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Simple Summary: Globally, breast cancer (BC) is the most common cancer in women. Although
numerous studies have attempted to address this worldwide health problem, it has not yet been
possible to understand cancer in its entirety, mainly because most of the investigations have been
focused on traditional molecular traits of DNA. Thus, new characteristics of breast tumorigenesis must
be tackled, such as RNA-binding proteins (RBPs), which are crucial regulators of important cellular
processes. To identify novel breast cancer RNA-binding proteins, we integrated several bioinformatic
resources derived from experimentation on BC patient samples and cell lines. Consequently, we
identified five putative breast cancer RNA-binding proteins (PUF60, TFRC, KPNB1, NSF, and SF3A3)
showing strong tumorigenic characteristics. Supplementary investigation of the molecular and
cellular functions of these proteins identified PUF60 and SF3A3 as new spliceosome-related breast
cancer RNA-binding proteins. Further experimentation should center on these five RBPs to identify
their role in breast tumorigenesis and potentially discover new druggable targets.

Abstract: More women are diagnosed with breast cancer (BC) than any other type of cancer. Although
large-scale efforts have completely redefined cancer, a cure remains unattainable. In that respect, new
molecular functions of the cell should be investigated, such as post-transcriptional regulation. RNA-
binding proteins (RBPs) are emerging as critical post-transcriptional modulators of tumorigenesis, but
only a few have clear roles in BC. To recognize new putative breast cancer RNA-binding proteins, we
performed integrated in silico analyses of all human RBPs (n = 1392) in three major cancer databases
and identified five putative BC RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3), which showed
robust oncogenic features related to their genomic alterations, immunohistochemical changes, high
interconnectivity with cancer driver genes (CDGs), and tumor vulnerabilities. Interestingly, some of
these RBPs have never been studied in BC, but their oncogenic functions have been described in other
cancer types. Subsequent analyses revealed PUF60 and SF3A3 as central elements of a spliceosome-
related cluster involving RBPs and CDGs. Further research should focus on the mechanisms by which
these proteins could promote breast tumorigenesis, with the potential to reveal new therapeutic
pathways along with novel drug-development strategies.
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1. Introduction

Breast cancer (BC) is the leading cause of cancer-associated death (15%: 626,679 cases)
and the most commonly diagnosed cancer (24%: 2,088,849 cases) among women world-
wide [1]. BC is characterized by a complex interaction between environmental factors
and biological traits, such as gene deregulation, hormone disruption, or ethnicity [2–4].
Despite treatment efforts, advanced BC with distant organ metastasis is considered to
be incurable [2]. Therefore, a better understanding of BC’s molecular processes is still
pertinent to identifying new therapeutic targets. Current oncological research generates
large-scale datasets that harbor essential aspects of tumor biology. For instance, the Cancer
Genome Atlas (TCGA), with over 2.5 petabytes of data, has molecularly characterized
over 20,000 patient samples covering 33 cancer types [5–10]. Additionally, the Cancer
Dependency Map (DepMap) project, using loss-of-function genetic screens, has identified
essential genes for cancer proliferation and survival ex vivo [11–13]. Additionally, the
Human Protein Atlas (HPA) constitutes a comprehensive resource to explore the human
proteome in healthy and tumoral human tissues [14–16]. Although these datasets have
completely redefined cancer drug development, diagnosis, and treatment, additional funda-
mental features of oncogenesis, tumor growth, and dissemination remain to be discovered.
In this respect, post-transcriptional regulation of tumorigenesis represents an understudied
trait of cancer research [17].

RNA-binding proteins (RBPs) are particularly relevant due to their implication in every
post-transcriptional step of gene expression: RNA splicing, transport, stability, translation,
and localization. As a result, genomic alterations of these proteins lead to dysfunctional
cellular processes, but only a few have defined functions in BC [18–25]. To date, 1393 RBPs
have been experimentally identified in the human RNA interactome [26]. Despite efforts
to understand their role in cancer [27,28], an integrated analysis of the aforementioned
databases along with other in silico approaches is still missing for BC. To shed light on this
matter, we analyzed and integrated RBPs genomic alterations, protein–protein interaction
(PPI) networks, immunohistochemical profiles, and loss-of-function experiments to find
new putative breast cancer RNA-binding proteins.

2. Materials and Methods
2.1. Gene Sets

A total of 1393 RBPs were extracted from Hentze et al. [26] and checked for new
annotations using Ensembl (http://www.ensembl.org (accessed on 5 February 2022)) [29,30].
Only one duplicate was found: ENSG00000100101 and ENSG00000273899, both correspond
to NOL12, leaving a final list of 1392 RBPs. BC genes (n = 171) were obtained from the
Network of Cancer Genes 6.0 (NCG6) [31]. Non-cancer gene list was constructed from
Piazza et al. [32], without RBPs and NCG6 [31] genes, and reanalyzed using Piazza’s
OncoScore algorithm (https://www.galseq.com/next-generation-sequencing/oncoscore-
software (accessed on 7 January 2022)), giving a final list of 177 non-cancer genes (Table S1).

2.2. Genomic Analysis

Genomic alterations of RBPs, non-cancer, and BC genes were analyzed through the
cBioPortal (https://www.cbioportal.org (accessed on 12 March 2022)) [33,34] using the Breast
Invasive Carcinoma (TCGA, PanCancer Atlas) database (n = 994 complete samples) and the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) database (n = 122 complete sam-
ples) [5–10,35]. To compare the aforementioned gene sets, genomic alterations per protein
were corrected by the number of genes or individuals. A Mann–Whitney U test was used
to compare genomic alterations between gene sets or clinical characteristics (Table S2).

http://www.ensembl.org
https://www.galseq.com/next-generation-sequencing/oncoscore-software
https://www.galseq.com/next-generation-sequencing/oncoscore-software
https://www.cbioportal.org
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2.3. Network Construction

Experimental and database interactions (Table S3) between RBPs (n = 1392) and BC
proteins (n = 171) [31], having an interaction score of 0.9 (highest confidence), were extracted
from the STRING database (Table S6) [36] and visualized using the Cytoscape 3.7.1 (Seattle,
USA) platform [37].

2.4. Protein Expression Analysis

Immunohistological levels of 1212 available RBPs in normal and BC tissues were ex-
tracted from Protein Atlas version 18.1 (https://www.proteinatlas.org (accessed on 15 June
2021)) [14–16]. Expression levels of normal tissues were taken from glandular cells, while
a consensus level was manually generated for BC tissues (Table S7) based on tissue level
frequency. Immunohistological images were taken from https://www.proteinatlas.org/
ENSG00000182481-KPNA2/tissue/breast#img (accessed on 15 June 2021) (KPNA2 staining
of normal tissue), https://www.proteinatlas.org/ENSG00000182481-KPNA2/pathology/
tissue/breast+cancer#img (accessed on 15 June 2021) (KPNA2 staining in tumoral tissue),
https://www.proteinatlas.org/ENSG00000138757-G3BP2/tissue/breast#img (accessed on
15 June 2021) (G3BP2 staining in normal tissue), https://www.proteinatlas.org/ENSG000
00138757-G3BP2/pathology/breast+cancer#img (accessed on 15 June 2021) (G3BP2 stain-
ing in tumoral tissue), https://www.proteinatlas.org/ENSG00000109111-SUPT6H/tissue/
breast#img (accessed on 15 June 2021) (SUPT6H staining in normal tissue), and https:
//www.proteinatlas.org/ENSG00000138757-G3BP2/pathology/breast+cancer#img (ac-
cessed on 15 June 2021) (SUPT6H staining in tumoral tissue).

2.5. Cancer-Dependency Analysis

RBP cancer-dependency scores from CERES [11] (1288 available RBPs) and DEME-
TER2 [12,13] (1290 available RBPs) were obtained from the Dependency Map (DepMap)
portal (https://depmap.org/portal (accessed on 10 June 2021)). Molecular subtypes of 82
(DEMETER2 [12,13]) and 28 (CERES [11]) BC cell lines were obtained from Smith et al. [38],
Dai et al. [39], and Kao et al. [40] (Table S10).

2.6. Cancer-Related Networking Analysis

Previously prioritized RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3) were integrated
into a disease gene network (filtered by RBPs [n = 125] and CDGs ((n = 202 genes)) by
using the HumanNet XN (fully extended functional gene network) v2 software (https:
//www.inetbio.org/humannet (accessed on 9 July 2021)) and visualized through Cytoscape
V3.8.2 [37]. We then used MCODE [41] to find complexes within the network according to
level-3 parameters: node score cutoff = 0.1, fluff = 0, and no haircut. The resulting network
was interpreted through CORUM [42], a database of mammalian protein complexes (https:
//mips.helmholtz-muenchen.de/corum (accessed on 8 July 2021)).

3. Results
3.1. An Overview of RNA-Binding Protein Genomic Alterations in Breast Cancer

To globally assess the potential role of RBPs in BC, we performed complementary
analyses, which are depicted in Figure 1.

Then, to evaluate the potential role of RBPs in BC versus well-known BC genes, we
interrogated the Breast Invasive Carcinoma (TCGA, PanCancer Atlas) and Breast Can-
cer (CPTAC) [5–10,35] database for genomic alterations of RBPs (n = 1392), BC genes
(n = 171) [31], and non-cancer genes (n = 170) [32] (Table 1). As shown in Figure 2A, both
genomic alteration frequencies of RBPs and BC genes were significantly higher than the
ones observed for non-cancer genes. Interestingly, RBPs present a similar degree of genomic
alterations as BC genes (Figure 2A), highlighting the putative role of RPBs in BC.

https://www.proteinatlas.org
https://www.proteinatlas.org/ENSG00000182481-KPNA2/tissue/breast#img
https://www.proteinatlas.org/ENSG00000182481-KPNA2/tissue/breast#img
https://www.proteinatlas.org/ENSG00000182481-KPNA2/pathology/tissue/breast+cancer#img
https://www.proteinatlas.org/ENSG00000182481-KPNA2/pathology/tissue/breast+cancer#img
https://www.proteinatlas.org/ENSG00000138757-G3BP2/tissue/breast#img
https://www.proteinatlas.org/ENSG00000138757-G3BP2/pathology/breast+cancer#img
https://www.proteinatlas.org/ENSG00000138757-G3BP2/pathology/breast+cancer#img
https://www.proteinatlas.org/ENSG00000109111-SUPT6H/tissue/breast#img
https://www.proteinatlas.org/ENSG00000109111-SUPT6H/tissue/breast#img
https://www.proteinatlas.org/ENSG00000138757-G3BP2/pathology/breast+cancer#img
https://www.proteinatlas.org/ENSG00000138757-G3BP2/pathology/breast+cancer#img
https://depmap.org/portal
https://www.inetbio.org/humannet
https://www.inetbio.org/humannet
https://mips.helmholtz-muenchen.de/corum
https://mips.helmholtz-muenchen.de/corum
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Figure 1. Workflow of the prioritization strategy. This scheme describes all major steps performed to
identify PUF60 and SF3A3 as new spliceosome-related breast cancer RNA-binding proteins.

To obtain insights into how these proteins are altered in BC, we cataloged their genomic
alteration types. As shown in Figure 2B and (Table S2), most genomic alterations are related
to an overrepresentation of the mRNA (68.7%) or gene loci (15.4%).

3.2. Identification of Highly Altered Breast Cancer RNA-Binding Proteins

To identify breast cancer-related RNA-binding proteins, we next interrogated the
Network of Cancer Genes 6.0 (NCG6) [31] for RBP having known or predicted cancer
driver roles. NCG6 harbors the most recent catalog of cancer driver genes (CDG) [31]. Thus,
we identified 225 RBPs, 14 implicated in BC (2 oncogenes, 4 tumor suppressors, and 8 un-
known), indicating that these proteins remain poorly studied in breast carcinogenesis, and
211 related to other cancer types (21 oncogenes, 24 tumor suppressors, and 166 unknown)
(Figure 3A, Table S3).
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Table 1. Top ten most altered RNA-binding proteins in invasive breast carcinoma (TCGA, PanCancer
Atlas) and breast cancer (CPTAC).

Genomic
Alterations Protein Name Number of

Alterations
Known BC Molecular and

Cellular Functions
Related to Other

Cancer Types Pubmed Citations

Amplification +
mRNA upregulation
+ fusion + mutations

MRPL13 579
No. However, MRPL13 is
an ESR2 protein interactor

in MCF7 cells [43]
No 34

DCAF13 574
Yes. It is overexpressed in

171 primary breast
tumors [44]

Yes [45] 23

YWHAZ 532

Yes. Often amplified in
BC [46], leading to

increased glycolysis [47].
YWHAZ is also an ESR2

protein interactor [43]

Yes 492

DAP3 491
Yes. DAP3 silencing
contributes to breast
carcinogenesis [18]

Yes [48] 77

NUCKS1 490
Yes. NUCKS1 is

overexpressed in breast
tumors [49]

Yes [50] 58

TFB2M 488 No No 36

MTDH 469
Yes. MTDH promotes

cancer proliferation and
metastasis [19]

Yes [51] 273

C1ORF131 463 No No 13

PTDSS1 458
No. However, PTDSS1 is an
ESR2 protein interactor in

MCF7 cells [43]
No 27

RBM34 452
No. However, RBM34 is an
ESR2 protein interactor in

MCF7 cells [43]
No 35

Deep deletion +
mRNA

downregulation +
fusion + mutations

CCAR2 378 Yes. CCAR2 functions as a
tumor suppressor [20] Yes [52] 149

DDX19A 240 No No 24

DHX38 180
No. However, DHX38 is an
ESR2 protein interactor in

MCF7 cells [43]
No 50

ADD1 165
No. However, ADD1 is an
ESR2 protein interactor in

MCF7 cells [43]
Yes [53] 223

KMT2C 135 Yes. KMT2C regulates ERα
activity [54]

Yes, it is a tumor
suppressor in

esophageal
squamous cell
carcinoma [55]

88

ZC3H18 135
No. However, ZC3H18 is
an ESR2 protein interactor

in MCF7 cells [43]
No 39

NCBP3 130
No. However, NCBP3 is an
ESR2 protein interactor in

MCF7 cells [43]
No 26

RARS2 123 No No 26

EIF4ENIF1 122 No No 52

NMT1 109 No Yes [56] 92
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Figure 2. Genomic alterations of RBPs in BC. (A) Frequency of genomic alterations per gene set
(non-cancer genes (n = 170), BC genes (n = 171), and RBPs [n = 1392]) using the Breast Invasive
Carcinoma (TCGA, PanCancer Atlas) and Breast Cancer (CPTAC) database [5–10,35]. Genomic
alterations per patient were corrected by the number of genes; a Mann–Whitney U test was used to
compare genomic alterations between gene sets. ** = very significant difference; ns = not significant.
(B) A pie chart describing RBPs’ genomic alteration types.

To categorize putative RBPs implicated in tumor progression or suppression, we
analyzed RBPs’ genomic alterations based on their progressor or suppressor profiles. Tumor
progressors tend to be overexpressed (mRNA upregulation or genomic amplification), while
suppressors are downregulated (mRNA downregulation or genomic deletion) in malignant
cells [57]. Gene mutations or fusions have been observed in both tumor progressors and
suppressors. On this basis, we identified highly altered breast cancer RNA-binding proteins
(Tables 1 and S2). Interestingly, 30% of all human RBPs interact with the tumor suppressor
ESR2 (Figure 3B) [43]. We also found known BC progressor and suppressor proteins, such
as DAP3 [18], MTDH [19], or CCAR2 [20], which validate our strategy (Tables 1 and S2).
This analysis also reveals proteins that have not been related to tumorigenesis, and yet they
are highly altered in BC (e.g., TFB2M, C1ORF131, or DDX19A) (Tables 1 and S2).

To further identify important RBPs implicated in BC, we analyzed RBPs’ genomic
alterations by subtype (Normal, LumA, LumB, Her2, and Basal) (Table S4) or staging (Stage I
to IV) (Table S5). As shown in Figure 3C, RBP genomic alterations found in the Basal subtype
samples were statistically significant compared to other subtypes (p < 0.001). Similarly, RBP
genomic alterations of Stage IV samples were statistically significant compared to other
stages (p < 0.001) (Figure 3D). Individually, some RBPs reached high frequencies of genomic
alterations per subtype (Figure 3C, Table S4) or stage (Figure 3D, Table S5). For instance,
ARF1, the most altered protein in Stage IV (Figure 3D), has been shown to promote BC
metastasis [58]; PARP1 has also been demonstrated to enhance metastasis not only in BC [59]
but also in other cancer types [60]. In contrast, SCAMP3 and HEATR6, which present similar
degrees of genomic alterations (Figure 3D), have not been studied in BC.

3.3. RNA-Binding Proteins Interact with Well-Known Breast Cancer Proteins

Networking analysis has proved useful in identifying RNA regulons and crucial
tumoral proteins [57]. On this basis, we next explored PPIs between RBPs (n = 1392) and
well-known BC proteins (n = 171) [31] using the STRING database [61]. The interactions
were obtained from experiments and databases; the interaction score was 0.9. This is
the highest possible confidence of an interaction to be true based on all the available
evidence. Thus, we identified 113 BC proteins interacting with 398 RBPs (Table S6). By
narrowing down our analysis to experimental interactions only (Figure 4), we observed
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two main networks around SF3B1 and CDC5L proteins. According to the g:Profiler [62],
proteins interacting with SF3B1 are implicated in RNA splicing (Padj = 3.783 × 10−34;
GO:0000377) (p-value adjusted (Padj) for multiple testing using the Benjamin–Hochberg
method), while proteins connected to CDC5L are mainly involved in chromatin binding
(Padj = 1.500 × 10−2; GO:0003682). We also observed proteins with both BC and RNA-
binding features present in the two main networks: SF3B1, CTNNA1, RBMX, and SPEN.
Additionally, 18 RBPs interact with at least 1 BC protein. Thus, we identified RBPs that
may have a putative role in BC’s molecular pathways through PPIs.
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Figure 3. Identification of highly altered breast cancer RNA-binding proteins. (A) A histogram
describing the status of RBPs in the Network of Cancer Genes 6.0 (NCG6). In blue, RBP status in
other cancer types; in red, breast cancer RBPs. (B) A Venn diagram depicting the relationship between
RBPs and ESR2 protein interactomes. RBPs genomic alterations per subtype (C) and stage (D),
using the Breast Invasive Carcinoma (TCGA, PanCancer Atlas) and Breast Cancer (CPTAC) [5–10,35]
database, are displayed. Genomic alterations per subtype and per stage were corrected by the number
of patients; a Mann–Whitney U test was used to compare genomic alterations between sets. All
possible comparisons between sets present significant differences (p < 0.001) except Normal vs. Lum
A subtypes; ns = not significant.
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Figure 4. Experimental protein–protein interactions between RNA-binding proteins and well-known
breast cancer proteins. An interaction network, constructed using STRING database and the Cy-
toscape 3.7.1 platform, is presented: red, BC proteins; green, RBPs.

3.4. Identification of Differentially Expressed RNA-Binding Proteins in Breast Tumor Tissues

The Human Protein Atlas (HPA) constitutes [14–16] a major effort to address protein
expression in healthy and tumoral human tissues. We, therefore, identified RBPs with
a different protein expression profile in tumor breast tissues. To this end, we compared
immunohistochemical levels (not detected, low, medium, and high) of 1212 available RBPs
between normal and cancerous breast tissues (Figure 5A, Table S6). Most RBPs presented
common immunohistochemical levels between both breast tissues: not detected (n = 130),
low (n = 52), medium (n = 366), and high (n = 72) (Figure 5A). Moderate protein expression
changes, defined by one level variation (e.g., not detected to low or medium to high), were
observed in 406 RBPs.

To identify RBPs with highly altered protein expression profiles in tumor tissues,
we categorized RBPs with a twofold variation level as upregulated or downregulated
compared with normal tissues; thus, we identified 24 upregulated and 62 downregulated
RBPs (Figure 5A, Table S6). As expected, our approach revealed well-known BC proteins,
such as KPNA2 [21] or G3BP2 [22], which validate our analysis. KPNA2 is highly expressed
in BC tissues (7 out of 12 tumor samples are classified as high) (Figure 5B, Table S6). On the
contrary, G3BP2 expression is reduced in tumoral breast tissues (Figure 5B, Table S6). We
also observed two RBPs that have never been studied in BC, DARS2 (overexpressed) and
SUPT6H (downregulated) (Figure 5B, Table S6).
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Figure 5. Immunohistochemical protein expression profile of RNA-binding proteins between healthy
and tumor breast tissues. (A) A correlation plot, comparing RBPs immunohistochemical levels
between normal and BC tissues, is presented. Circle sizes correlate with the number of RBPs in each
intersection. (B) Representative immunohistochemical stains of four RBPS (upregulated: KPNA2
and DARS2; downregulated: G3BP2 and SUPT6H) on normal and tumor breast tissues according to
the HPA.

3.5. Exploring RNA-Binding Proteins Breast Cancer Dependencies

Most RBPs present numerous genomic alterations (Figures 2 and 3C,D; Tables S2–S4),
making it difficult to detect essential RBPs for cell proliferation and/or survival, i.e., breast
cancer RBPs dependencies. Thus, we analyzed 1288 available RBPs on CERES [11] and
1290 available RBPs on DEMETER2 [12,13] through the DepMap portal (https://depmap.
org/portal (accessed on 20 June 2021)). Both initiatives report loss-of-function screens
performed in several human cancer cell lines [11–13].

https://depmap.org/portal
https://depmap.org/portal
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Figure 6A shows the distribution of dependency scores of all available RBPs in 82
(DEMETER2 [12,13]) and 28 (CERES [11]) BC cell lines. The dependency score expresses
how vital a gene is in a target cell line; if the score is greater than 0.5, the cell line is con-
sidered dependent. The genome-scale RNAi loss-of-function screens (DEMETER2 [12,13])
identified 90 essential RBPs (Figure 6A), being SNRPD1, SF3B1, SF3B2, RPL5, ARCN1,
EIF3B, RAN, COPB1, RPL14, and VCP (mean dependency scores ranging from −1.3 to
−1.5) the top ten essential RBPs for BC survival (Table S8). On the other hand, genome-
scale CRISPR-Cas9 loss-of-function screens (CERES [11]) determined 176 essential RBPs
(Figure 6A), being RAN, HSPE1, SNRNP200, SNRPD1, SARS, EEF2, RPL37, CCT3, KPNB1,
and RPL23 (mean dependency scores ranging from −1.5 to −1.8) the top ten essential
RBPs for tumor survival (Table S9). In toto, 207 essential RBPs were identified by both
computational methods (Figure 6A; Tables S8 and S9).
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To identify essential RBPs per BC molecular subtype, we first updated subtypes by
merging data from Smith et al. [38], Dai et al. [39], and Kao et al. [40] (Table S10). We next
identified and compared 203 LumA, 96 LumB, 206 Her2, and 212 Basal essential RBPs
(Figure 6B; Tables S8 and S9). Thus, we identified essential RBPs for each BC subtype: seven
LumA (HSPD1, UBE2M, SART3, USP36, GTPBP4, DHX33, and UPF1), five LumB (RPS21,
GNL3L, ZNF207, AQR, and RPL17-C18orf32), seven Her2 (DDX39B, NMT1, ISY1, DARS,
HEATR1, MAT2A, and SYF2), and nine Basal (EIF3C, UTP20, TXN, NOP58, ALDOA, CCT2,
NOP2, DDX54, and PRMT1) (Figure 6B).
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3.6. Unraveling Putative Breast Cancer RNA-Binding Protein

Cancer-related RBPs control hundreds of tumor mRNAs, interact with well-known
cancer driver proteins, and appear to be highly altered in cancer genomic databases and
tumor tissues [57]. Therefore, we reasoned that the integration of our previous analyses
could narrow down the identification of a potential breast cancer RNA-binding protein.

To this end, we focused on RBPs with putative tumor progression profiles. Thus,
we overlapped our previous results as follows: (1) 348 RBPs belonging to the first quar-
tile of most genomically altered RBPs concerning tumor-progression-related alterations
(mRNA upregulation, genomic amplification, gene mutations, or fusions); (2) all 398 RBPs
presenting PPIs with well-known BC proteins (Table S6); (3) 160 RBPs with at least one
immunohistochemical variation level towards protein overexpression (e.g., not detected to
low); (4) all 207 essential BC RBPs (Figure 6A; Tables S8 and S9).

We found five RBPs presenting the aforementioned tumor-associated characteristics,
TFRC, KPNB1, PUF60, NSF, and SF3A3 (Figure 7). TFRC and KPNB1 have been previously
implicated in BC [63–66], while PUF60 has been associated with colon and non-small cell
lung cancer [67,68]. Interestingly, NSF and SF3A3 have never been studied in cancer. We
also found 14 RBPs showing high genomic alterations, PPIs with BC proteins, and altered
protein expression profiles in tumoral tissues. Although these proteins are not needed
for tumor survival ex vivo (Tables S8 and S9), they could be implicated in other tumoral
processes; indeed, 11 of these RBPs have been described as BC tumor progressors [18,69–79].
Interestingly, PLEC has not been related to BC but promotes the migration and invasion
of neck squamous cell carcinoma [80]. In addition, PRPF3 and MAGOHB have not been
linked to cancer before. In fact, PRPF3 alterations have been related to Retinitis pigmentosa
and MAGOHB to Metaphyseal Chondrodysplasia, Schmid Type, and Hermansky–Pudlak
Syndrome 3.
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Figure 7. Detecting putative breast cancer RNA-binding proteins. (A) A Venn diagram depicting the
number of unique and shared RBPs across the four cancer-progression profiles. (B) A Venn diagram
showing the number of unique and shared RBPs across the four cancer-suppression profiles.

3.7. PUF60 and SF3A3 Are Central Elements of a Spliceosome-Related Network Involving
RNA-Binding Proteins and Cancer Driver Genes

To better understand the cellular functions of these prioritized RBPs (TFRC, KPNB1,
PUF60, NSF, and SF3A3) in cancer, we next interrogated the HumanNet v2 [81,82]. This
tool allowed us to integrate these five RBPs into a disease gene network. We first obtained
an initial network of 2231 interactions (Table S11). To narrow down the analysis to cancer-
relevant interactions, we then filtered the network by CDGs (n = 202 genes) and RBPs
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(n = 125 genes) and used MCODE [41] to find protein complexes within the network; the
largest one and more relevant was formed by 36 nodes and 591 edges. The CORUM [42]
database identified 34 of these 36 proteins as a part of the spliceosome complex where
PUF60 and SF3A3 are central elements interacting with several RBPs and the cancer driver
gene (Figure 8).
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Figure 8. PUF60 and SF3A3 are central elements of a spliceosome-related network involving RNA-
binding protein and CDGs. Previously prioritized RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3)
were integrated into a disease gene network (filtered by RBPs and CDGs) using the HumanNet
v2 [81,82]. Spliceosome-related proteins and their interactions were determined using MCODE [41]
and CORUM [42].

4. Discussion

Current oncological research generates large-scale datasets that contain undiscovered
strategic features of molecular mechanisms underlying the growth and metastasis of tumors,
and yet these databases are not fully exploited. Integrated in silico analyses of these data
could therefore lead to the discovery of new cancer proteins.

We first revealed that RBPs are equally altered as well-known BC proteins (Figure 2A);
this was expected since many RBPs are highly altered across cancer types [28] and have been
linked in silico to cancer-related cellular processes [83]. We found that most RBPs’ genomic
alterations in BC are mRNA upregulation (68.7%) and amplification (15.4%) (Figure 2B).
This probably will increase RBPs’ cellular concentrations, leading to dysfunctional post-
transcriptional processes.
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To determine how many RBPs have been previously studied in BC, we analyzed
the most recent catalog of CDG, NCG6 [31]. Only 14 RBPs were cataloged as BC driver
genes (Figure 3A). This indicates that RBPs have been poorly investigated in breast car-
cinogenesis. Thus, to identify new putative breast cancer RNA-binding proteins, we first
explored their genomic alteration profiles associated with tumor progression or suppression
(Tables 1 and S2). As expected, we identified well-known BC-progressor and -suppressor
proteins, such as DAP3 [18], MTDH [19], or CCAR2 [20], which validate our strategy
(Table 1). On the contrary, our strategy revealed RBPs that have not been associated with
tumorigenesis, and yet they are highly altered in BC (e.g., TFB2M, C1ORF131, or DDX19A)
(Table 1). Interestingly, the most altered RBP in our analysis, MRPL13, has never been
studied in cancer. MRPL13, along with other highly altered RBPs (Table 1), has only been
shown to interact with ESR2, a tumor suppressor in breast and other cancer types [43]. This
observation led us to investigate how many RBPs interact with ESR2; strikingly, we found
that 30% of all RBPs interact with this receptor (Figure 3B) [43]. ESR2 could probably exert
its suppressive activity through post-transcriptional mechanisms involving several RBPs;
nevertheless, more research is needed to understand this observation.

Second, to further characterize RBPs associated with BC subtypes and staging, we
analyzed RBPs’ genomic alterations (Figure 3C,D). Interestingly, RBPs’ genomic alterations
gradually increased from the Normal to Basal subtype (Figure 3C), i.e., from a low to
high proliferation stage [2]. Concordantly, metastasized tumors (Stage IV) showed high
frequencies of RBPs’ genomic alterations compared to non-metastasized samples (Stage I
to III) (Figure 3D). It seems, therefore, that RBPs are acting as BC progressors rather than
suppressors, which agrees with their genomic-alteration profiles (Figure 2B). This analysis
also revealed highly altered RBP per subtype or staging (Figure 3C,D; Tables S4 and S5),
which could lead to the discovery of new clinical biomarkers or therapeutic targets. Indeed,
SCAMP3 and HEATR6, which have not been studied in BC, presented similar degrees of
genomic alterations (Figure 3D) compared to well-known metastasis drivers, ARF1 [58] and
PARP1 [59]. In hepatocellular carcinoma cells, SCAMP3 knockdown has been shown to sup-
press cell proliferation [84], while HEATR6 has never been associated with tumorigenesis.
Thus, more research is needed to understand their role in BC.

Interaction networks are useful for identifying crucial tumoral proteins [57]. In this
regard, by analyzing PPIs between RBP and well-known BC proteins, we identified SF3B1
and CDC5L at the core of two main networks (Figure 4). While SF3B1 has been previously
implicated in BC [85], CDC5L, which interacts with 14 BC proteins, has not been studied
in this malignancy. However, CDC5L has been related to other cancer types, such as
osteosarcoma [86] and prostate cancer [87].

We next exploited the HPA database [14–16] to identify differentially expressed RBPs
in tumor breast tissues. We found 24 upregulated and 62 downregulated RBPs compared
with normal tissues. Unsurprisingly, our analyses revealed RBPs that were already related
to breast cancer. For instance, KPNA2, which has been known to enhance BC metastasis ex
vivo [21], is highly expressed in BC tissues (7 out of 12 tumor samples are classified as high)
(Figure 5B, Table S6). On the contrary, G3BP2 expression is reduced in tumoral breast tissues
(Figure 5B, Table S6); accordingly, the loss of G3BP2 enhances tumor invasion and metastasis
in vivo [22]. Interestingly, DARS2, which has never been related to BC, is upregulated in
our analysis (10 out 12 tumor samples are classified as high) (Figure 5B, Table S6) and has
been associated with hepatocarcinogenesis [88], demonstrating its putative implication
in BC. In addition, SUPT6H protein expression is diminished in breast tumoral tissues
(Figure 5B, Table S6) and has not been linked to this malignancy. Furthermore, SUPT6H
knockdown is associated with DNA damage via the formation of RNA: DNA hybrids
(R-loops) in HeLa cells [89], showing its possible role in breast tumorigenesis.

To identify essential RBPs for tumor survival, we next analyzed ex vivo loss-of-function
screens, CERES [11] and DEMETER2 [12,13]. In toto, we identified 207 essential RBPs for
tumor survival. This was expected since RBPs control every trait of RNA metabolism. How-
ever, only 59 were characterized as essential by both computational methods (Figure 6A;
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Tables S8 and S9). Although CERES [11] and DEMETER2 [12,13] did not test all human
RBPs, future therapeutic post-transcriptional BC research could be focused on these 59 RBPs.
However, more investigation is needed to deeply understand their carcinogenic roles. We
also revealed essential RBPs per BC molecular subtype (Figure 6B) that could be analyzed
to better understand subtype-related post-transcriptional processes.

In extending the scope of our previous analyses, we finally reasoned that the integra-
tion of all the databases examined could narrow down the identification of potential breast
cancer RNA-binding proteins. As discussed before and depicted in Figures 2B and 3C,D,
RBPs seem to act as cancer progressors rather than suppressors. Thus, we focused on RBPs
with putative tumor progression profiles and distinguished 19 RBPs with tumorigenic
characteristics according to our analyses (Figure 7). As expected, most of them (13 out 19)
have been described as BC tumor progressors, controlling different cellular processes such
as migration, invasion, and metastasis. Interestingly, NSF, SF3A3, PRPF3, and MAGOHB
have never been studied in cancer. While on the other hand, PUF60 has been associated
with colon and non-small cell lung cancer [67,68], and PLEC has been shown to promote
the migration and invasion of neck squamous cell carcinoma [80].

As depicted in Figure 7, we prioritized 5 RBPs according to our previous analyses.
These putative BC progressor RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3) were inte-
grated into a disease gene network to shed light on their molecular and cellular functions
in cancer (Figure 8). Thus, we obtained a very intricate network of 2231 interactions
(Table S11), which emphasized the robust and complex network formed between RBP–RBP,
RBP–CDG, and CDG–CDG. In addition to this complexity, some of these RBPs are also
CDGs. Quattrone and Dassi already established that the RBP network is a hierarchical
structure that is formed by clusters and chains that cooperate and compete on common tar-
get mRNAs controlling different cellular processes (e.g., splicing) [90]. This is also observed
in our densely interconnected network, where PUF60 and SF3A3 are central elements of a
spliceosome-related cluster involving RBPs and CDGs.

5. Conclusions

In sum, individual and integrated analysis of the aforementioned databases led us
to identify RBPs that have never been studied in BC but displayed defined tumorigenic
functions in other cancer types. Thus, based on their tumorigenic characteristics pre-
sented in this study and their roles in other cancer types, we identified five new putative
breast cancer RBPs: PUF60, TFRC, KPNB1, NSF, and SF3A3. However, further research
should focus on the mechanisms by which these proteins promote breast tumorigene-
sis, which holds the potential to discover new therapeutic pathways along with novel
drug-development strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11040481/s1. Table S1: Gene sets analyzed in this study.
Table S2: RNA-binding protein genomic alterations in invasive breast carcinoma (TCGA, PanCancer
Atlas) and breast cancer (CPTAC). Table S3: RNA-binding proteins and their status in the Network
of Cancer Genes 6.0 (NCG6). Table S4: RNA-binding protein genomic alterations in invasive breast
carcinoma subtypes (TCGA, PanCancer Atlas) and breast cancer (CPTAC). Table S5: RNA-binding
protein genomic alterations in invasive breast carcinoma stages (TCGA, PanCancer Atlas) and breast
cancer (CPTAC). Table S6: STRING interactions between RNA-binding proteins and breast cancer
proteins (experimental data and databases, interaction score: 0.9). Table S7: RBP protein level in
normal and tumoral samples. Table S8: DEMETER2 score of 1290 RNA-binding proteins in 82 breast
cancer cell lines. Table S9: CERES score of 1288 RNA-binding proteins in 28 breast cancer cell lines.
Table S10: Subtypes of breast cancer cell lines analyzed by DEMETER2 and CERES. Table S11: Total
interactions between candidate genes and RNA-binding proteins and cancer driver genes.
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