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ABSTRACT: The activation of molecule hydrogen (H2) by metal-
free catalysts is always a challenge in the field of catalysis. Herein, a
series of N, P dual-doped carbon catalysts were constructed by the
pyrolysis of chitosan and phytic acid and utilized as metal-free
catalysts for the hydrogenation of nitrobenzene. The character-
ization indicated that the doping of phosphorus atoms not only
formed the species with catalytic activity for hydrogenation reaction
but also promoted the doping of N. The experimental results
indicated that their catalytic performance could be improved by the
regulation of pyrolysis temperature and heating rate. CP-900−1
(pyrolysis at 900 °C with a heating rate of 1 °C/min) exhibited a
promising catalytic activity with >99% nitrobenzene conversion. N,
P codoping was the key factor to its catalytic performance. All results indicated that the excellent catalytic activity of CP-900−1 was
attributed to the synergistic interaction among pyridinic N, P−C species, and graphitic N. This work provides an effective route for
the rational design and construction of highly efficient metal-free catalysts for hydrogenation.

1. INTRODUCTION
Hydrogenation, as a crucial organic reaction, plays an
irreplaceable role in many fields such as the synthesis of fine
chemicals.1−3 It uses cheap and easily available hydrogen gas as
a reducing agent with excellent atomic economy, and it is
regarded as the cleanest reduction method.4 However, since
hydrogen molecules are difficult to activate and normally
cannot directly participate in the reaction, catalysts that can
effectively activate hydrogen molecules are the key to this
green process.5 Designing and preparing catalysts with high
activity and selectivity have always been significant challenges
in the field of catalytic hydrogenation.
At present, many catalysts are employed in hydrogenation

reactions. Although homogeneous catalysts can come into full
contact with the reactant, they are problematic to separate
from the reaction system.6−8 Heterogeneous catalysts offer an
ideal solution and can be reused multiple times, making them
highly favored in industrial production.9,10 Among them,
metal-based catalysts exhibit outstanding catalytic activity for
hydrogenation,11−13 but they also have some inherent
drawbacks including limited reserves and expensive prices of
precious metals, as well as inevitable leaching and agglomer-
ation of metal components, leading to catalyst activity
reduction and product contamination.14,15 For high-end fine
chemicals like drugs and electronic chemicals, trace metal
impurities can cause severe harm to products’ quality.
Therefore, developing efficient and stable metal-free catalysts
can fundamentally solve the above shortcomings and has
significant application value.

Metal-free catalysts are considered as potential alternatives
to traditional metal catalysts because they do not undergo
metal leaching due to the absence of metal active
components.16−18 Carbon materials are commonly used as
good carrier materials for metal-based catalysts due to their
wide range of sources and stable properties.19,20 However,
carbon materials are always catalytically inert for H2 activation
due to the regular structure and uniform surface charge
distribution.21 Doping heteroatoms (B, N, P, S) in carbon
matrix is a convenient and effective modification strategy.22,23

The doping of heteroatoms can induce electron transfer
between heteroatoms and carbon atoms, as well as alter the
charge distribution around carbon atoms and heteroatoms.24,25

In addition, due to differences in atomic size, defects can be
introduced into carbon materials during the doping process.26

All of the above changes can endow the carbon material with
catalytic activity for hydrogenation. At present, the research on
carbon-based, metal-free catalysts is still in its infancy, mainly
focusing on the construction of catalysts and the exploration of
active sites. In spite of some progress that has been made, there
remains no unified conclusion regarding the active site or a
clear understanding of the specific H2 activation mecha-
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nism.27−29 Although carbon materials doped with a single
heteroatom of B, N, P, and S have been proven as promising
catalysts for some hydrogenation reactions, their performance
remains unsatisfactory, and harsh reaction conditions are
necessary. For instance, Han et al.30 prepared oxygen-induced
zigzag graphene (OZG) via thermal treatment of rGO, which
possessed high-performance activity with 99.7% nitrobenzene
conversion. However, this conversion of nitrobenzene could
only be achieved under the harsh conditions of 4 MPa H2 and
170 °C. Codoping of multiple heteroatoms may be an effective
approach to enhance the catalytic activity of carbon-based
catalysts for hydrogenation due to the synergistic effect arising
from the electronic interactions between different dop-
ants.31−34 Specifically, it is crucial to determine how different
dopants simultaneously affect the activity of carbon materials
as hydrogenation catalysts.
Herein, we have developed a series of biomass-derived N, P

dual-doped carbon-based catalysts (CP-T-X, where T refers to
the pyrolysis temperature and X refers to the heating rate)
using chitosan as both the carbon and nitrogen source and
phytic acid as the phosphorus source. The catalytic perform-
ance was evaluated by the hydrogenation of nitrobenzene to
aniline. The content and doping forms of nitrogen and

phosphorus in the catalyst could be adjusted by changing the
temperature and heating rate during pyrolysis. The relationship
between the structure and activity of the catalyst was discussed
according to the characterization and experimental results.
Among all catalysts, CP-900−1 exhibited excellent catalytic
activity for nitrobenzene hydrogenation, which should be
attributed to its suitable content and doping form of nitrogen
and phosphorus. What’s more, doped P played a key role in N
doping: doped P was beneficial for increasing the content of N
doping, regulating the N configuration, and increasing the
proportion of pyridinic N. It provides guidance for the rational
design of metal-free catalysts.

2. EXPERIMENTAL SECTION
2.1. Materials. Chitosan and phytic acid were purchased

from Shanghai Macklin Biochemical Technology Co., Ltd.
Cellulose was obtained from Sinopharm Chemical Reagent
Co., Ltd. Nitrobenzene was purchased from Rionlon Bohua
(Tianjin) Pharmaceutical & Chemical Co., Ltd. Organic
solvents were sourced from Tianjin Jiangtian Chemical
Technology Co., Ltd. All reagents were used without further
purification.

Figure 1. SEM images (a, b), TEM images (c, d), and EDX elemental maps (e) of CP-900−1 catalyst.
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2.2. Catalyst Preparation. Initially, chitosan (2.5 g) and
phytic acid (1.0 g) were added to ethanol aqueous solution (60
mL, 5:1, V/V) and stirred for 4 h. Subsequently, the solvent
was gradually removed by rotary evaporator and dried in a
vacuum oven at 60 °C for 6 h. The resulting solid was then
pulverized into powder, followed by pyrolysis under Ar
atmosphere at the designated temperature for 2 h with a
specific heating rate to yield N, P dual-doped carbon catalysts
denoted as CP-T-X (T represented the pyrolysis temperature,
T = 800, 900, 950, 1000 °C. X denoted the heating rate, X = 1,
2.5, 5 °C min−1). A similar procedure was employed to prepare
single-doped carbon catalysts. P-900−1 was prepared with
cellulose instead of chitosan, and N-900−1 was obtained from
pure chitosan. In addition, C-900−1 without any heteroatom
doping was prepared from pure cellulose. The preparation
details of all catalysts are summarized in Table S1.
2.3. Evaluation of Catalysts. The hydrogenation of

nitrobenzene to aniline was used as a probe reaction to
evaluate the catalytic performance of the prepared materials.
Typically, 0.25 mmol of nitrobenzene, 3 mL of solvent, and 30
mg of catalyst were added to a stainless-steel autoclave with a
poly(tetrafluoroethylene) lining. The autoclave was purged 3
times with 1 MPa nitrogen and then 10 times with 1 MPa
hydrogen to remove air from it. The reactor was then filled
with hydrogen to 3 MPa and maintained at 200 °C for 3 h with
magnetic stirring. After the reaction, the reaction mixture was
cooled naturally to room temperature and analyzed by gas
chromatography.
2.4. Characterization. The morphology and structure of

the samples were observed by transmission electron micros-
copy (TEM, JEM-F200 from JEOL) and scanning electron
microscopy (SEM, Regulus 8100 from HITACHI). Powder X-
ray diffraction (XRD) patterns were recorded on a Smartlab
(Rigaku, Japan) in the 2θ range of 5−80° (5°/min) with a Cu
Kα source. Raman spectra were obtained on a Thermo
FischerDXR spectrometer with an excitation wavelength of
532 nm. X-ray photoelectron spectroscopy (XPS) measure-
ments were conducted on a Thermo ESCALAB 250Xi
instrument to examine the elemental composition and forms.
Elemental analysis (EA) was performed by using an Elementar

Unicube. Inductively coupled plasma optical emission spectra
(ICP-OES) were collected by a Thermo Fisher iCAP PRO.

3. RESULTS AND DISCUSSION
3.1. Catalyst Characterization. The microstructure of the

prepared samples was characterized by SEM and TEM. As
shown in Figure S1 (a,b), the raw material chitosan exhibited a
smooth, wavy structure, and no pore structure was observed
under high magnification. After pyrolysis, N-900−1 displayed a
slightly wrinkled surface with no obvious pore structure
(Figure S1c,d). In sharp contrast, the samples pyrolyzed with
phytic acid showed a curled and wrinkled structure. Figure
S1(e,f) showed the SEM images of CP-800−1, from which it
could be seen that there were a few fold structures on the
surface of the sample, and some sparse pore structures could
be observed after magnification. The surface of CP-900−1
(Figure 1a) exhibited dense and curled wrinkles, and a porous
network structure could be observed. This phenomenon may
be attributed to the decomposition of phosphoric acid groups
on phytic acid, thereby facilitating the formation of a well-
defined pore structure. Such porous structure was closely
related to the high activity of the catalyst, which could expose
more active sites and facilitate the mass transfer and substrate
adsorption of the reaction.32 The SEM image of CP-1000−1 is
shown in Figure S1(i). Compared with CP-900−1, the
wrinkles on its surface were reduced, and the overall surface
became smoother. Moreover, no dense network structure was
observed, which may be due to the collapse of the pore
structure caused by excessive temperature. In addition, the
samples were characterized by TEM. As shown in Figures 1c
and S2, the samples prepared at different pyrolysis temper-
atures showed similar stacked lamellar structures in the TEM
characterization. The amorphous carbon structure in the
catalyst was confirmed by the presence of disordered curved
stripes (Figure 1d). Moreover, energy-dispersive system (EDS)
elemental images showed that the four elements of C, N, O,
and P were evenly distributed on CP-900−1, confirming the
successful doping of N and P (Figure 1e).
The XRD patterns were applied to analyze the crystal

structures of the catalysts (Figure 2a). All catalysts exhibited

Figure 2. (a) XRD patterns and (b) Raman spectra of the prepared catalysts.
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two broad peaks at approximately 23 and 43°, corresponding
to (002) and (100) planes of graphite, respectively.22 The
presence of low-intensity broad peaks indicated the amorphous
structure and partial graphitization of the catalysts, which was
consistent with the TEM results. In addition, Raman spectra
were employed to analyze the content of structural defects in
the catalysts. Two peaks were observed at 1350 and 1580 cm−1

in Figure 2b, corresponding to the characteristic D and G
bands, respectively. The D band signifies sample disorderliness,
while the G band characterizes the graphitization degree.
Hence, the intensity ratio of ID/IG is commonly used to
characterize the content of defects in carbon materials. A
higher value of ID/IG indicates a higher defect content.35 The
ID/IG values remained unchanged at 0.98 as the heating rate

Figure 3. (a) XPS spectra of the CP-900−1 catalyst and XPS high-resolution N 1s of (b) CP-800−1, (c) CP-900−1, (d) CP-1000−1, (e) CP-
900−2.5, and (f) CP-900−5.

Figure 4. XPS high-resolution P 2p of (a) CP-800−1, (b) CP-900−1, (c) CP-1000−1, (d) CP-900−2.5, and (e) CP-900−5.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02498
ACS Omega 2024, 9, 40424−40432

40427

https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02498?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02498?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


increased from 1 to 5 °C/min, indicating that the heating rate
had no significant effect on the defect content in the catalyst.
As the pyrolysis temperature increased from 800 to 1000 °C,
the ID/IG value decreased from 1.00 to 0.97, suggesting a slight
reduction in defect content.
The elemental composition and chemical status of the

catalyst were investigated by X-ray photoelectron spectroscopy
(XPS). As shown in Figure 3a, the catalyst contained C, N, O,
and P, confirming the successful doping of N and P into the
carbon matrix, which were also observed in energy-dispersive
X-ray (EDX) results (Figure 1e). Numerous studies have
demonstrated that the doping form of heteroatoms has a
significant impact on the catalytic activity of catalysts.15,28 To
further elucidate the specific forms of nitrogen and phosphorus
species, high-resolution N 1s and P 2p spectra were collected
(Figures 3, 4, and S3). All of the samples contained four
distinct nitrogen species: pyridinic N (398 eV), pyrrolic N
(399 eV), graphitic N (400.5 eV), and nitrogen oxide (402
eV).36,37 Previous studies have indicated that pyridinic N is
beneficial to the dissociation of H2 and serves as a potential
activation site of H2.

38,39 As the pyrolysis temperature
increased, the proportion of nitrogen oxide in CP-T-X
decreased, while the proportion of pyridinic N increased
(Table 1). Meanwhile, as the heating rate increased, the
content of nitrogen oxide increased, and the content of
pyridinic N decreased. Under identical preparation conditions
(pyrolysis temperature, 900 °C; heating rate, 1 °C/min), the
proportions of different nitrogen species were significantly
different between N-900−1 and CP-900−1. The proportion of
pyridinic N was 26.46%, and the proportion of graphitic N was
61.80% in N-900−1. After doping phosphorus atoms in the
nitrogen-doped carbon matrix, the pyridinic N of CP-900−1
increased to 39.47%, exhibiting the highest pyridinic N content
among all catalysts, and the graphitic N proportion decreased
to 35.80%. This indicated that the doped phosphorus atoms
changed the doping mode of nitrogen atoms and significantly
increased the content of pyridinic N.
The P 2p spectra of CP-T-X were fitted to three different

peaks, including P−C (132.1 eV), P−N (133.2 eV), and P−O
(134.1 eV) (Figure 4 and Table 1). As the pyrolysis
temperature increased, the content of P−O decreased. Higher
temperatures were conducive to the binding of P to carbon or
nitrogen, thereby reducing the content of P−O. When the
heating rate reached 5 °C/min, phosphorus mainly combined
with oxygen, and the content of P−O in the catalysts increased
significantly. Therefore, the excessive heating rate was not
conducive to the doping of P into the carbon matrix. Among
all of the CP-T-X materials, CP-900−1 displayed the highest
content of P−C.

The elemental contents of the prepared catalysts are
summarized in Table 2. With the increase of the pyrolysis

temperature, the contents of nitrogen and phosphorus in the
catalysts gradually decreased. This phenomenon was attributed
to the fact that heteroatoms were more likely to overflow from
the catalyst at a high temperature. At the pyrolysis temperature
of 900 °C, the increased heating rate led to a significant
decrease in phosphorus content within the catalyst. This
phenomenon may be attributed to the relatively large atomic
radius of P, which hinders its incorporation into the carbon
matrix and requires a lower heating rate for sufficient doping
content. In addition, as the heating rate increased, the nitrogen
content gradually decreased, indicating that a lower heating
rate was also conducive to nitrogen doping. Therefore, the
appropriate heating rate and pyrolysis temperature were critical
for sufficient nitrogen and phosphorus doping in the catalyst.
When the pyrolysis was conducted at 900 °C with a heating
rate of 1 °C/min, the nitrogen content of N-900−1 was 2.61%,
while that of CP-900−1 increased to 3.09%. Without altering
the initial nitrogen concentration in the precursor material, the
nitrogen content of CP-900−1 significantly increased
compared to that of N-900−1, suggesting that doped P
could promote N doping and significantly increase the content
of N.
The N2 adsorption and desorption tests were employed to

explore the specific surface area and porous structure of the
catalysts, and the results are collected as shown in Table 3 and
Figure S4. As shown in Figure S4a, all N2 adsorption−
desorption isotherms exhibited an unclosed characteristic. This
phenomenon may be attributed to the unique pore structure of

Table 1. Composition of Nitrogen and Phosphorus Species in Catalysts

the relative content of nitrogen species (%) the relative content of phosphorus species (%)

catalyst pyridinic N pyrrolic N graphitic N NOx P−C P−N P−O

CP-800−1 18.80 25.81 26.70 28.69 12.89 53.99 33.11
CP-900−1 39.47 17.92 35.80 6.80 33.58 39.29 27.13
CP-950−1 37.55 29.57 27.12 5.76 19.36 58.03 22.61
CP-1000−1 49.66 31.60 15.68 3.06 15.97 66.61 17.42
CP-900−2.5 19.61 20.07 53.44 6.89 9.29 63.93 26.78
CP-900−5 7.88 22.32 52.52 17.28 13.92 35.39 50.69
N-900−1 26.46 11.73 61.80
P-900−1 66.20 33.80

Table 2. Element Content of Catalysts

catalyst C H O N P

CP-800−1 64.545 1.6035 21.7505 5.58 6.521
CP-900−1 68.305 1.679 23.276 3.085 3.655
CP-1000−1 72.415 1.6755 21.9545 1.915 2.040
CP-900−2.5 66.03 1.946 26.329 3.025 2.670
CP-900−5 64.17 2.2405 28.0805 2.72 2.789

Table 3. Specific Surface Area and Pore Structure of
Catalysts

catalyst SBET (m2/g) Vtotal (cm3/g) Daverage (nm)

N-900−1 284.58 0.23 12.38
CP-800−1 370.72 0.25 14.20
CP-900−1 540.98 0.42 15.63
CP-950−1 496.20 0.36 12.62
CP-1000−1 467.72 0.28 12.58
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the carbon material, which hinders the desorption of the gas
after adsorption, thus leading to the incomplete closure of the
N2 adsorption−desorption curves.40 The pore size distribution
curves showed that carbon materials have abundant micro- and
mesoporous structures (Figure S4b). The specific surface area
of N-900−1 was only 284.58 m2/g, and that of CP-900−1
increased to 540.98 m2/g. This may be attributed to the
decomposition of phosphoric acid groups of phytic acid during
the pyrolysis process, which could promote the formation of a
rich pore structure (Table 3). When the pyrolysis temperature
exceeded 900 °C, the specific surface area of the prepared
samples showed a decreasing trend, which could be attributed
to the collapse of the pore structure due to the excessively high
temperature. The large specific surface area facilitated the
generation and dispersion of active sites and contributed to the
reaction’s mass transfer.32 Therefore, we hypothesize that the
CP-900−1 catalyst may exhibit excellent catalytic activity.
3.2. Catalytic Hydrogenation of Nitrobenzene. The

catalytic performance of the prepared catalysts was evaluated
by employing the hydrogenation of nitrobenzene to aniline as
the model reaction and H2 as the hydrogen source (Table 4).

It was evident that the conversion rate of the reaction was poor
without a catalyst (entry 1). When C-900−1 was used as a
catalyst (entry 2), nitrobenzene exhibited almost no reactivity,
indicating that carbon materials without heteroatom doping
were catalytically inert. By employing single nitrogen-doped N-
900−1 and single phosphorus-doped P-900−1 as catalysts, the
conversion of nitrobenzene was increased to 7.64 and 13.55%,
respectively, indicating that both nitrogen and phosphorus
doping could enhance the catalytic activity of carbon materials
(entry 3, entry 4). However, this improvement remained
relatively limited. CP-900−1 not only introduced phosphorus
atoms into the carbon matrix but also significantly increased
the total N content and pyridinic N content compared to N-
900−1, resulting in a significant increase in the conversion rate
of nitrobenzene, which could reach over 99% within 3 h (entry
7). This result confirmed the crucial promoting effect of doped
P on N doping, which was beneficial for the formation of
catalytic active species and thus enhanced the catalytic activity
of the catalyst. As the pyrolysis temperature increased from

700 to 1000 °C, the activity of CP-T-X catalysts initially
exhibited an upward trend followed by a subsequent decline.
The catalyst pyrolyzed at 900 °C exhibited the best catalytic
performance, achieving nearly complete conversion of nitro-
benzene. CP-700−1 catalyst displayed low activity, and the
reaction was difficult to proceed over it (entry 5). This was
because the lower pyrolysis temperature made it difficult for
heteroatoms to be doped into the carbon lattice. However, as
the pyrolysis temperature increased to 1000 °C, heteroatoms
were more likely to overflow from the carbon lattice, resulting
in a decrease in doping content and subsequent reduction in
catalytic activity. Furthermore, the influence of heating rate
was also investigated (entries 7, 10, 11). With the increase of
heating rate, the content of heteroatoms in the catalyst
decreased, leading to a reduction in its catalytic activity. Based
on the aforementioned analysis, the dual-doping of N and P in
the carbon matrix could significantly enhance the catalytic
activity for hydrogenation. Moreover, both the doping amount
and form of heteroatoms exhibited substantial impacts on
catalyst performance. The presence of pyridinic N can alter the
electronic structure of carbon materials, which is beneficial for
the dissociation of hydrogen molecules.38,41 In fact, the CP-
900−1 catalyst with the highest pyridinic N content exhibited
optimal catalytic performance, suggesting that pyridinic N may
serve as the active site for activating H2. Moreover, graphitic N
could facilitate nitrobenzene adsorption by lowering the
adsorption energy.42 In addition, phosphorus atoms possess a
relatively large atomic radius along with strong electron-
donating ability.26 After being doped into the carbon matrix,
they could form a metal-like electronic structure, which was
conducive to the activation of H2 molecules. Through the
analysis of the relationship between the different doping forms
of phosphorus in Figure 4 and the conversion rate of
nitrobenzene in Table 2, it could be concluded that CP-
900−1 with the highest content of P−C exhibited the highest
catalytic activity.
We further explored the effect of solvents on the

hydrogenation reaction of nitrobenzene (Table S2). In an
anhydrous reaction system, the reduction of nitrobenzene
required more stringent reaction conditions for it to occur,
resulting in a low conversion rate (entries 7−11). However, a
higher conversion of nitrobenzene was achieved when water
was used as the solvent (entry 6). Moreover, nitrobenzene was
almost completely converted in the mixed solvent consisting of
ethanol and water (entry 1), in which water molecules
promoted H2 dissociation by lowering its activation energy
through the “H-shuttle” mechanism.43 Meanwhile, the hydro-
gen bonds formed between the nitro group and water could
effectively activate the N−O bond, further promoting the
hydrogenation reaction.43 Using water as the solvent led to a
lower conversion of nitrobenzene compared to the water−
ethanol mixed solvent. This could be attributed to the poor
solubility of nitrobenzene in water, which affected the mass
transfer process of the reaction, resulting in a lower conversion
rate.
Hydrogenation of functional nitrobenzene derivatives to

corresponding amino compounds is of great significance in the
synthesis of fine chemicals.44 Therefore, the catalytic hydro-
genation of diverse substituted nitroarenes was examined with
CP-900−1 (Table 5). Most of the nitroarenes bearing with
different substituent groups exhibited favorable conversion.
For alkyl-substituted nitrobenzenes, prolonging the reaction
time could lead to its complete conversion to the

Table 4. Catalytic Performance of Catalystsa

entry catalyst conversion (%)

1 <1
2 C-900−1 <1
3 N-900−1 13.55
4 P-900−1 7.64
5 CP-700−1 1.78
6 CP-800−1 40.66
7 CP-900−1 >99
8 CP-950−1 41.77
9 CP-1000−1 6.30
10 CP-900−2.5 21.16
11 CP-900−5 1.43

aConditions: 30 mg catalyst, 0.25 mmol nitrobenzene, 2.5 mL of
mixed solvent (VEtOH/VHd2O = 3:2), 3 MPa H2, 140 °C, 3 h.
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corresponding anilines (entry 1). Notably, nitroarenes with
electron-donating substituents required a longer reaction time
to achieve higher yields (entry 2, entry 3) than nitroarenes
with electron-withdrawing groups (entry 5). The selectivity of
p-amino-styrene was only 79% when the nitroarene contained
a double bond such as p-nitrostyrene, indicating that the CP-
900−1 catalyst could catalyze the hydrogenation of carbon−
carbon double bonds (entry 7).
For heterogeneous catalysis, the stability and recyclability of

the catalyst are of great practical significance and are
prerequisites for large-scale industrial applications. The CP-
900−1 catalyst exhibited good retrievability and stability for
the hydrogenation of nitrobenzene, with only a slight decrease
in nitrobenzene conversion after 5 cycles (Figure 5).

4. CONCLUSIONS
In conclusion, N and P dual-doped metal-free catalysts were
prepared through a direct pyrolysis method by employing
sustainable biomass chitosan as both the carbon and nitrogen
sources and phytic acid as the phosphorus source. N, P dual-
doping significantly enhanced the catalytic activity of carbon
materials. CP-900−1 catalyst showed superior catalytic
efficiency for the hydrogenation of nitrobenzene. By exploring
the relationship between the structure and activity of catalysts,
it was found that doped P played a crucial role in promoting
and regulating N doping. On the one hand, the doped P
increased the content of N in the carbon material and affected
the nitrogen doping mode to increase the content of pyridinic
N; On the other hand, doped P facilitated the formation of

numerous P−C species and related active components. The
excellent catalytic activity of the CP-900−1 catalyst should be
attributed to the synergistic effects of pyridinic N, P−C
species, and graphitic N. The doping of graphitic N facilitated
the adsorption of nitrobenzene, while the presence of pyridinic
N and P−C species was beneficial for the dissociation of H2.
Besides, the CP-900−1 catalyst exhibited good retrievability
and cycling stability for the hydrogenation of nitrobenzene
with little change in the conversion in 5 cycles.

Table 5. Catalytic Performance of CP-900-1 in the Hydrogenation of Nitroarenesa

aConditions: 30 mg catalyst, 0.25 mmol substrate, 2.5 mL of mixed solvent (VEtOH/VHd2O = 3:2), 3 MPa H2, 140 °C.

Figure 5. Cycle test of CP-900−1.
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