell composed of HCZ negative electrode and AC positive
electrode showed a remarkable SAC of 55.17mg g−1 in 250mg
L−1 aqueous sodium chloride solution at 1.4 V (Yang and
Luo, 2019). Ding et al. reported a titanium dioxide/porous
carbon composite (TiO2@PC) derived from MIL-125 (Ti)
for a membrane CDI. A synergy of high pseudocapacitance
and good oxidation resistance endows the anatase TiO2@PC
(annealed at 600◦C) with an improved SAC of 46.7mg g−1

at 10mA g−1 and stable cycling performance over 50 cycles
(Ding, M., et al., 2019). Wang et al. prepared MIL-125 (Ti)-
derived NaTi2(PO4)3/carbon (NTP/C) composite as electrode
materials for hybrid CDI (HCDI; Supplementary Figure 3).
Due to the unique porous structure, high specific surface area,
and good electrical conductivity of NTP/C, the HCDI system
with NTP/C composite cathode and AC anode exhibited an
excellent desalination performance with a high SAC of 167.4mg
g−1 and good desalination ability (Wang, K., et al., 2019). The
experimental results reveal that it is an effective strategy to
prepare Faradaic electrodes with good conductivity and high
CDI performance derived from MOFs. To develop efficient,
cheap, and safe Faradaic MOFC-based electrodes, more synthetic
strategies of carbon materials combining MOFs with Faradaic
materials need to be investigated.

As we discussed above, most MOFCs with high CDI
performance usually involve controlled morphology, heteroatom
doping, and Faradaic material doping. These modification
methods are applied comprehensively in the synthesis of MOFCs
with the purpose to optimize the nanostructure and composition
of carbonmaterials, so as to achieve faster adsorption rate, higher
SAC, and better cycling stability. The cases mentioned above with
synthesis procedures and CDI performances are listed in Table 1.
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TABLE 1 | Typical cases of carbon electrodes derived from MOFs.

Electrode Precursor Template Heteroatom Faradaic

Material

Processing Electrochemical

Properties

Desalination

Performance

Cycling

Stability

IRMOF-1-derived

Carbon (Yang et al.,

2014)

IRMOF-1 / / / Solvent evaporation

method; 900◦C,

nitrogen

∼138 F g−1,

2mV s−1, 1M

NaCl

∼11mg g−1, 1.2 V,

585mg L−1

Not available

PCPs (Liu et al.,

2015b)

ZIF-8 / N / Chemical reaction

at room

temperature;

1,200◦C, nitrogen,

acid etching

275.69 F g−1,

1mV s−1, 1M

NaCl

13.86mg g−1,

1.2 V, 500mg L−1

No obvious

electrosorption

capacity

declination after

30 cycles

Carbon Polyhedron

and carbon

Nanotube Hybrids

(Gao et al., 2018)

ZIF-

67/carbon

nanotubes

ZIF-67 N CoxOy Chemical reaction

at 40◦C; CVD

treatment

343 F g−1,

10mV s−1, 6M

KOH

7.08mg g−1, 1.2 V,

500mg L−1

Not available

Shuttle-like porous

carbon rods (Xu

et al., 2016a)

MIL-88 (Fe) / / / Hydrothermal

method; 900◦C,

nitrogen; acid

etching

223.2 F g−1,

1M NaCl

16.2mg g−1, 1.2 V,

1,000mg L−1

95.1% after 30

cycles

NTP/C (Wang, K.,

et al., 2019)

MIL-125

(Ti)/NaH2PO4

MIL-125

(Ti) derived

TiO2/carbon

/ NaTi2(PO4)3 Solvothermal

method; 600◦C,

nitrogen;

solvothermal,

700◦C, nitrogen

164.8 F g−1,

10mV s−1, 1M

Na2SO4

167.4mg g−1,

1.8 V, 3,000mg L−1

90% after 30

cycles

Porous carbon

(Chang et al., 2015)

MOF-5 / / / Chemical reaction

at 85◦C; 900◦C,

vacuum

107.74 F g−1,

50mV s−1,

0.5M NaCl

9.39mg g−1, 1.2 V,

500mg L−1

97.5% after 10

cycles

3D-FeNC tubes (Xu

et al., 2020a)

PAN@ZIF’

fiber

Zn/PAN

fibers

N, Fe / Electrospinning

method, LBL

growth method,

template

dissolution; 900◦C,

nitrogen

Eonset: 0.98 V,

E1/2: 0.877V,

10mV s−1,

0.1M KOH

40.7mg g−1, 1.2 V,

3,500mg L−1

93.82% after

200 cycles

(oxygenated

water)

hCNTs/PCP (Xu

et al., 2016b)

CNTs/ZIF-

8

CNTs N / in situ insertion of

CNTs in ZIF-8;

1,000◦C, nitrogen

104.2 F g−1,

5mV s−1, 1M

NaCl

20.5mg g−1, 1.2 V,

1,000mg L−1

No obvious

electrosorption

capacity

declination after

30 cycles

NCTs (Xu et al.,

2020b)

PAN@ZIF-

8

PAN/Zn(Ac)2 N / Electrospinning,

LBL growth

method, template

dissolution; 900◦C,

nitrogen

∼292 F g−1,

10mV s−1, 1M

NaCl

56.9mg g−1, 1.2 V,

3,500mg L−1

96.9% after 50

cycles

NGCPs (Gao et al.,

2019)

ZIF-8 / N / Chemical reaction

at room

temperature;

1,000◦C, nitrogen

(low pressure)

307.4 F g−1,

10mV s−1, 1M

NaCl

17.73mg g−1,

1.4 V, 500mg L−1

90.8% after 10

cycles

ZIF-8@PZS-C

(Zhang et al., 2018)

ZIF-

8@PZS

ZIF-8 N, P, S / Electrostatic

interaction PZS

coating; 900◦C,

nitrogen, acid

etching

333 F g−1, 1mV

s−1, 0.5M NaCl

22.19mg g−1,

1.2 V, 500mg L−1

99% after 20

cycles

HCZ (Yang and

Luo, 2019)

UiO-66 / / ZrO2 Hydrothermal

method; 900◦C,

nitrogen

128 F g−1, 5mV

s−1, 1M NaCl

55.17mg g−1,

1.4 V, 250mg L−1

95.3% after 6

cycles

TiO2@PC (Ding, M.,

et al., 2019)

MIL-125

(Ti)

/ / TiO2 Chemical reaction

at room

temperature;

600◦C, argon

∼260 F g−1,

10mV s−1, 1M

NaCl

46.7mg g−1,

10mA g−1,

1,000mg L−1

No obvious

electrosorption

capacity

declination after

54 cycles
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CONCLUSIONS AND OUTLOOK

As a potential water treatment technology, CDI is progressively
making its path to the desalination industry. In this process, the
first and most important is the development of high-efficiency
and low-cost electrode materials. Nanocarbon materials derived
from metal–organic frameworks have become one of the most
promising candidates for their highly designable precursors.
Thanks to the application of creative modification methods,
breakthroughs have been made in the CDI performance
of MOFCs.

Nevertheless, promotion of desalination efficiency is merely
the first step of industrialization, the next will be the control
of cost. Generally, the synthesis of MOFCs should select a wide
range of cheap raw materials and simple synthetic routes. For
example, MILs composed of metal ions such as iron, titanium,
manganese, and organic ligands such as fumaric acid and
terephthalic acid may be an ideal choice due to their low cost,
safety, and high specific surface area. In terms of morphology
control, other than the template strategies mentioned above,
more methods need to be investigated. Nitrogen doping is
a common modification method of MOFCs with a main
consideration of nitrogen source. In addition to nitrogen-
containing MOFs, cheap external nitrogen sources such as urea
and ammonia are also worth considering. In the aspect ofMOFC-
based Faradaic electrode, transition metal oxides (Kai et al.,
2017) and polyanionic phosphates with low price and high salt
adsorption ability and are environmentally friendly hold great
potential.

In summary, MOFCs are one of the most promising electrode
materials for CDI. The further developing target is to achieve

higher SAC, faster desalination rate, higher cycling stability,
environmental friendliness, and lower cost. Considering that
recent studies have revealed the outstanding performance
of hybrid CDI with Faradaic negative electrodes, Faradaic
material doping might become a mainstream modification
method. Moreover, since the current CDI positive electrode
materials are still carbon materials, it is vital to improve
the non-Faraday desalination performance of MOFCs through
morphology control and element doping. It can be expected
that the combination of Faradaic mechanism and non-
Faradaic mechanism by selecting appropriate modification
methods of MOFCs would give CDI better desalination
performance.
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