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ABSTRACT
Genomic and transcriptomic data have been generated across a wide range of prostate cancer
(PCa) study cohorts. These data can be used to better characterize the molecular features
associated with clinical outcomes and to test hypotheses across multiple, independent patient
cohorts. In addition, derived features, such as estimates of cell composition, risk scores, and
androgen receptor (AR) scores, can be used to develop novel hypotheses leveraging existing
multi-omic datasets. The full potential of such data is yet to be realized as independent datasets
exist in different repositories, have been processed using different pipelines, and derived and
clinical features are often not provided or unstandardized. Here, we present the
curatedPCaData R package, a harmonized data resource representing >2900 primary tumor,
>200 normal tissue, and >500 metastatic PCa samples across 19 datasets processed using
standardized pipelines with updated gene annotations. We show that meta-analysis across
harmonized studies has great potential for robust and clinically meaningful insights.
curatedPCaData is an open and accessible community resource with code made available for
reproducibility.
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INTRODUCTION
Prostate cancer is the most common cancer type amongst men with an estimated incidence of
268,490 new cases per year in the United States, with an estimated 34,500 deaths per year1.
Molecular profiling of prostate cancer has led to insights into the relationship of genomic
alterations and disease initiation, progression, and treatment response. However, no significant
differences in disease free survival were found for patients that were stratified according to the
8-group prostate cancer (PCa) taxonomy defined by The Cancer Genome Atlas (TCGA) using
single gene molecular alterations2. Additionally, when primary tumors were compared to
metastatic tumor samples, few changes in the frequency of these genomic alterations were
observed2–4.

A reliable molecular biomarker that stratifies aggressive vs. indolent disease is increased
frequency of Copy Number Alterations (CNAs)4–7; however, this finding provides little
mechanistic or therapeutically actionable insight. Recent studies have shown that combinations
of alterations, namely TP53 & RB18 and CHD1 & MAP3K79, drive aggressive disease,
suggesting that molecular subtyping in PCa is complex. Many efforts have been put forward to
develop predictive gene expression signatures with the goal of identifying which patients will
progress to lethal disease10–16. Some of these signatures have been clinically successful11,17,18;
however, an overwhelming amount of gene expression profiling results lack replicability between
studies resulting in inconsistent lists of candidate genes associated with PCa prognosis19.
Additional challenges in reproducible PCa research remain. For example, the use of
high-dimensional molecular data is dependent on thorough validation of the statistical models in
diverse datasets. Similar concerns apply to molecular subtyping. Many of these challenges can
at least partially be addressed by harmonization of the omic-data preprocessing and
annotations, matched with manual curation of the clinicopathologic features and outcomes for
easy application of multi-study statistical learning20 and cross-study validation21.

Data wrangling and data harmonization are critical for consistent, reproducible and
benchmarked analysis of multi-omic cancer datasets. Efforts have been completed for ovarian
cancer in the curatedOvarianData R package22, breast cancer in the curatedBreastData R
package23, and across cancer types in the curatedTCGAdata R package24. These packages
have advanced the field in many ways. To this end, the R user community has put great effort
into developing R class objects that help end-users to utilize data across different types - such
as transcriptomics, copy number alterations, and somatic mutations - and between studies that
vary in their specific study characteristics. The MultiAssayExperiment-class25 (MAE) aggregates
data of various types utilizing such R classes as matrix, RaggedExperiment,
SummarizedExperiment across these data levels. This data class supports linking and
simultaneous storage of sample or patient-level clinical metadata fields that can be easily
processed and stored together with their corresponding ‘omics’ data.

In addition to the primary ‘omic’ data types themselves, such as gene expression
measurements by RNA sequencing or microarrays, there are now an array of innovative
approaches to develop molecular signatures and deconvolution methods to estimate cell types
present in bulk tissue. The immunedeconv-package26 has proven to be a popular choice as a
wrapper R package providing harmonized access to multiple popular cell type deconvolution
methods such as EPIC27, ESTIMATE28, MCP-counter29, quanTIseq30, and xCell31. Estimating
prevalences of different cell types in the tumor specimen has allowed for investigating the
relationship between immune cell and other cell frequencies in a tumor sample with clinical
outcomes26–34.
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Given the value to the PCa research field in having a unified resource of molecular features
across independent studies, we developed a curated, comprehensive, and harmonized PCa
resource that contains multi-omic and clinical data from 19 PCa studies. The ‘omic’ data types
were preprocessed and annotated, and clinical variables were mapped to the common data
dictionary to ensure consistent annotation of the samples. Furthermore, we precomputed
several prostate-specific genomic scores using the uniform preprocessed and annotated gene
expression data sets. Namely, we conveniently provide Decipher35, Oncotype DX36, and
Prolaris37 risk scores as well as Androgen Receptor (AR) scores2. These precomputed variables
can be easily included in the downstream analyses as correlatives or phenotypic variables.
Leveraging the MAE class, we supply the data in the curatedPCaData R package. The package
provides open and accessible data and analysis pipelines with maximum flexibility for data
analysts and prostate cancer researchers. We discuss the integrated datasets within the
package and insights that have been gained by bringing together >3500 prostate tissue, primary
PCa, and metastatic PCa tumor samples in one location:
https://github.com/Syksy/curatedPCaData.

RESULTS
The curatedPCaData package was developed using standardized workflows for raw data
processing where available, mapping all clinical information for each dataset to a common data
dictionary (Table S1), and ensuring gene symbols are consistent and up-to-date using HUGO
Gene Nomenclature Committee (HGNC) symbols across all datasets and data types (Figure
S1). To harmonize, organize, and manage all datasets and data types, the curatedPCaData
package was built using the data structures for multi-omic data integration as implemented in
the MultiAssayExperiment R package25. A summary of the key study characteristics of the 19
datasets contained in the curatedPCaData package are in Table 1.

For reproducibility and to provide users with example code, all analyses and results presented
in the following sections are made available as vignettes through the curatedPCaData package
(Table S2).

Molecular measurements are consistent across independent datasets
There is an expectation that multiple, independent datasets that report molecular features
across cancer patient cohorts with similar clinical profiles will show similar biological findings. If
results are inconsistent between patient cohorts, differences in data processing and
annotations, major batch effects or potentially biological effects could be the explanation. To test
the consistency of our processed molecular measurements across patient cohorts, we
evaluated patterns of transcriptome, copy number alterations, and mutations.

Gene expression, as measured by microarrays or RNA sequencing, is the most common
molecular measurement in the curatedPCaData package (Table 1). To evaluate the consistency
of expression patterns, we first performed a pairwise correlation analysis of gene expression
differences in Gleason grade ≥8 vs. Gleason grade ≤6 tumor samples using the genes that were
in common between the datasets (Figure 1A). Overall, we found that pairwise Pearson
correlation between datasets was generally lowly correlated. Compared to the TCGA dataset2,
the reported correlations were between 0.34 and 0.48 for Taylor et al.4, Weiner et al.38, Barwick
et al.39, and IGC40. However, not all datasets were as correlated to TCGA. For example, the
Friedrich et al.41 dataset only showed a correlation of 0.18, which could be attributed to
difference in the underlying platform as gene expression in TCGA was measured by RNA
sequencing and Friedrich et al. was measured by a custom Agilent microarray.
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Next, we identified the most commonly up- and down-regulated genes when comparing
Gleason grade ≥8 vs. Gleason grade ≤6 tumor samples across multiple datasets (TCGA2,
IGC40, Taylor et al.4, Weiner et al.38). We used the moderated t-test calculated through the limma
R package to determine log fold change and p-values for individual datasets. We then
integrated the four datasets using Fisher’s method to combine p-values to identify genes that
were consistently up- (n=263) or down- (n=501) regulated and significant (q-value < 0.01)
across these datasets (Table S3). Consistent with the biological processes associated with
tumor growth and aggressiveness, the up-regulated genes are enriched for cell cycle-related
processes, cell division, DNA replication, and DNA repair, while the down-regulated genes are
enriched for positive regulation of apoptosis, negative regulation of ERK1 and ERK2 cascade,
and cell-matrix adhesion. Using volcano plots for visualization, and for illustrative purposes, we
highlighted the top 5 consistently up- (PRR16, RRM2, COMP, ASPN, PPFIA2) and top 5
consistently down-regulated genes (ANPEP, ACTG2, MYCBPC1, CD38, SLC2A3) (Figure 1B).

Finally, for gene expression, we evaluated the consistency of correlation patterns in relation to
prostate cancer-associated genes. For each dataset, we calculated the Pearson correlation of
all genes within the dataset to Androgen Receptor (AR) and the ETS transcription factor ERG.
We then calculated the Pearson correlation of the correlation patterns to AR and ERG across
datasets (Figure 1C). For the majority of datasets measuring gene expression in primary
prostate tumors, the correlation patterns for AR across datasets were consistent with some
datasets being highly correlated, such as Kim et al.42 and Weiner et al.38, or Taylor et al.4 and
Sun et al43. Patterns for ERG expression were moderately to highly correlated, but there were
some datasets with inverse correlation, such as Ren et al.44 and Sun et al.43, and Ren et al. and
Barwick et al.39 While datasets with gene expression from metastatic tumors are few, the pattern
of correlation between Chandran et al.45, Abida et al.46, and Taylor et al.4 were lower, likely due
to the intrinsic heterogeneity of measuring gene expression from samples in the metastatic
setting.

Prostate cancer is known to be heavily driven by copy number alterations which will impact the
molecular measurements of gene expression. For datasets with copy number alteration
information, curatedPCaData provides discretized copy number calls according to GISTIC2
(-2=deep loss, -1=shallow loss,0=diploid,1=gain, 2=amplification)47. We evaluated the overall
copy number landscape and found that independent datasets showed highly similar patterns of
copy number gain and loss in primary tumors (Taylor et al.4, TCGA2, Baca et al.48) (Figure 2A),
with samples from metastatic tumors (Abida et al.46) showing an overall increase in copy number
alterations as has been previously reported.2,46 We additionally evaluated the frequency of copy
number alteration across several genes that have been shown to be associated with prostate
cancer (PTEN, TP53, CHD1, MAP3K7, FOXA1, NXK3.1, USP10, SPOP2,4,9,48–54), along with the
TMPRSS2:ERG fusion2,55. For these genes, we found the copy number alteration and mutation
patterns to be consistent across datasets (Figure 2B, note that not all datasets have all genes
measured for mutations or copy number). We also tested for patterns of co-occurrence and
mutual exclusivity between these genes. While general patterns of co-alteration were consistent
between datasets, the statistical significance, as measured in the primary tumor setting (Taylor
et al.4, TCGA2, Baca et al.48), not surprisingly is highly dependent on the size of the dataset. In
the metastatic setting (Abida et al.46), the frequency of alteration is consistently much higher and
many genes are statistically significantly co-altered (Figure 2B).

Overall, these benchmarking analyses show that the molecular features in primary prostate
cancer are generally reliably and consistently measured across datasets. Gene expression
patterns are correlated across datasets. Copy number results were more robust across
datasets, with mutational information limited to a few datasets. The consistent data processing
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and harmonization of gene names across datasets provide a ready to use resource for
meta-analysis.

Derived features add value to published datasets
A value added in the curatedPCaData package, beyond data harmonization, is that features
were systematically and consistently derived across datasets. Leveraging gene expression
data, we inferred and evaluated estimates of risk (Oncotype DX56, Decipher11, and Prolaris10),
AR scores, and microenvironment cell content leveraging the Immunedeconv R package32.

Prognostic risk scores are calculated from a select set of genes; thus missing genes and assay
platform differences can impact the reliability of the computed scores57. To assess the impact of
missing genes on risk score calculations, we benchmarked the risk scores included in
curatedPCaData (Oncotype DX56, Decipher11, and Prolaris10) by removing different genes for
calculating the risk scores, calculated the risk score with simulated missingness, followed by
correlating the risk score derived from the incomplete gene set to the risk score calculated from
the full gene list. Oncotype DX, a 12-gene signature, performed well overall when genes were
missing from the gene list. As an example, with 5 genes missing over 100 random iterations, the
average correlation coefficient was 0.891(median = 0.903) compared to the “ground truth” score
using all genes (Figure S2A). Prolaris, a 34-gene signature, also proved to be highly robust
whereby removing 10 random genes from the Prolaris gene list in the Kunderfranco et al.
dataset had an average correlation with the original score of 0.973 (median = 0.974; Figure
S2B). Decipher, a 17-gene signature, showed similar results to Oncotype DX where removing 5
genes resulted in an average correlation of 0.921 (median = 0.937; Figure S2C). Lastly, the AR
score was calculated by taking the means across scaled gene expression values and found to
be robust to the removal of genes. There are 20 genes that are used to calculate the AR score
and we found that by removing 10 at random still provides an average AR score with a
correlation of 0.930 (median = 0.935; Figure S2D).

In addition to prognostic risk and AR score calculations, we performed cell type deconvolution,
which infers immune cells and other stromal cells from bulk tissue gene expression profiling. For
datasets with gene expression, we calculated immune and other cell estimates using EPIC27,
ESTIMATE28, MCP-counter29, quanTIseq30, and xCell31 as implemented in the immunedeconv R
package32, and CIBERSORTx34. While deconvolution methods vary in the types of cells that
they estimate, the overall methodology has been shown to produce robust predictions and
comparison between methods have been shown to be mostly consistent and robust, which is
covered in depth by Sturm et al.32 and was a major motivation to develop the immunedeconv R
package. The following section highlights how the inferred cell content can be used to infer
associations with clinical outcomes using curatedPCaData.

Endothelial cell content predicts patient outcomes.
Leveraging the results from the immune and cell deconvolution methods from bulk
transcriptome data, we evaluated the relationship between inferred cell types, patient outcomes,
and disease progression. We found that the estimates of endothelial cell content as estimated
by xCell31, MCP Counter29, and EPIC27 were predictive of biochemical recurrence. It was
encouraging to also find that the results from the three independent methods were highly
correlated (Figure 3A), which provides support that the signal is reproducible and not an artifact
of one deconvolution method. For illustrative purposes, we stratified patients in the TCGA2 and
Taylor et al.4 cohorts into the top ⅓ and bottom ⅔ by endothelial cell estimates. The endothelial
cell scores were dichotomized at the upper tertile, and HRs were estimated using univariate Cox
models for each method (EPIC, MCP-counter, and xCell) by comparing upper tertile with the two
lower tertiles in order to make sure that the binarized endothelial cell score statuses were
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comparable between methods. We noted that the univariate Cox models agreed on the Hazard
Ratio (HR) estimates and statistical significance across the methods and datasets, with HR
estimates ranging between 2.02 to 2.446 in TCGA and 1.959 to 3.536 in Taylor et al. (Figure
3B). When Gleason grade group (≤6, 7, ≥8) was modeled as a univariate Cox model predictor,
its unit increase estimate for HR was of similar effect size as having the top tertile for endothelial
cells with 2.154 and 3.52 for TCGA and Taylor et al., respectively. Patient samples with a high
endothelial score show significantly shorter times to biochemical relapse (Figure 3C).
Furthermore, we evaluated primary tumor datasets for the association between endothelial cell
estimates and Gleason grade. Across the datasets that reported at least 10 patients per
Gleason grade group and where we could infer endothelial cell content from gene expression
data (TCGA2, Taylor et al.4, Friedrich et al.41), we consistently found increased estimated
presence of endothelial cells in Gleason grade ≥8 compared to Gleason grade 7 or ≤6 (Figure
3D).

It has been established that the cellular content of the tumor microenvironment can be
predictive of tumor progression and response to treatment, mostly in the context of immune
cells33. Similarly, angiogenesis and the vascularization of the tumor microenvironment has been
associated with tumor progression and outcomes58–61, with specific studies linking endothelial
cell content to prostate cancer aggressiveness62,63. Our findings are consistent with previous
results and demonstrate the strength of leveraging the inferred features across multiple,
independent datasets through curatedPCaData.

DISCUSSION
The curatedPCaData R package provides a harmonized and centralized resource for prostate
cancer studies with multi-omic and clinical data that can be leveraged easily for cancer
research. The cross study analyses presented herein demonstrate the strength of leveraging
multiple studies in prostate cancer; however, it is important to understand and incorporate
relative differences between studies, their aims, design and the underlying composition in such
data analysis. For example, Abida et al.46 focused on the progressed metastatic form of the
disease and reported a significant number of disease related deaths suitable for death-related
survival modeling. On the other hand, Friedrich et al.41, Hieronymus et al.6, ICGC-CA64, and
TCGA2 also reported overall survival, but they present a more indolent form of the disease with
a lower count of deaths, making survival modeling more challenging. Furthermore, biochemical
recurrence is often used as a surrogate for progression free survival and is reported in Barwick
et al.39, Sun et al.43, Taylor et al.4 and TCGA2; of these four datasets we focused our Cox models
for recurrence on Taylor et al. and TCGA, as Barwick et al. used a very targeted custom DASL
gene panel (<1,000 genes) making cell composition estimation unreliable for most methods.
Sun et al. only report recurrence as a binary outcome without follow-up times, rendering it not
suitable for Cox proportional hazards models or survival estimation using Kaplan-Meier method.
Despite the differences in reported variables, a considerable amount of clinical information is
made available across independent datasets to draw associations with molecular features.

Researchers should also consider the original study aims, as these will be reflected in which
metadata fields and omics that will be available. For example, Weiner et al.38 studied ethnicity
related PCa-trends, thus the patients had accurate demographics-related metadata commonly
available, while samples were just described as being primary tumors. In contrast, Wang et al.65

studied how sample composition (tumor cells, stroma, atrophic grand, or benign prostate
hyperplasia) could be differentiated based on gene expression, thus providing metadata suitable
for tumor purity estimation, but provided no clinical end-points or patient characteristics. While
we have gone through great effort to minimize technical and reporting variability, some
fundamental study characteristics will inevitably be not comparable. Thus, combining studies
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ought to be planned with care to avoid introducing confounding effects. To this end,
curatedPCaData offers assistance in bringing together studies suitable for efficiently tackling
specific prostate cancer related research questions.

Additional consideration should be given to how studies reported the common end-point of
Gleason grade. In curatedPCaData, we provided summarized results across studies as Gleason
grade groups (≤6, 7, ≥8), though studies might have additional information to report. For
example,  Weiner et al.38 reported an International Society of Urologic Pathologists (ISUP)
disease stage ranging from 1-5, for which the suggested mapping to the traditional Gleason
grade was done66. Multiple studies reported Gleason as the sum of major + minor Gleason
grades or a grade group (≤6, 7, ≥8), thus groupings were offered as an endpoint with equal level
of granularity, while finer level of detail was offered in alternate clinical metadata columns when
available. In ambiguous cases, the primary publications and the supplementary material was
mined, along with contacting the primary authors in many cases, in an effort to offer accurate
and up-to-date information on both the clinical metadata and the primary data. For this purpose,
a great deal of manual labor was required to curate the curatedPCaData datasets. The resulting
datasets were thus standardized to be as comparable as possible, while retaining details
essential to the studies. To this end, we offer a great variety of R package vignettes alongside
curatedPCaData with numerous examples and extra data characteristics, which assist the
end-user in planning their analyses (Table S2).

One benefit of the curatedPCaData is that it greatly lowers the barrier for accessing data to
rapidly test hypotheses and generate novel hypotheses supported by multiple, independent
datasets. The code used to generate the MAE objects is offered within the R package and
GitHub repository as supplementing code. The processed MAE objects exported from the
package are the main focus of the package; however, from a developer point of view they also
offer natural potential for future extensions such as: a) adding new studies and exporting them
as new MAE objects using the pipelines developed in curatedPCaData; b) supplementing the
existing MAE slots with newly derived variables or even adding other primary omics data; c)
extending the existing clinical metadata fields to include new fields.

Currently, curatedPCaData offers a base R Shiny67 interface to the package as well, with plans
to extend the visual browser-based access to the data. While on-going efforts such as the NCI
Genomic Data Commons68, cBioPortal69, or the International Cancer Genome Consortium70

already aim at providing a standardized approach to tackling complex omics traits in cancer,
curatedPCaData is the first harmonized, multi-study, hands-on data resource intended for
analysts with a strong focus on prostate cancer and allowing for maximum flexibility of the
analyses, using the R statistical software71. As such, the presented proof-of-concept analyses
provide merely a staging platform for more efficient exploration of multi-omics signatures
coupled with clinical metadata for the wider research community for prostate cancer.

METHODS

Data acquisition
Gene expression, copy number alterations and mutation data were downloaded from Gene
Expression Omnibus (GEO)72 using GEOquery (R package version 2.64.2) and from
cBioPortal69 using cBioPortalData (R package version v2.8.2) and cgdsr (R package version
v1.3.0) (Figure S1A). In addition to downloading raw data from GEO, GEOquery was used for
downloading the latest array-specific annotations and all three R packages were further utilized
to download clinical metadata accompanying the raw data. Raw CEL-file files for
Affymetrix-arrays were RMA-normalized in oligo (R package version v1.62.1) with functions
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read.celfiles, rma, getNetAffx, and exprs. Agilent arrays were processed using limma (R
package version v3.52.2) with the functions read.maimages, backgroundCorrect,
normalizeBetweenArrays, and avereps. For custom arrays such as the DASL array in Barwick et
al.39, quantile normalization was used together with log-transformation. No additional
normalization was done on the gene expression data from cBioPortal, since cBioPortal offers
pre-normalized data. For data with raw copy number alteration available, these were processed
using rCGH (R package version v1.26.0) with functions readAgilent, adjustSignal,
segmentCGH, and EMnormalize. This yielded log-ratios, which were input to GISTIC247 when
available. Copy number alteration matrices from cBioPortal with pre-existing GISTIC2 calls were
stored with the discretized calls consistently across all the datasets.

The TCGA Prostate Cancer (PRAD) dataset was downloaded from Xena Browser73, due to
better data quality and providing tumor samples and normals separately, instead of providing
relative tumor to normal gene expression found in cBioPortal processed data. We also removed
low-quality samples which were excluded from the TCGA publication due to RNA degradation
from the gene expression matrix to provide users with the most reliable information. We followed
uniform naming conventions for all the metadata fields and leveraged data in the original
publications to obtain maximum information in case information wasn’t readily available in these
public repositories (Table S1).

All layers of data, namely the gene expression, copy number alterations and mutations,
underwent a harmonization process to ensure uniform gene naming conventions. Note that
some datasets have matched normal samples to call somatic mutations and some datasets do
not have matched normal samples and are thus tumor-only variants. The mutation calling status
is noted in the “Mutation_status” field.The latest hg38 gene symbols, aliases and locations were
downloaded using biomaRt (R package version v2.52.0). We then mapped all the gene names
to the up-to-date dictionary to ensure consistency in HGNC symbols across all datasets. A
liftover from hg19 to hg38 was done as part of the harmonization using the liftOver function from
rtracklayer (R package version v1.56.1), for mutations called with an older genome assembly to
ensure uniformity.

Clinicopathological features were processed using R scripts customized to each dataset.
Features were collected from supplementary annotation files and processed to map features to
the data dictionary (Table S1). The data dictionary ensured common terminology and some
additional features, such as Gleason grade group (where not supplied by the primary
publication), were inferred using a predefined set of rules. The scripts for each dataset are
made available in curatedPCaData.

Derived features
A number of derived features were computed for the final MAE-objects (Figure S1B). Using
gene expression data, we calculated cell proportions, genomic risk scores, and AR scores. The
immunedeconv32 (R package version v2.1.0) wrapper package was used to estimate cell
proportions from EPIC27, ESTIMATE28, MCP-counter29, quanTIseq30, and xCell31. As the
implementation of CIBERSORTx34 required external access using the free academic license, it
was run with default parameters on their web interface and quantile normalization disabled with
the normalized gene expression data as input and LM22 signature matrix used to infer cell
types. The output CIBERSORTx matrices were then downloaded and integrated into the MAEs.

Due to the different platforms (sequencing, different brands and versions of microarrays) used to
assess gene expression, not all datasets have the same set of genes. To determine the impact
of gene missingness on the precomputed scores that this would have on those studies without
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all genes, we benchmarked the Oncotype DX56, Decipher11, and Prolaris10 risk scores and the
AR score. This was performed by identifying the study in curatedPCaData that contained the
most genes belonging to the score. By using this study we were able to get as close to what the
true score value would be. Assessing the impact of missing genes was performed by randomly
removing genes to simulate missing between 1 and 10 genes for Prolaris10 risk score (34 genes
in the complete signature) and AR score (20 genes), and removing between 1 and 5 for
Oncotype DX56 and Decipher11 risk scores (12 and 20 genes, respectively). Since the number of
gene combinations that can be made by simulating 10 missing genes for a risk score such as
Prolaris10 is large, the combinations were sampled to cut down on vignette and package build
time. The number of combinations used for assessing impact of missingness in Decipher11,
Oncotype DX56, and AR scores was 100 while Prolaris risk score used 50 combinations.

We implemented the Oncotype DX56, Decipher11, and Prolaris10 risk scores based on the
instructions in their original publications supported by the implementation outlined in Creed et
al.57 The gene list (n=12 matching genes) for Oncotype DX matched perfectly with several
studies: Abida et al.46, Kim et al.42, Ren et al.44, Sun et al.43, Taylor et al.4, TCGA2, Wallace et
al.74, and Weiner et al.38 We considered TCGA to be the most complete dataset as well as most
widely used, thus we used the gene expression from TCGA for testing the variability of the
Oncotype DX score due to missing genes (Table S4). The gene list (n=17 matching genes) for
Decipher did not have a 1-to-1 match with any study in curatedPCaData, but did have the
highest number of matching genes in Ren et al.44 (18 genes were a 1-to-1 match with two genes
from Decipher missing) while Abida et al.46, Friedrich et al.41, and TCGA2 had slightly fewer
number of matching genes (17 genes were a 1-to-1 with 3 genes missing). We used TCGA
gene expression for benchmarking inferred risk scores from Decipher. Prolaris required the
largest number of genes (n=34 matching genes) to calculate risk. Kunderfranco et al.75 had the
highest number of matching genes with 32 1-to-1 matches and only 2 genes missing. The next
highest 1-to-1 match was ICGC64 where 29 genes were 1-to-1 matches. Because of the high
number of matching genes, we selected Kunderfranco et al. as the benchmarking study for
Prolaris (Table S4).

AR-scores were calculated for the 20 genes identified originally in Hieronymus et al.76 and then
calculated as the sum of z-scores of AR signaling genes as described by TCGA2. There were 8
studies that matched all 20 genes used to calculate the AR score; we leveraged TCGA gene
expression for benchmarking.

Statistical analysis
While the primary focus is on providing readily processed MAE-objects with
MultiAssayExperiment (R package version v1.21.6), curatedPCaData delivers several
application examples as R vignettes and documentation, with relevant statistical methodology
applied there-in (Table S2). Cox proportional hazard models and Kaplan-Meier (KM) curves
were fitted with survival (R package version v3.3-1) and plotted using survminer (R package
version v0.4.9), and the corresponding p-values were calculated using log-rank tests.

Differential gene expression was calculated as the average log-transformed expression of
Gleason grade ≥8 samples minus the average log-transformed expression of Gleason grade ≤6
samples. Statistical significance was determined by comparing the log-transformed gene
expression of Gleason grade ≥8 compared to Gleason grade ≤6 samples using the moderated
t-test as implemented in limma (R package version v3.52.2). The final p-values were adjusted
for multiple testing using the Benjamini & Hochberg correction. Pearson correlation was used to
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compare differential expression in Figure 1A. The genes reported in Figure 1B were identified
using Fisher’s method to combine p-values for statistical significance. The log fold change was
then tested to ensure consistent up- and down-regulation of the associated gene, meaning a
gene needed to have logFC > 0 or logFC < 0 across all four datasets tested.  The top up- and
down-regulated gene sets were tested for pathway and biological process enrichment using the
DAVID web server77. The correlations reported in Figure 1C were calculated using Spearman’s
rank correlation.

Genes were defined to be co-occurring or mutually exclusive based on the odds ratio (OR)
which is calculated as: OR = (Both* Neither) / (B Not A * A not B) where A and B stand for
alterations in A and B respectively. We define any alteration in copy number or mutations that
are not silent as an alteration. The significance of mutual exclusivity/co-occurrence was
computed using the Fisher's Hypergeometric Test and the Benjamini-Hoschberg correction was
applied to determine the adjusted p-values. Mutual exclusivity plots for different data sets shown
in Figure 2B (right side), provide information on whether or not a set of important genes in PCa
are significantly altered together.

Statistical modeling used to identify interesting derived features predictive of biochemical
recurrence were based on 10-fold cross-validation (CV) of Cox models regularized using
LASSO using glmnet (R package version v4.1-4)78. There were three methods that calculated
endothelial cell abundance scores (EPIC27, MCP-counter29, and xCell31). Among these methods,
endothelial cell abundance scores were predictive in at least one of these datasets, when
predictive features were chosen according to the optimal regularization coefficient λ in the
CV-curve.

Spearman’s rank correlation was used to assess the non-linear association between endothelial
cell scores in Figure 3A. Cox proportional hazards models were fit as univariate models with
biochemical recurrence as an endpoint, by introducing one of the endothelial scores at a time to
a separate model, compared with using Gleason score sum as an univariate predictor; these
were then plotted together as a forest plot in Figure 3B.

DATA AVAILABILITY
All the data presented here-in are available as MultiAssayExperiments1 in the curatedPCaData
R package, along with code that can be used to reproduce these objects. The original raw data
repositories along with unique identifiers are listed, such as GEO accession ids or cBioPortal
identifiers listed in Table 1.

CODE AVAILABILITY
All the code used to generate the processed datasets, as well as the resulting R package are
available openly at: https://github.com/Syksy/curatedPCaData
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FIGURES

Figure 1: Gene expression patterns across datasets. A) Pearson correlation between
datasets comparing differential expression of Gleason grade ≥8 vs. Gleason grade ≤6 samples
for genes common between the datasets. B) Volcano plots for differential gene expression
comparing Gleason grade ≥8 vs. Gleason grade ≤6 samples. The highlighted genes are the top
five up- and down-regulated genes identified across the four datasets using Fisher’s method to
combine p-values. C) Spearman’s rank correlations for all genes within the dataset were
calculated compared to AR and the ETS transcription factor ERG. The Spearman correlation
was calculated for the correlation patterns between datasets and displayed for AR (left side) and
ERG (right side) in both primary and metastatic tumors.
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Figure 2: Copy number and mutational landscapes across datasets. A) Multiple known
prostate cancer associated genes (MAP3K7, MYC, NKX3-1, PTEN, TP53) displayed consistent
copy number loss/deletion or gain/amplification across datasets. B) Oncoprints (left side) for
select prostate cancer associated genes are displayed across datasets. Mutual exclusivity (right
side) was calculated using Fisher’s exact test (*p<0.05). Note that due to lack of overlap in
omics, some alteration percentages combining CNA and mutations are under-estimated; for
example Taylor et al.4 used a targeted sequencing panel and thus not all genes were measured
for somatic mutations.
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Figure 3: Estimates of endothelial cell content are associated with clinical outcomes. A)
The endothelial cell scores calculated from gene expression across TCGA2 and Taylor et al.4

were highly correlated (Spearman correlation) across the three estimation methods, EPIC27,
MCP-counter29, and xCell31. B) Forest plots for univariate Cox proportional hazard models
illustrate that all three methods and Gleason grade were predictive of biochemical recurrence.
C) Endothelial cell score top tertiles, as illustrated using MCP-counter’s estimates, showed a
statistically significant stratification for worse outcome in TCGA and Taylor et al. datasets. D) In
addition to being associated with biochemical recurrence, the estimates from MCP-counter are
associated with tumor Gleason grade groups.
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TABLES

Table 1: Summary of studies in curatedPCaData and their corresponding MultiAssayExperiment
(MAE) object contents.

MAE-object
Clinical end-points

Omics countsa Sample countsb Data source
(Identifier) Reference(s)

Gleason or
grade group Recurrence Survival

mae_abida X X CNA: 444
GEX: 266 Metastatic: 444 cBioPortal

(prad_su2c_2019) Abida et al.46

mae_baca X CNA: 56
MUT: 57

Metastatic: 2
Primary: 55

cBioPortal
(prad_broad_2013) Baca et al.48

mae_barbieri X
CNA: 109
GEX: 31
MUT: 112

Primary: 123 cBioPortal
(prad_broad) Barbieri et al.49

mae_barwick X X GEX: 146 Primary: 146 GEO
(GSE18655) Barwick et al.39

mae_chandran X GEX: 171
Metastatic: 25

Normal: 81
Primary 65

GEO
(GSE6919)

Chandran et al. Yu
et al.45,79

mae_friedrich X X GEX: 255
BPH: 39

Normal: 52
Primary: 164

GEO
(GSE134051) Friedrich et al.41

mae_hieronymus X X CNA: 104 Primary: 104 GEO
(GSE54691) Hieronymus et al.6

mae_icgcca X X GEX: 213 Primary: 213
ICGC

Data portal
(PRAD-CA)

Zhang et al.80

mae_igc X GEX: 83 Primary: 83 GEO
(GSE2109) IGC40

mae_kim X GEX: 266 Primary: 266 GEO
(GSE119616) Kim et al.42

mae_kunderfranco X GEX: 67 Normal: 14
Primary: 53

GEO
(GSE14206)

Kunderfranco et al.75

Peraldo-Neia et al.81

Longoni et al.82

mae_ren X GEX: 65
MUT: 65 Primary: 65 cBioPortal

(prad_eururol_2017) Ren et al.44

mae_sun X X GEX: 79 Primary: 79 GEO
(GSE25136) Sun et al.43

mae_taylor X X
CNA: 194
GEX: 179
MUT: 43

Metastatic: 37
Normal: 29

Primary: 181

GEO
(GSE21032);

cBioPortal
(prad_mskcc)

Taylor et al.4

mae_tcga X X X
CNA: 492
GEX: 461
MUT: 495

Metastatic: 1
Normal: 52

Primary: 498
Xenabrowser TCGA2

Goldman et al.

mae_true X GEX: 32 Primary: 32 GEO
(GSE5132) True et al.83

mae_wallace X GEX: 89 Normal: 20
Primary: 69

GEO
(GSE6956) Wallace et al.74

mae_wang c GEX: 148
BPH: 55

Atrophic: 21
Primary: 60

GEO
(GSE8218)

Wang et al.65

Jia et al.84

mae_weiner X GEX 838 Primary: 838 GEO
(GSE157548) Weiner et al.38

a CNA: Copy Number Alteration, GEX: Gene Expression, MUT: Mutations; b BPH: Benign Prostate Hyperplasia; c The provided
end-point was the proportions of cell types present in the sample determined by a pathologist (tumor, stroma, BPH, or atrophic
gland).
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SUPPLEMENTARY MATERIAL

Supplementary Tables

Table S1: Template used for extracting data for the PCa clinical metadata colData-slots in each
MAE-object. Also exported from the package namespace via curatedPCaData::template_prad.

Table S2: Vignettes provided alongside curatedPCaData (≥ v1.0), topics and aims

Table S3: Differential expression of the four datasets (TCGA2, IGC40, Taylor et al.4, Weiner et
al.38) in Figure 1B with the genes that are commonly and significantly up- and down-regulated
identified.

Table S4:The intersection between Prolaris, Oncotype DX, Decipher, and Androgen Receptor
(AR) score' genes and genes that are found in studies within curatedPCaData R Package. A
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gene from the score or its aliases matched either with a single gene in the dataset (1-to-1
match), gene from the score matched or its aliases had multiple matches in the dataset
(1-to-many), or the gene from the score calculation was missing from the dataset altogether.
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Supplementary Figures

Figure S1: Workflow of the curatedPCaData MultiAssayExperiment-object generation. A)
Primary raw data is extracted mainly using the GEOquery and cBioPortalData packages. Raw
data are processed according to latest annotations with the help of biomaRt and assay-specific
packages, and then processed using affy, oligo, limma, and rCGH packages where appropriate;
B) MAE-object is constructed while providing access to the primary data (GEX, CNA, and MUT),
offering derived variables (decompositions and scores), and corresponding clinical metadata
(MAE colData-slot)
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Figure S2: Impact of Gene Missingness on Risk and AR Score Reliability. Prostate risk
scores and AR score were benchmarked using datasets from the curatedPCaData package to
determine how missing genes impacted their reliability. The number of trials are listed at the
bottom of each figure panel. A) TCGA was used to assess Oncotype DX risk score removing
between 1 and 5 genes. B) Kunderfranco et al. was used to assess Prolaris risk score by
removing between 1 and 10 genes. TCGA was leveraged to assess gene removal for C)
Decipher (1-5 genes) and D) Androgen Receptor (1-10 genes).
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