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A B S T R A C T   

Ten months into the Covid-19 pandemic it remains unclear whether transmission of SARS-CoV-2 is affected by climate factors. Using a dynamic epidemiological 
model with Covid-19 climate sensitivity in the likely range, we demonstrate why attempts to detect a climate signal in Covid-19 have thus far been inconclusive. Then 
we formulate a novel methodology based on susceptible-infected time trajectories that can be used to test for seasonal climate sensitivity in observed Covid-19 
infection data. We show that if the disease does have a substantial seasonal dependence, and herd immunity is not established during the first peak season of the 
outbreak (or a vaccine does not become available), there is likely to be a seasonality-sensitive second wave of infections about one year after the initial outbreak. In 
regions where non-pharmaceutical control has contained the disease in the first year of outbreak and thus kept a large portion of the population susceptible, the 
second wave may be substantially larger in amplitude than the first if control measures are relaxed. This is simply because it develops under the favorable conditions 
of a full autumn to winter period and from a larger pool of infected individuals.   

1. Introduction 

It is plausible that SARS-CoV-2 transmissibility depends on climatic 
effects, similar to the commonly circulating human coronaviruses [1–4] 
and influenza [5,6]. The seasonal dependence of viral respiratory dis-
eases has been attributed to several potential mechanisms, including 
virus longevity in the air and on surfaces [7,8], increased susceptibility 
of the human victim in cold and dry weather [9,10] and changes in 
human social behavior between winter and summer [11]. 

The initial Covid-19 outbreak in December 2019 occurred in mid- 
latitude Northern Hemisphere countries during the boreal winter. It 
has since become clear that warm and humid weather has not sub-
stantially slowed down infection rates during the Northern Hemisphere 
summer [12], presumably because of the effects of high susceptibility of 
the population in the pandemic phase of the disease overwhelming any 
potential climatic impacts on transmissibility [2]. The disease reached 
the Southern Hemisphere during the austral late summer to early 
autumn. In the developing Southern Hemisphere countries of South 
America and South Africa, socio-economic factors placed limitations on 
the extent and duration of non-pharmaceutical control measures. 
Consequently, large outbreaks occurred in the winter of 2020, but with 
little evidence that winter climate worsened these outbreaks [13]. It 
remains of considerable interest, however, to understand whether 
Covid-19 has a seasonality dependence. A seasonal effect is potentially 
an important contributor to the occurrence of a second wave of out-
breaks. Moreover, will Covid-19 become an annual occurrence, like 

many other viral respiratory diseases? 
Several studies to date have attempted to identify and quantify cli-

matic dependencies in Covid-19 infection rates, using data on reported 
cases [14–17], but have failed to conclusively prove or disprove the 
existence of such a link. These studies have been compromised by the 
fact that no single location on Earth has yet moved through a full annual 
cycle in the presence of Covid-19; thus the studies depend on ‘space-for- 
time’ substitution (in other words, using the difference in climate be-
tween different locations as a proxy for its evolution over time in one 
location) – but the assumptions necessary for this approach to work are 
confounded by the spatial dynamic of the disease spread. Moreover, 
various degrees of non-pharmaceutical control measures have been 
applied across different countries, and their intensity changed over time 
at a given location. This, in combination with differential socio- 
economic conditions and related differential abilities of individuals to 
apply social distancing, makes it hard to identify a relatively weak cli-
matic signal in observed case data. Further noise is added by the het-
erogeneity in how the case data and mortality data are reported. As a 
consequence of all these complicating factors, by September 2020, no 
consensus has been reached on whether Covid-19 has a climatic 
dependence; and if so, which environmental factors are involved, and 
what their relative strengths are [13,18]. 

Here we make use of a dynamic epidemiological model to identify 
the ‘signature’ of seasonality in the outbreak of a highly infectious dis-
ease such as Covid-19. This allows us to propose a new approach of how 
this signature may be detected in observed case data. We then analyse 
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the conditions under which Covid-19 may resurge as a second wave of 
infections, and how this relates to seasonality. 

2. Methods 

Idealized profiles of seasonality provide a standard approach in 
modelling infectious diseases with seasonal behavior [3,19,20]. 
Following this approach, we define a ‘Theoretical Climate Correction 
Factor’ (TCCF) that describes how seasonality may modify the basic 
reproduction number R0: 

TCCF =

(
1

1 + ε

)

(1+ εcos(2π(t − θ) ) ) (1) 

Here ε ranges from 0 to 1 and represents the strength of seasonality, 
with transmissibility reaching a peak when t = θ. That is, in this paper 
the basic reproduction number R0 is the expected number of secondary 
infectious cases generated by an average infectious case in an entirely 

susceptible population under climatological conditions optimal for 

transmission. Consistently, 0 ≤

(
1− ϵ
1+ε

)

≤ TCCF ≤ 1 and 0 ≤ R0
′ ≤ R0, 

where R0
′ is the modified reproduction number (R0

′ = TCCF*R0). 
The TCCF can be explored over the full ranges of amplitude and 

timing, but here we are interested in the more limited expression of 
seasonality observed for the commonly circulating human coronaviruses 
(assuming similar behavior for SARS-CoV-2). Two recent epidemiolog-
ical modelling studies have considered the degree to which seasonality 
may impact on the annual cycles of commonly circulating human 
coronaviruses. For four commonly circulating coronaviruses in Sweden, 
with seasonality described by an equation equivalent to (1), it was 
concluded that for local spread ε = 0.15 but for strong import of cases 
0.3 ≤ ε ≤ 0.7 explains the observations [3]. Using climatic dependent 
inverse modelling applied to case data of the HCoV-HKU1 and HCoV- 
OC43 coronaviruses, Fig. 1 of [2] suggests ε ≈ 0.25 for HCoV-HKU1 
and ε ≈ 0.1 for HCoV-OC43. Consistent with these estimates and 

Fig. 1. Susceptible-Infected (SI) orbits for 
various scenarios of non-pharmaceutical 
control measures and seasonality of ε =
0.2, for the case of mid-winter onset of an 
infectious disease. The orbits in black 
represent the scenario of no control with 
range and R0 interval [1.4, 3; 0.1] in a) and 
[1.4, 2; 0.1] in b) and c). Note the different 
range of I/N in a) compared to b) and c). The 
colored lines orbits represent a) effects of 
seasonality for the scenario of no control; b) 
effects of a lockdown followed by social 
distancing and c) effects of lockdown fol-
lowed by social distancing in combination 
with seasonality. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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restricted travel associated with the non-pharmaceutical control of 
Covid-19, we proceed to explore the impacts of seasonality of strength ε 
= 0.2. 

We explore the signatures of seasonality in Covid-19 infection rates 
using a dynamic epidemiological model for the cases of mid-winter and 
mid-summer outbreak of the disease. In the paper, ‘mid-winter’ means 1 
July (1 January) in the Southern (Northern) Hemisphere, and ‘mid- 
summer’ means 1 January (1 July) in the Southern (Northern) Hemi-
sphere. For the case of (1), ‘mid-winter’ corresponds to the time during 
which the function attains its maximum value, and mid-summer to the 
time it reaches a minimum value. This is consistent with the main Covid- 
19 seasonality hypothesis, namely that transmissibility is favored by dry 
and cold winters, and reduced during warm and humid summers 
[21,22]. 

Towards identifying the key signatures of seasonality in disease 
propagation dynamics, we purposefully select a simple Susceptible- 
Infectious-Recovered-Dead (SIRD) model and apply it to a homoge-
neous population: 

dS
dt

= −
α
N

SI;

dI
dt

=
α
N

SI − βI − γI (2)  

dR
dt

= βI;

dD
dt

= γI.

Here S, I, R and D are the number of susceptible, infected, recovered 
and dead individuals, respectively, at a given moment in time, and they 
sum to the total population, N (which is assumed to be remain constant). 
α is the daily infection rate, γ the mortality rate and β the recovery rate. 
Note that R0 = α/(γ + β) and that the infection fatality rate (IFR) is given 
by IFR = γ/β. In the applications of the SIRD model described in this 
paper, α is spesified to generate values of R0 ranging between 2 and 3, in 
the plausible estimated range of R0 for Covid-19 [23,24]. The values of γ 
and β are fixed in all the simulations at γ = 0.0005 d− 1 and β = 0.16 d− 1 

respectively, following [25], and consistent with current estimates of the 
recovery rate and IFR [2,24]. Seasonality and non-pharmaceutical 
control measures are both modelled to impact on R0 through changes 
in α. 

The time it takes for an infectious disease to propagate through a 
population depends on its size. In the experiments performed here, N =
15 000 000. We seek to identify signatures of seasonality under the 
simplifying assumption of a homogeneous population, but note that in 
reality populations are heterogeneous and that factors such as differ-
ential population density as well as age and activity structures can 
impact on disease propagation dynamics [23]. The cases of non- 
pharmaceutical control we consider are simple and largely constant 
over time, but in reality such measures may be applied intermittently 
[26], resulting in infection curves more complex than having the single 
or bimodal peaks that result from the assumptions we apply. We further 
assume that the entire population is susceptible at the time of onset of 
the disease with the sole focus of exploring seasonality impacts, and not 
considering the potentially important role of cross-immunity that may 
exist in populations due to exposure to other coronaviruses [27] or 
potential cross-protection from for example BCG vaccination pro-
grammes [28]. Moreover, we do not distinguish between the symp-
tomatic or asymptomatic infected and it is assumed that members from 
the population that recover from the disease have immunity for at least 
two years. The simulations do not take into account any pharmaceutical 
control measures that may become available in the future. 

3. Results 

3.1. Outbreak in mid-winter 

The first case we explore is mid-winter onset of the disease in the 
presence of seasonality described by ε = 0.2 under (1). The susceptible- 
infected (SI) orbits (time trajectories in the SI phase-plane, shown as 
proportions of the total population, N) for different values of R0 for the 
scenario of ‘no control measures and no seasonality effects’ are shown in 
black in Fig. 1a, b and c. The orbits commence with effectively an 
entirely susceptible population (S = N − 1, I = 1) and then follow a 
hump-shaped trajectory, with the peak infection also being the point 
where a sufficient number of people have been infected for herd im-
munity to set in. The point where the orbit returns to the S-axis repre-
sents the final epidemic size. The effect of seasonality, in the absence of 
control measures, is explored in Fig. 1a for several values of R0 (colored 
orbits), while the effect of non-pharmaceutical control [29] without 
seasonality effects is shown in Fig. 1b (colored orbits). For the non- 
pharmaceutical control scenarios it is assumed that after a period of 
one month of the disease spreading in the population, a lockdown is 
implemented which reduces the infection rate by 40% (i.e. R0

′ = 0.6R0). 
The lockdown is maintained for 9 months, through spring, summer and 
into autumn, followed by light social distancing (i.e. a 10% reduction in 
infection rate). The final scenario considered applies the same non- 
pharmaceutical control measures whilst seasonality is also having an 
effect (Fig. 1c, colored orbits). The corresponding time-evolution of the 
fraction of the population infected (I/N) is shown in Fig. 2a to d for 
selected values of R0, for the scenarios of no control measures and no 
seasonality (black lines), no control measures in the presence of sea-
sonality (green lines), lockdown followed by social distancing in the 
absence of seasonality (yellow lines) and finally, lockdown followed by 
social distancing, both in the presence of seasonality effects (red lines). 

In the initial stages of a mid-winter onset the disease with no control 
measures being applied, R0

′ ≈ R0 (TCCF ≈ 1). As winter progresses to 
spring, progressively warmer and more humid conditions reduce R0

′. 
The telltale signature of such an effect is that the SI-orbits under seasonality 
(colored lines in Fig. 1a) cross the orbits for the scenario of no control and no 
seasonality. This effect can be seen in in Fig. 1a, most prominently for the 
lower values of R0 (R0 ≤ 2), but also at higher values (R0 = 2.2, 2.4, 2.6) 
once about 50% of the population has been infected. At lower infection 
rates, the diseases takes relatively long to spread through the popula-
tion, pushing it into spring and allowing seasonality to lower R0

′. For 
example, for R0 = 2 in the absence of seasonality the peak infection 
occurs in spring, 3.5 months into the outbreak (Fig. 2d, black line). If 
seasonal effects are at work, the peak infection is reached about two 
weeks later - but most importantly, the peak of active cases, which is 
what determines the load on the health system, is almost halved (Fig. 2d, 
green line). The resulting behavior of the disease, in terms of the total 
fraction of the population eventually infected, resembles that of an 
infection with constant R0 = 1.5 (Fig. 1a). By the time that the disease 
has run its course and the final epidemic size is reached, less than 60% of 
the population has been infected, while over 80% of the population is 
infected if seasonality is not at work. In contrast, if the basic reproduc-
tion number is at the high end (R0 = 3), the peak infection in the absence 
of seasonality occurs less than 2 months after introduction of the first 
infected individual to the population (Fig. 2a, black line). Even if sea-
sonality effects are considered, given that climatological effects are 
optimal for transmission for the case of mid-winter outbreak, there is not 
enough time for seasonality to impact the infection rate (Fig. 2a, green 
line). 

Non-pharmaceutical control slows down the spread of the disease, 
but if maintained consistently for a sufficiently long period, it should 
still be possible to discern signatures of seasonality from the SI-orbits. 
This is explored in Fig. 1b and c. Note that the range of both the S- 
and I-axes have been reduced compared to Fig. 1a and that only a subset 
of orbits are shown to avoid clutter. For the illustrated scenario, a strong 
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lockdown was initiated one month after onset of the disease and main-
tained for 9 months, where after it was replaced by social distancing. 
The SI-orbits display two main types of behavior. For values of R0 ≥ 2.2, 
although the infection rate is significantly damped, the disease still 
spreads through most of the population and peak infection occurs within 
six months of the outbreak (Fig. 2 a to c, yellow lines). In these cases 
50–75% of the population become infected before the final epidemic 
size is reached (Fig. 1b). For lower basic reproduction numbers (e.g. R0 
= 2) the dampening of the infection rate by control measures is suffi-
ciently strong that no significant outbreak occurs during the 9 month 
period of lockdown (see the blue line representing R0 = 2 in Fig. 1b and 
the yellow line up and until month 10 in Fig. 2d). However, since herd 
immunity is not reached, the disease continues to linger in the popula-
tion, and breaks out in the months immediately following the relaxation 
of lockdown measures (Fig. 1b blue orbit, Fig. 2d, yellow line beyond 
month 10). In terms of the SI-orbits, the outbreak can be seen as a 
sudden increase in R0

′ and the consequent crossing of the orbits of 
constant R0. 

The presence of seasonality implies further dampening of infection 
rates during the period of stringent lockdown. For R0 = 3 the charac-
teristic signature of seasonality, namely the crossing of the orbits of 
constant R0 is apparent (compare the purple orbits in Fig. 1b and c), but 
despite the combined dampening effects of lockdown and seasonality 
the diseases still propagates through the population until herd immunity 
is reached in spring (Fig. 2a, red line) with about 60% of the population 
infected during the course of the outbreak (purple orbit, Fig. 1c). The 
remaining cases (R0 ≤ 2.6) displayed in Fig. 1c reveal an entirely 
different type of behavior, induced by seasonality. For these lower 

infection rates the combined dampening effect of lockdown and sea-
sonality is sufficiently strong that the peak infection is substantially 
reduced (Fig. 2 b to d) and less than 25% of the population becomes 
infected during the period of stringent lockdown (Fig. 1c). High summer 
temperatures following the initial onset of the disease further damp the 
infection rate, but since herd immunity is not attained, once lockdown is 
replaced by less stringent social distancing, the return of lower tem-
peratures and humidity as the next winter approaches systematically 
increases the infection rate. Without renewed lockdown, this results in a 
second wave of outbreak, with a significantly higher of peak infection 
than experienced in the first year of the disease (red lines in Fig. 2 b to 
d). This scenario may well be important for Northern Hemisphere 
countries, where initial onset of the disease occurred in approximately 
mid-winter, and where anti-body tests suggest that the portion of the 
population infected by mid-summer is significantly less than 20% [30]. 

3.2. Outbreak in mid-summer 

The impacts of seasonality as described by (1) for ε = 0.2 are pro-
foundly different for a mid-summer onset compared to mid-winter onset 
of the disease, under the scenario of no control measures being applied. 
The SI-orbits for the case of a mid-summer outbreak are shown in Fig. 3a 
to c under scenarios of non-pharmaceutical control and seasonality ef-
fects, with the corresponding I/N time-evolutions shown in Fig. 4. The 
summer season substantially dampens the infection rate (TCFF ≈ 0.7) 
and consequently delays the peak infection by about a month for R0 = 3 
(Fig. 4a, green line) and two months for R0 = 2 (Fig. 4d, green line). For 
larger values of R0 peak infection occurs before optimal seasonality 

Fig. 2. Evolution of I/N for an infectious disease for different values of R0 and where onset occurs in mid-winter. The black lines represents the scenario of no control 
measures and no seasonality, the green lines represent no control measures but with seasonality effects included, the yellow lines represent non-pharmaceutical 
control measures (see the text for details) and the red lines indicate the effects of seasonality in combination with non-pharmaceutical control. Seasonality is for 
ε = 0.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

F.A. Engelbrecht and R.J. Scholes                                                                                                                                                                                                           



One Health 12 (2021) 100202

5

forcing is reached in winter. By the time of peak infection (early autumn 
for R0 = 3 to late autumn for R0 = 2.4), R0

′ has increased sufficiently for 
the orbits of constant R0 to be crossed (see the colored orbits in Fig. 3a). 
The dampening of the peak infection by seasonality is substantial, even 
for these higher values of R0. For example, for R0 = 3 the dampening of 
the peak infection is about 40% (Fig. 4a) and 10% less of the population 
is infected by the time the final epidemic size is reached (Fig. 3a). For R0 
≤ 2 the damping is so significant that the outbreak only gains mo-
mentum in the following winter, reaching the same peak infection 
(Fig. 4d, green line) and infecting the same portion of the population 
(Fig. 3c) as for the corresponding situation of no control measures and 
no seasonality (Fig. 4d, black line). 

We next explore a scenario of non-pharmaceutical control similar to 
that described for the mid-winter onset, but with lockdown maintained 
from the end of month one to the end of month 12. For values of R0 ≫ 2.2 
even under a stringent lockdown, the disease still runs its course through 
the population and herd immunity is reached during the first year of the 

infection (Fig. 3b). The same will thus be true for all weaker forms of 
lockdown and social distancing. Nonetheless, the amplitude of the peak 
infection is substantially reduced and its timing is delayed (Fig. 4a to c, 
yellow lines). The lockdown orbits correspond to cases of constant R0 
given that the lockdown merely functions to reduce R0 to a smaller but 
constant value of R0

′. For values of R0 ≤ 2 the dampening of the infection 
rate is so strong that herd immunity is not reached during the first year 
of the infection (blue orbit, Fig. 3b). Once the measures of control are 
relaxed in the 13th month of the infection, a second wave of infections 
occurs immediately (blue orbit, Fig. 3b; yellow line, Fig. 4d). 

For a mid-summer onset, seasonality combined with non- 
pharmaceutical controls dampen the infection rate during the initial 
months of the outbreak, but when winter arrives the transmission- 
reducing effect of seasonality disappears. Consequently, a peak infec-
tion of amplitude similar to the case of lockdown without seasonality 
effects occurs for values of R0 ≥2.6; (Fig. 4a and b). This is demonstrated 
best for the case of R0 = 2.6 in Fig. 3c (orange orbit), where R0

′ first 

Fig. 3. Susceptible-Infected (SI) orbits for 
various scenarios of non-pharmaceutical 
control measures and seasonality of ε =
0.2, for the case of mid-summer onset of an 
infectious disease. The orbits in black 
represent the scenario of no control with 
range and R0 interval [1.4, 3; 0.1] in a) and 
[1.4, 2; 0.1] in b) and c). Note the different 
range of I/N in a) compared to b) and c). The 
colored lines orbits represent a) effects of 
seasonality for the scenario of no control; b) 
effects of a lockdown followed by social 
distancing and c) effects of lockdown fol-
lowed by social distancing in combination 
with seasonality. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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increases as winter is reached, where after it decreases as the disease 
runs its course in spring, with a clear crossing of the orbits of constant 
R0. For smaller values of R0, herd immunity is not reached during the 
first year of infection, thus once control measures are weakened second 
waves of infection follow (blue and yellow orbits in Fig. 3c; red lines in 
Fig. 4c and d). These do not occur immediately, as is the case in the 
absence of seasonality. Rather, the infection rate remains damped by 
seasonality in the summer and autumn of the second year of the disease, 
and peak infection only occurs in the winter or spring of the second year. 
For R0 = 2 most of the population is still susceptible after the first year of 
the infection (blue orbit, Fig. 3c), and consequently the second wave of 
infections can be severe (in the absence of control measures being re- 
applied in the second year of the infection (red line, Fig. 4d). 

4. Discussion 

By late September 2020, ten months into the Covid-19 outbreak, it 
remains unclear whether transmission of SARS-CoV-2 is impacted by 
climatic effects [12,18]. A key reason for this is that the majority of 
studies exploring climate effects focused on the initial outbreak of the 
disease before non-pharmaceutical control measures impacted on 
infection rates. These studies thus focused on relatively short periods 
and relied on a ‘space-for-time’ substitution to incorporate a greater 
variety of climate anomalies, but at the expense of introducing several 
confounding factors to the analysis. Here we propose an alternative 
methodology to test for Covid-19 seasonality. This methodology con-
siders the evolution of Covid-19 over longer periods of time, including at 
least one winter/summer and one transition (spring/autumn) season, to 

explore the systematic impacts of seasonality rather than the instanta-
neous impacts of climate anomalies on infection rates. Moreover, unlike 
previous studies the methodology considers the full dynamics of the 
disease through considering its SI-orbits, rather than to focus on infec-
tion rates only. We’ve used a SIRD modelling approach to explore the 
signatures of seasonality of a highly infectious disease under the pro-
posed methodology, also considering the confounding impacts of non- 
pharmaceutical control. We consider idealized cases of mid-summer 
and mid-winter outbreaks, noting the current hypothesis that Covid- 
19 infection rates are optimal under cold and dry conditions. In such 
climates, the telltale signature of seasonality is the crossing of the SI- 
orbits of constant R0 by the seasonality orbits on an SI-diagram, which 
can be detected even in the pandemic stage of the outbreak. 

In the case of mid-winter onset, without control measures, the 
detectability of even strong seasonality only becomes feasible for R0 > 2 
once about 50% of the population has been infected. For lower values of 
R0, the disease persist in the population for long enough for seasonality 
to be more clearly revealed. Control measures slow down the progres-
sion of the disease, but if applied consistently for many months the 
presence of seasonality can be clearly detected in the SI orbits. However, 
stringent lockdown measures prevent the development of herd immu-
nity so that more than 70% of the population remain susceptible in the 
summer following the initial onset of the disease. Should control mea-
sures be relaxed in summer due to either a false sense of security that the 
disease has been contained, or under socio-economic pressure, severe 
seasonality-induced second waves can develop from autumn to spring of 
the following year. It may be noted that current serological testing in 
several Northern Hemisphere countries where Covid-19 had a winter 

Fig. 4. Evolution of I/N for an infectious disease for different values of R0 and where onset occurs in mid-summer. The black lines represents the scenario of no 
control measures and no seasonality, the green lines represent no control measures but with seasonality effects included, the yellow lines represent non- 
pharmaceutical control measures (see the text for details) and the red lines indicate the effects of seasonality in combination with non-pharmaceutical control. 
Seasonality is for ε = 0.2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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onset is suggesting that significantly less than 20% of the population had 
been infected by the time of the onset of the boreal summer of 2020 
[30]. 

When the disease onset occurs in mid-summer its evolution is 
markedly different. Despite the dampening effects of climate, the disease 
still moves through the population for values of R0 > 2 and herd im-
munity is reached before winter arrives. The seasonality-affected orbits 
cross the orbits of constant R0 only by the time that about half of the 
population has been infected. For lower values of R0 the disease is still 
propagating through the population by the time winter arrives and it 
reaches its full transmission probability, thus peak infection is similar to 
that in the absence of seasonality effects, with the seasonal orbits 
tangential to those of constant R0. For high values of R0 (R0 ≥ 2.6) 
stringent control measures, even in combination with seasonal damp-
ening, merely function to slow down the propagation of the disease and 
herd immunity is reached in the first year of the outbreak. For lower 
values of R0, the effect of lockdown and seasonal dampening is so sub-
stantial that herd immunity is not achieved in the first year of outbreak, 
and in the presence second waves of high peak infection occur in the 
second year when winter sets in (and provided control measures have 
been relaxed). Given the timing of the Covid-19 outbreak, this risk ap-
plies to Southern Hemisphere countries such as Australia and New 
Zealand, where efficient non-pharmaceutical control measures are on 
track to prevent herd immunity from being reached in 2020. 

The telltale signature of seasonality is that the seasonal orbits cross 
those of a constant R0. The identification of this feature in real-world 
data, if it exists, will be confounded by inadequacies and differences 
in how infection rates are reported between countries. This problem may 
be reduced by using death-rate anomalies (excess deaths) as a proxy for 
Covid-19 mortality rates, from which inverse modelling may be applied 
to construct the SI-orbits. A further complicating factor is the 
temporally-varying application of non-pharmaceutical control mea-
sures. Nonetheless, we are of the view that the proposed test for sea-
sonality can be successfully applied to a subset of countries, regions or 
cities, where non-pharmaceutical control measures have been applied 
consistently for several months. Still, about half of the population needs 
to become infected for the seasonality feature to clearly develop, further 
limiting the subset of populations within which a seasonality signature 
can likely be detected (as by September 2020). Given the limitations of 
operational Covid-19 statistics, the less than full annual cycle for which 
Covid-19 has been spreading on the planet and the fact that in most 
countries only a relatively small portion of the population has to date 
been infected, it is not surprising that no consensus has so far been 
reached in terms of seasonality impacts on Covid-19. The signal is 
obscured by both the noise of inconsistent data reporting, but also by the 
fundamental properties of the disease. 

By September 2020 the main immediate application of clearer 
knowledge of Covid-19 seasonality is preparation for, or prevention of, 
seasonality-induced second waves of infection (the ultimate signature of 
seasonality). This risk is particularly large in the absence of widespread 
deployment of a vaccine and in countries where successful non- 
pharmaceutical control have let a large portion of the population sus-
ceptible after the initial outbreak. Until the importance of seasonality in 
Covid-19 infection rates has been established, it remains prudent to 
design control measures as if high temperature and humidity will not 
significantly dampen the infection rate [12,18]. At the same time, 
however, it is important to design control measures to cater for the 
possibility of severe, seasonality–induced second waves of infection. 
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