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Experimentally validated inverse
design of multi-property Fe-Co-Ni alloys

Shakti P. Padhy,1,2 Varun Chaudhary,3,* Yee-Fun Lim,4,5 Ruiming Zhu,1 Muang Thway,1 Kedar Hippalgaonkar,1,4,*

and Raju V. Ramanujan1,6,*
SUMMARY

This study presents amachine learning (ML) framework aimed at accelerating the discovery of multi-prop-
erty optimized Fe-Ni-Co alloys, addressing the time-consuming, expensive, and inefficient nature of
traditional methods of material discovery, development, and deployment. We compiled a detailed
heterogeneous database of the magnetic, electrical, and mechanical properties of Fe-Co-Ni alloys,
employing a novel ML-based imputation strategy to address gaps in property data. Leveraging this
comprehensive database, we developed predictive ML models using tree-based and neural network ap-
proaches for optimizing multiple properties simultaneously. An inverse design strategy, utilizing multi-
objective Bayesian optimization (MOBO), enabled the identification of promising alloy compositions.
This approach was experimentally validated using high-throughput methodology, highlighting alloys
such as Fe66.8Co28Ni5.2 and Fe61.9Co22.8Ni15.3, which demonstrated superior properties. The predicted
properties data closely matched experimental data within 14% accuracy. Our approach can be extended
to a broad range of materials systems to predict novel materials with an optimized set of properties.

INTRODUCTION

Material innovation has often been the key to advances in technology. Multi-component alloys, polymers, composites, semiconductors, su-

perconductors, and biocompatible materials have promoted a revolution in construction, transportation, energy, bioengineering, microelec-

tronics, and space technologies.1,2 Research and development in the field of materials science can be divided into four major paradigms:

empirical trial and error methods, theoretical models and laws, computational simulations, and data-driven science.3–6 The first three para-

digms are experiment, theory, and computation and constitute the traditional methodology of discovering and developing materials. From

research to applications, traditionalmethods typically take decades, require high expenditures, are highly inefficient, and usually do not result

in the best composition for a given application.5,7–9 On the other hand, data-driven science using machine learning (ML) of mined material

data integrated with high-throughput experiments and computing can be used to design and discover new materials, and a vast space of

materials and processing conditions can be studied with minimum time and cost.6,7,9–21

One such important class of materials are alloys used in essential components of electro-magnetic energy conversion devices, for e.g.,

electrical motors, generators, transformers, inductors, actuators, magnetic-MEMS, and magnetic recording media.2,22–25 Due to increased

global electricity consumption, e.g., an increase of 1.7% from 2018 to 201926 and a projected growth rate of 3–4% per annum from 2019

to 2050,27 there is an urgent need for developing energy-efficient electrical technologies. Next-generation superior alloys hold the key to

developing high efficiency, low cost, and compact devices that are also suitable to operate in extreme service conditions, for e.g., high fre-

quency rotating electrical machines.23,28–31 Additionally, an improvement of only 1% in the efficiency of electric motors will reduce global po-

wer consumption by 94.5 TW-hours and carbon dioxide emissions by 60 million metric tons.32,33

However, there is no single commercial magnetic alloy that is commercially used with optimized multiple properties for current techno-

logical applications. Recently, a novel alloy (Fe32.6Ni27.7Co27.7Ta5Al7) was reported with a high tensile strength of 1336 MPa and a low coer-

civity of 78 A/m.34 This combination of properties was achieved by developing precipitates, enriched in nickel, tantalum, and aluminumwith a

controlled size and by tuning the particle/matrix interfacial coherency.34,35 The precipitates developed in these alloys impeded dislocation

motion, thereby improving strength, and did not significantly increase the pinning effect of the precipitates on the domain wall movement,

maintaining low coercivity. This phenomenon was achievable due to the use of various constituent elements in the alloy system, which
1School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
2Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA
3Industrial and Materials Science, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
4Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of
Singapore
5Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore
627833, Republic of Singapore
6Lead contact
*Correspondence: kedar@ntu.edu.sg (K.H.), ramanujan@ntu.edu.sg (R.V.R.), varunc@chalmers.se (V.C.)
https://doi.org/10.1016/j.isci.2024.109723

iScience 27, 109723, May 17, 2024 ª 2024 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1

mailto:kedar@ntu.edu.sg
mailto:ramanujan@ntu.edu.sg
mailto:varunc@chalmers.se
https://doi.org/10.1016/j.isci.2024.109723
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109723&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. Overview of the work

Database Curation, Machine Learning (ML) based imputation strategy used to complete the database, multi-property ML regression model [Forward Design of

alloys], Multi-objective Bayesian optimization (MOBO) [Inverse Design of alloys], and the Experimental Validation of forward design and predicted new alloy

composition from inverse design.
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facilitates a balance ofmultiple properties.35 However, the alloy exhibited lower saturationmagnetization than those of the best soft magnetic

materials because the precipitates formed were paramagnetic in nature.35 Therefore, the right choice of the principal constituent elements

and their content in a multi-component alloy system is essential in developing next-generation magnetic alloys.

In this work, Fe-Co-Ni-based alloy compositions were chosen as the three elements are ferromagnetic in nature and certain alloy compo-

sitions can potentially provide a better combination of properties. Binary alloys of these ferromagnetic elements exhibit certain excellent

properties. For e.g., Ni78Fe22 (78–Permalloy) and Ni78Fe17Mo5 (Supermalloy) exhibit high permeability (m) and low coercivity (Hc). Co exhibits

the highest Curie temperature (Tc) of 1394 K, while Fe65Co35 exhibits the highest saturation magnetization (Ms) of 2.47 T followed by

Fe49Co49V2. On the other hand, Fe-Si alloys with 2–4.5 wt % Si exhibit low Hc, low magnetocrystalline anisotropy and high electrical resistivity

(r).2,22,23,36 The desired set of technical properties required for next-generation alloys for rotating electric machines include magnetic, elec-

trical, andmechanical properties, e.g., highMs, lowHc, high Tc, high m, high r, high tensile (s) and yield (sy ) strength, high ductility (d), and high

hardness (HV). Thus, multi-property optimization and new alloy compositions are required. Machine learning (ML) can reveal novel alloy com-

positions with optimized properties.

ML has been applied to alloy design mainly focusing on a single property,13,14,37–40 and a few studies have been performed to optimize

multiple properties.8,41–47 In the present study, we collect multiple property data on Fe-Co-Ni alloys from the literature to create a curated

database. We combined ML with Bayesian optimization (BO) to identify Fe-Co-Ni alloys with the desired multiple property set. The curated

database contained gaps in the property data that were filled using an ML-based imputation technique. This imputed database was used to

develop a multi-property ML model (forward design). Multi-objective BO (inverse design) was implemented to identify alloys with superior

property sets. Both the forward and inverse design results were validated using experimental data obtained using a high-throughput meth-

odology. The compositions, Fe65.84Co28.66Ni5.5 and Fe61.5Co23.14Ni15.35, revealed by BO, demonstrate high values of Ms, Tc, and HV, moder-

ately low values ofHc andmoderately high values of r, a superior property set compared to conventional Fe-Co-Ni magnetic alloys. The strat-

egy is shown in Figure 1. The proposed approach is applicable to a wide variety of multi-property optimization materials design problems.

METHODOLOGY

The Python programming language was used for exploratory data analysis, model building, and optimization. The Pandas48–50 library was

used to handle data. Matplotlib,51 seaborn,52 and plotly53 libraries were used for plotting. Keras54 from TensorFlow55 library was used to

implement Deep Neural Network (DNN) models, XGBoost56 library was used to implement XGBoost Regression (XGBR), and Scikit-Learn57

library was used for the rest of the models. For BO, gp_minimize from the Scikit-Optimize58 library was implemented.

The Fe-Co-Ni-based alloy database along with the codes for database analysis, the eight imputation steps, multi-property models, multi-

objective Bayesian optimization (MOBO), and plotting of experimental validation results is publicly available.59

Database Curation and analysis

A database of Fe-Co-Ni-based alloys (with the optional addition of other elements up to a combined at % less than 10) and their correspond-

ing magnetic (Ms, Hc, Tc), electrical (r), and mechanical (s, sy , d, Vickers Hardness (HV)) properties were collected from the literature. From

thousands of publications and hundreds of handbooks describing Fe-Co-Ni-based alloy composition(s) and their properties, data was
2 iScience 27, 109723, May 17, 2024
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extracted from selected sources based on the criterion that two or more properties for the alloy composition were experimentally deter-

mined. For research publications, Clarivate Web of Science was used to search for articles with various search strings for the year range

from 1900 to 2021. Further, relevant publications were selected for each search string by first screening various abstracts and then screening

the publication for information related to Fe-Co-Ni-based alloys. Sources used for database building include:

(1) Books – Ferromagnetism,60 Magnetism and Magnetic Materials,61 Bibliography of Magnetic Materials and Tabulation of Magnetic

Transition Temperature62;

(2) Handbooks – Powder Metallurgy Data Part 1: Metals and Magnets,63 ASM Handbook Volume 2,64 Handbook of Materials

Selection65,66;

(3) Research/Review articles 67–80,81-112.

A total of 1208 data entries were curated from the above-mentioned references from text, tables, and graphical images. The information

from graphical images were extracted using graph digitizing software such as Graph Grabber (v2.0.2, Quintessa Ltd., UK), Enguage Digi-

tizer,113 and Digitizer Tool of OriginPro 2020b (OriginLab Corporation, USA). The content of elements in the alloy composition was converted

to atomic percentage (at. %). If the reported composition was in weight percentage (wt. %), it was converted to at.% before adding to the the

database. The properties were converted to SI units, i.e.,Ms in Tesla (T),Hc in Ampere/meter (A/m), Tc in Kelvin (K), r in Micro ohm centimeter

(mU$cm), s and sy in Megapascals (MPa), d in %, and HV in HV. Using the elemental content information and the individual element price,114

overall raw material cost (US$/kg) for each alloy was calculated and added to the database. For database analysis, the distribution of the el-

ements and properties was plotted. The Pearson correlation coefficients for each property versus the alloy composition as well as between the

properties were calculated and plotted. Finally, the percentage of the property data filled in the database was calculated for each property.

Imputation strategy

An imputation strategy was developed to fill the empty cells in the properties columns so that the imputed database can be used to build a

multi-property model mapping the composition to the properties. 12 different regression models were built, mapping the composition to

each of the responses, by training on 80%of the available property data. These are Linear Regression (Linear), Ridge Regression (Ridge), Lasso

Regression (Lasso), K-Nearest Neighbors Regression (KNNR), Support Vector Regression (SVR), Decision Tree Regression (DTR), Gradient

Boosting Regression (GBR), Random Forest Regression (RFR), Extra Trees Regression (ETR), XGBoost Regression (XGBR), Deep Neural

Network Regression with same number of units in all the hidden layers (DNNR_rectangle), and Deep Neural Network Regression with

different number of units in the hidden layers (DNNR_random). The details of the hyperparameters optimization and model building are dis-

cussed in Section S2 of supplementary information. After all themodels were built, the bestmodel with the lowest mean-absolute error (MAE)

for the testing data was selected for the imputation of that respective property column.115 Those models also exhibited low root mean-

squared error (RMSE) and high coefficient of determination (R2).

For all the properties except log10HV, imputation was performed directly using the best model mapping from composition to the property

as explained above. For log10HV, imputation was done in 3 steps.

(1) 12 regressionmodels were built mapping from log10 s to log10HV. Themodel with the lowestMAEwas chosen to fill up the empty cells

in the log10HV column for which s values were reported in the literature but not the HV values.

(2) 12 regression models were built mapping from log10 sy to log10HV, the model with the lowest MAE was chosen to impute the log10HV

values for which sy were reported but not HV.

(3) Using both the experimental and imputed log10HV values, all the 12 regression models were built mapping from the composition to

log10HV, the model with the lowest MAE was chosen for the imputation of the log10HV column.
Multi-property model for the forward design of the multi-property alloy

The imputed database was next used to build multi-property predictive models mapping the composition to Ms, log10Hc, log10Tc, log10 r,

log10 d, log10HV, and log10Cost. Six ML models, i.e., RFR, ETR, neural network regression with 3 hidden layers (NNR_3layers), neural network

regression with 4 hidden layers (NNR_4layers), DNNR_rectangle, and DNNR_random were deployed. The hyperparameters for each of the

models are discussed in Section S3 of supplementary information. Futher, using the same hyperparameters, another set of six multi-property

predictive models was built mapping the composition and Wen alloy features38 to the 7 properties. Further, the MAE of all the different

models were comparedwith each other to select one tree-basedmodel and one neural networkmodel with the lowestMAE asmulti-property

predictivemodels. Thesemodels were experimentally validated using 40 Fe-Co-Ni compositions whichwere synthesized and characterized in

a high-throughput manner.

Multi-objective Bayesian optimization for inverse design of the multi-property alloy

To design alloy compositions possessing an optimum balance of properties using the multi-property model, the implementation of a robust

and computationally low-cost optimization algorithm is required. In this work, Bayesian optimization (BO) is used for fast, low cost and effec-

tive global optimization of those objective functions which are expensive and time-consuming to evaluate, i.e., expensive black box

functions.116–119
iScience 27, 109723, May 17, 2024 3
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A Gaussian Process (GP) based BO was used to obtain the multi-property regression (MPR) model predictions closer to the target values.

The global minima/maxima composition was determined from the defined search space of elements. BO uses prior and evidence knowledge

to define a posterior distribution over function space. The function space is maximized/minimized at each step such that the expected

maximum/minimum of the given model moves closer to the global maximum/minimum.120 In this work, gp_minimize from Scikit-Optimize

was used for BOwhichminimizes the defined objective function. The acquisition function set in gp_minimizewas ‘‘EI,’’which denotes a nega-

tive expected improvement. The expected improvement determines the global maximumof the objective function, which is explained in Sec-

tion S5 of supplementary information. Thus, a negative expected improvement finds the global minima of the objective function.

The objective function defined for the BO to design alloy composition containing only Fe, Co, andNi is described by the equations later in

discussion,

xn =
xP
x
3100 (Equation 1)
xtransformed = StandardScalerðxnÞ (Equation 2)
pred = MPRðxtransformedÞ (Equation 3)
objective =
X

wi 3 abs
�
targeti � predi

�
; if targetisNan (Equation 4)

where x in Equation 1 is the compositional array containing at.% values of Fe, Co, Ni, and other elements determined by the BO algorithm

from the defined ranges: Fe, Co, Ni˛ [0, 100] and other elements˛ [0, 0.001], xn in Equation 1 is the normalized compositional array to always

maintain the sum of at.% of elements at 100%, StandardScaler in Equation 2 is the standard scaling function used on the training set for build-

ing the MPR model, pred in Equation 3 is the array of predicted property values by the MPR model, wi in Equation 4 are the weights for opti-

mizing each property which were definedmanually,Nan in Equation 4 stands for Not a number, and targeti and predi in Equation 4 are the set

target value and MPR model predicted value of each property. The idea of using weights is to emphasize the optimization of the desired

property set close to the desired target value compared to other property set. This would be useful for discovering the optimum alloy compo-

sition for a particular application.
Experimental validation of forward and inverse design

40 Fe-Co-Ni alloy compositions were prepared using high-throughput experimental scheme using high-throughput spark plasma sintering

(SPS) of ball-milled alloy powders which is explained elsewhere.112,121 The alloy powders were prepared via ball milling (Fritsch Pulverisette-7)

of Fe, Co, and Ni powders (purityR99.95%, Tosoh SMD Inc.) using tungsten carbide vials and balls. 10 mm diameter balls were used and the

ball-to-powder ratio was maintained at 12:1. The bulk alloy samples were prepared via SPS (Fuji Electronic Industrial, SPS-211LX) in compo-

sitionally graded cylindrical samples by stacking ball-milled powders and sintering them for 15min at 950�C, 40MPa, at vacuum level less than

8 Pa. The composition was measured using an energy-dispersive X-ray spectrometer attached to the JEOL JSM-7800F-SEM. The magnetic

properties were measured using a physical property measurement system (EverCool-II, QD). The Curie temperature was measured in an

acceleratedmanner using amodified thermogravimetric analysis (TGA) by placing amagnet near the TGA pan.109,112,121,122 The Vickers hard-

ness and electrical resistivity were measured using a Vickers hardness tester (Future-Tech) and a four-point probe (4PP) tester (Keithlink),

respectively. The Cost for these compositions was calculated, as described in Section database curation and analysis.

For the experimental validation of the forward design methodology, the 40 Fe-Co-Ni compositions were used in the selected tree-based

model and neural network model to predict the property values. These predicted values were compared with the experimental values of the

properties and the MAE for all the properties for both models were calculated.

For the experimental validation of the inverse designmethodology, the predicted alloy compositions by BO for the set target values of the

properties were plotted and compared using interactive ternary contour plots of the properties of 40 rapidly synthesized Fe-Co-Ni compo-

sitions. For the predicted compositions, the properties were predicted using the compositions in the model which was used in BO.
RESULTS AND DISCUSSION

Database curation and analysis

15 elements were present in the database, the distribution is shown in Figure 2A–2N. The elements are Fe, Co, Ni, V, Mo, Cr, Cu,Mn, C,W, Ta,

Nb, Al, Ti, and Si. According to the distribution of Fe shown in Figure 2A, there aremore than 250 alloys containing Fe between 46.33 at % and

52.67 at%. From the distribution of Co shown in Figure 2B, a similar number can be inferred. The compositions containing Ni are broadly

distributed as shown in Figure 2C. From the distribution of V and Cu in Figures 2D and 2G the alloy composition containing V or Cu is usually

�2 at%. The 15 elements were considered as features for the multi-property ML model, as described in Table 1.

The distribution of properties is discussed in Section S1 of supplementary information. The values of all the properties except forMs were

converted to log10 scale to reduce the skewness in the data and tomake different property values comparable to each other. The distribution

of the modified properties and cost is shown in Figures 2O–2W. The skewness of the distribution of the log10 scale converted properties

decreased compared to the distribution in Figure S1, except for Tc and Cost.
4 iScience 27, 109723, May 17, 2024



Figure 2. Distribution analysis of the database

Distribution of (A–O) 15 elements atomic percentage (at.%), (O–Q) magnetic properties (Ms, log10Hc, log10Tc), (R) electrical resistivity (log10 r), (S–V) mechanical

properties (log10 s, log10 sy , log10 d, log10HV), and (W) log10Cost in the database. In (P–X) the solid continuous lines are kernel density estimations which show the

probability density function of the data entries for each property.
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Table 1. Table of features and responses used for multi-property machine learning (ML) model

Features Fe, Co, Ni, V, Mo, Cr, Cu, Mn, C, W, Ta, Nb, Al, Ti, Si

Responses Ms, log10(Hc), log10(Tc), log10(r), log10(d), log10(HV), and log10(Cost)
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To understand the relationship between the properties and alloy composition, the Pearson correlation coefficient was calculated for each

property against all the 15 elements, as shown in Figure 3A. The Pearson correlation coefficient was also calculated between the properties to

understand the inter-property relationships as shown in Figure 3B. From Figure 3A, it can be observed that the Fe content has a positive

correlation with Ms while the Ni content has a negative correlation, implying that the addition of Fe will increase Ms whereas the addition

of Ni will decreaseMs.
123 For log10Hc, the Co content has a moderately positive correlation whereas the Ni content has a moderately negative

correlation, which implies that the addition of Co increases log10Hc, while the addition of Ni decreases log10Hc. To support this inference,

there have been studies in the past reporting that permalloy and moly permalloy exhibit lower coercivity values compared to Fe-Co

alloys.23,106,109,112

The Co content has a positive correlation with log10Tc while the Ni content has a negative correlation, implying that the addition of Co

increases log10Tc, on the other hand, the addition of Ni decreases log10Tc. This is consistent with the fact that Co has the highest Tc of

1394 K,60,124 Ni has a much lower Tc of 631 K.125 This change in Tc values can also be rationalized by the mean field model and the Bethe-

Slater curve.18,126 log10Hc has a positive linear correlationwith log10Tc, log10 s, and log10 sy (Figure 3B). The positive linear correlation between

log10Hc and log10Tc can be attributed to an increase in Co content (Figure 3A).

Moreover, interestingly, Fe has a moderately negative correlation with log10 d implying, with all other factors unchanged, d decreases with

an increase in Fe content. Further, V and C have a moderately positive correlation with log10HV, which implies that the addition of V and C

increases HV. From Figure 3B, it is evident that log10 s, log10 sy , and log10HV have a strong positive linear correlation with each other. There-

fore, log10HV was utilized as the main mechanical property prediction and experimental validation in this study.

Thus, seven properties –Ms, log10Hc, log10Tc, log10 r, log10 d, log10HV, and log10Cost – were chosen as the responses for themulti-property

ML model, as listed in Table 1. Before building the multi-property model, the experimental data available in the database for the responses

was analyzed, as shown in Figure 3C. The Cost was calculated from the alloy composition; hence, the log10Cost column is 100% filled in the

database.Ms and log10Tc have the most experimental data, i.e., 75% and 72% of the data entries, respectively. In the case of Tc, the data for

the binary alloy compositions was obtained from the phase diagram, the data for commercial alloy compositions such as Hiperco was ob-

tained from the reported sources.

log10HV has the least experimental data, which is 14.5% of the total data entries, which shows that only a limited number of mechanical

property studies have been performed on Fe-Co-Ni-basedmagnetic alloys. Figure 3C shows that only a small number of rows in the database

are complete, i.e., 0.66% of the data entries, which corresponds to just 8 rows. Therefore, an ML-based imputation strategy was developed to

fill the empty cells of the responses column to build a multi-property model, which is discussed in Section imputation strategy.

Imputation strategy

Figure 4 shows the heatmapofMAE, RMSE, and R2 values of the all the regressionmodels built to find the bestmodel for the imputation of the

property. The best regression models used for stepwise imputation are shown in Table 2 along with their MAE, RMSE, and R2 values.

Forward design of the multi-property alloy

Multi-property models

Figure 5A–5C shows the heatmap of the performancemetrics (MAE, RMSE, and R2) of the six models with composition as the input features to

the sixmodels. Among them, the ETRmodel was found to be the best predictivemodel with the lowestMAE and high R2 for all the properties.

The ETRmodel can predict a novel compositionwithin the limits of each property value in the databasewhich achieves an optimumbalance of

properties.43,127,128 The performance of the ETR model in predicting Ms, log10Tc, and log10Cost is better and more accurate, the model ex-

hibits R2 > 0.95 and MAE <0.05. This can be attributed to the strong compositional dependence of Ms and Tc. As Cost is calculated using

composition and individual element cost, it explains the good performance of the ETR model. The performance of the ETR model for pre-

dicting log10 d is moderately good and accurate with a good R2, in the range of 0.85–0.9, and low MAE. For log10Hc, the performance of the

ETRmodel is less accurate with good R2, in the range of 0.85–0.9, and a highMAE. For log10 r and log10HV, the performance of the ETRmodel

is moderately accurate and precise with decent R2, in the range of 0.75–0.8, and low MAE. Hc, r, and HV are more process-dependent prop-

erties compared to composition, which explains this moderate performance of the ETR model.

Among the NN architectures, NNR_4layers performed the best with lowest MAE for all the properties and highest R2 forMs, log10 d, and

log10Cost. However, the model exhibited the second lowest R2 values for log10Hc, log10Tc, and log10 r and the second highest R2 value for

log10HV. Wen et al. designed a high entropy alloys with hardness higher than the training database by using 2 iterations of ML combined with

experiments in which they implemented theMLmodel with only compositional input features in the first loop and theMLmodel with compo-

sitional and physical features in the second loop.38 They reported that designing alloys with both compositions and physical features was

more effective than designing alloys with only compositional features. Hence, WenAlloys featurizer class in Matminer129 package was

used to evaluate the physical features for all the data in the imputed database and built all six models with the same hyperparameters to
6 iScience 27, 109723, May 17, 2024



Figure 3. Exploratory data analysis

Pearson correlation coefficients heatmap of (A) properties vs. elements and (B) properties vs. properties.

(C) Percentage of properties data available for the alloy compositions in the database.
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Figure 4. Heatmap of performance metrics

(A) mean absolute error (MAE), (B) root mean squared error (RMSE), and (C) coefficient of determination (R2) of various ML regressor models for the imputation of

each property. The lowest MAE model is chosen for the imputation of each property which is indicated with the darkest shade of blue in (A) for each column.
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compare their performance with the models with only compositional features as input. Figures 5D–5F shows the heatmap of the performance

metrics (MAE, RMSE, and R2) of the six models with composition and physical descriptors as the input features for the six models.

It can be observed that the performance of tree-basedmodels does not change with the addition of physical features as input, as shown in

the bar plots in Figures 5G–5I. However, the performance of the NNmodels is improved after the addition of physical features as input, espe-

cially for NNR_4layers. The comparison of the performance of NNR_4layers and NNR_4layers_Wen (NNR_4layers with composition andWen

alloy features as input) is shown in the bar plots in Figures 5G–5I. The predicted vs. experimental values plots along with their performance

metrics of each property for these 4 models are presented in Section S3 of supplementary information. The NNR_4layers_Wen model per-

formed better in predicting properties compared to other NN architecture models but not better than the ETR model. Thus, the ETR and

NNR_4layers_Wen models were selected for experimental validation.

Experimental validation

The predictions of the multi-property ETR and NNR_4layers_Wen models were compared with the experimental values of the properties as

shown in Figure 6. In Figure 6A, for 0.9 T <Ms < 1.4 T, both the models predicted values withinG10% range of the experimental values. For

Ms> 1.4 T, both themodels overpredicted compared to the experimental values and approximately 55% of the predictions by ETR and 72.5%

of the predictions by NNR_4layers_Wen havemore than 10% error from experimental values. The overprediction by themodels could be due

to the fact that the high Ms alloys in the database are mainly binary FeCo alloys or FeCo alloys with the addition of V, while the predictions

performed were for ternary Fe-Co-Ni alloys. In Figure 6B, it can be observed that the models underpredicted the log10Hc values which can be
Table 2. Best ML regressor model used for the imputation of each property

Step No. Mapping Best ML Regressor for imputation (MAE, RMSE, R2)

1 Composition to Ms Extra Trees (0.049, 0.101, 0.97)

2 Composition to log10Hc Extra Trees (0.249, 0.353, 0.89)

3 Composition to log10Tc Extra Trees (0.006, 0.02, 0.97)

4 Composition to log10 r Extra Trees (0.05, 0.117, 0.83)

5 Composition to log10 d Decision Tree (0.167, 0.239, 0.82)

6 log10 s to log10HV Linear (0.063, 0.081, 0.8)

7 log10 sy to log10HV Decision Tree (0.06, 0.047, 0.91)

8 Composition to log10HV Support Vector (0.14, 0.099, 0.56)
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Table 3. Selected properties of commonly used commercial magnetic alloys

Alloy Ms (T) Hc (A/m) Tc (K) r (mU$cm) HV (HV)

Calculated

Cost ($/kg) Reference

Fe94.21Si5.79 2.03 6.4 1018 45–48 170–195 0.46 Moses 130,131

Fe87.86Si12.14 1.8 – 973 82 395 0.51 Kasai and Abe et al. 132,133

Fe49Co49V2 2.4 16–398 1203 27 180–220 23.35 Gutfleisch Fiorillo and Tan et al.2,134,135

Fe 2.16 4–80 1044 10 150 0.42 Gutfleisch et al. 2,64

Fe50Ni50 1.4–1.6 4–20 753 40–50 120–180 7.33 Gutfleisch Fiorillo, Tan et al 2,134–136

Ni78Fe17Mo5 0.65–0.82 0.25–0.64 673 60 160 13.86 Gutfleisch et al. and ASTM

International 2,137

Fe53Ni30Co17 1.2 63.66–71.62 703 43 160–230 10.24 Special Metals The NILO� and

NILOMAG� Nickel-Iron Alloys138
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due to the high bias in the curated database a containing higher number of reported Hc values for sheets and ingot samples prepared by the

casting method and the experimental procedure used for validation by powder metallurgy techniques. Similarly, the models underpredicted

log10 r values too as shown in Figure 6D. Moreover,Hc and r depend on the processing conditions of the alloys which influence the structure

of the alloys, which is not considered in both the models.

For log10Tc and log10HV, it can be observed in Figures 6C and 6E, the ETRmodel predicted all the values withinG10% range of the exper-

imental values. However, the NNR_4layers_Wenmodel predicted 100% of log10Tc and 97.5% of log10HV values. The predictions for log10Tc by

both the models matched well the experimental values. For log10HV, both the models overpredicted compared to experimental values which

can be attributed to the bias in the database containing a higher number of reported HV values for sintered binary alloys with the addition of

other elements and few reported HV values for ternary alloys in the form of sheets. Finally, for log10Cost, both the models predicted 97.5%

values within theG10% range of the experimental values. As shown in Figure 6F, for log10Cost< 0.95, the ETRmodel underpredicted and the

NNR_4layers_Wen model overpredicted. As expected, for log10Cost < 0.95, both the models made accurate predictions. The experimental

values and the predicted values for all the 40 compositions and calculatedMAE of each property for both themodels are tabulated in Section

S4 of the supplementary information.

This shows that for a given Fe-Co-Ni alloy composition, both ETR and NNR_4layers_Wen model would predict the log10Tc and log10Cost

with high accuracy and the log10HV andMs with moderate accuracy. Overall, the performance of both models deployed on the experimental

data are comparable to each other with NNR_4layers_Wen performing better than the ETR model. However, on the main database, the per-

formance of the ETR model was better than that of NNR_4layers_Wen model. Thus, both the models were considered for designing multi-

property alloys using Bayesian optimization.

Inverse design of the multi-property alloy

Multi-objective Bayesian optimization

For designing alloy compositions using the ETR model, the objective function defined in Equations 1, 2, 3, and 4 is used in BO. For using the

NNR_4layers_Wenmodel, the objective function ismodified to include theWen alloy features between Equations 4 and 6 and is described by

the equations later in discussion,

addfeat = WenAlloys:featurize
�
CompositionðxnÞ

�
(Equation 5)
xall = concatenateðxn; addfeatÞ (Equation 6)
xtransformed = StandardScalerðxallÞ (Equation 7)

where addfeat in Equation 5 is the Wen alloy features array calculated using WenAlloys featurizer in matminer, xn in Equations 5 and 6 is the

normalized compositional array, StandardScaler in Equation 7 is the standard scaling function used on the train set for buildingmulti-property

NNR_4layers_Wen model.

For the acquisition function ‘‘EI’’ (as mentioned in Section multi-objective bayesian optimization for inverse design of the multi-property

alloy), the xi parameter value in gp_minimize was assigned the default value of 0.01. The xi parameter controls howmuch the acquisition value

favors exploration and exploitation. For the mentioned set value, the acquisition function will favor more exploitation and less exploration.

This means the algorithmwill search for a promising region in the search and probe to improve a promising solution. For the case of searching

ternary Fe-Co-Ni alloy composition, this is beneficial as the search space is not as vast as a high entropy alloy or complex multi-component

alloy.

The properties used in the objective function of MOBO (described in Equation 7) to design Fe-Co-Ni alloy compositions are Ms, Tc, and

Cost becauseMs and Tc are composition-dependent properties.Cost is calculated using the composition and individual element price which
iScience 27, 109723, May 17, 2024 9
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Figure 5. Performance of multi-property regression models

(A) mean absolute error (MAE), (B) root mean squared error (RMSE), and (C) coefficient of determination (R2) of various multi-property regressor (MPR) models

with composition as model features.

(D) MAE, (E) RMSE, and (F) R2 of the MPR models with composition and Wen alloy features as model features.

(G) MAE, (H) RMSE, (I) R2 of extra trees regressor and neural network regression consisting of 4 hidden layers with and without Wen alloy features as model

features.
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makes it a composition-dependent property too. Moreover, in Section forward design of the multi-property alloy, it was observed that both

the models are quite accurate in predicting these three properties compared to the predictions of other properties. The weights for opti-

mizing these three properties are each set to 1 so that equal emphasis is given while designing the alloy composition. Thus, Equation 7

can be rewritten as the equation later in discussion.

objective = abs
�
targetMs � predMs

�
+ abs

�
targetTc � predTc

�
+ abs

�
targetCost � predCost

�
(Equation 11)

To set the target values of Ms, Tc, and Cost for the inverse design of alloys, a survey of the target properties of the most commonly used

alloys for various rotating electrical machines applications was conducted and is tabulated in Table 3. Based on the values ofMs, Tc, and Cost

in the table, target values ofMs, Tc, andCostwere determined to be set in the range of 1.5–2.4 T, 970–1200 K, and 10$–19$/kg for discovering

Fe-Co-Ni alloy compositions with a moderate to highMs, high Tc, and lowCost (Cost values based on the individual elemental cost of Fe, Co,

and Ni).

The set target values of Ms, Tc, and Cost for the inverse design are as follows:

(1) BO Set 1: Ms – 1.5 T, Tc – 970 K, and Cost – 15 $/kg.

(2) BO Set 2: Ms – 1.75 T, Tc – 1000 K, and Cost – 11.5 $/kg.

(3) BO Set 3: Ms – 1.75 T, Tc – 1143 K, and Cost – 19 $/kg.

(4) BO Set 4: Ms – 2 T, Tc – 1070 K, and Cost – 10.5 $/kg.

(5) BO Set 5: Ms – 2.2 T, Tc – 1173 K, and Cost – 10 $/kg.

(6) BO Set 6: Ms – 2.4 T, Tc – 1173 K, and Cost – 10 $/kg.

For each of the six sets of target values, our Bayesian optimization strategy was used to predict alloy compositions by performing 200 it-

erations of the acquisition function and among them 5 alloy compositions with the lowest acquisition function values were selected for exper-

imental validation. For instance, the evolution of acquisition function value for ETR model is shown in Section S5 of the supplementary

information.

Experimental validation

The predicted Fe-Co-Ni alloy compositions from Bayesian optimization and their respective predicted properties from ETR and

NNR_4layers_Wen models are shown in Figure 7. These predicted alloy compositions were compared to the 40 rapidly synthesized Fe-

Co-Ni compositions and their properties as shown in the ternary contour plots of Ms, Tc, Hc, r, HV and Cost.

Comparing the composition predictions of target sets BO set 1 and BO set 2 for both models, it can be observed that Ni content

decreased in the predicted composition with an increase in the set values of Ms and Tc. The Fe content increased with a decrease in the

set value of theCost, as shown in Figures 7A–7C. In the composition predictions for BO set 2 for bothmodels, the Fe content was significantly

high compared to the BO set 1 as the set values of Ms and Cost were higher and lower, respectively, as shown in Figures 7A and 7C.

For the BO set 1, the composition predictions for both models were similar to each other, and all the 5 predicted compositions were quite

close to each other for both models, as shown in Figure 7. The predicted compositions for BO set 1 for the ETR model exhibitedMs values in

the range of 1.54–1.58 T, Tc in the range of 900–912 K, and Cost in the range of 10.6$–11.3$/kg according to the experimental contour plots.

Similarly, the predicted compositions for BO set 1 for the ETRmodel exhibitedMs in the range of 1.54–1.58 T, Tc in the range of 900–912 K, and

Cost in the range of 11.4$–11.7$/kg, according to the experimental contour plots. The predicted compositions for BO set 1 for the

NNR_4layers_Wen model consisted of higher Ni content compared to that for ETR model. The predicted compositions for BO set 2 for

both the models exhibited Ms values in the range of 1.46–1.5 T, Tc in the range of 1000–1010 K, and Cost in the range of 15$–15.5$/kg, ac-

cording to the experimental contour plots.

Comparing the composition predictions of target sets for BO set 2 and BO set 3 for both models, the Co content increased significantly in

the predicted composition with an increase in set values of Tc andCost, as shown in Figures 7B and 7C.Moreover, it can be observed that, for

bothmodels, the predicted compositions for BO set 3 consisted of a higher content of Co and a lower content of Ni when compared to that of

BO set 1 due to the increase in set value of Tc and Ms, as shown in Figures 7A and 7B. The predicted compositions for BO set 3 for the ETR

model exhibitedMs values in the range of 1.58–1.6 T, Tc in the range of 1090–1110 K, and Cost in the range of 18.5$–19$/kg, according to the

experimental contour plots. Similarly, the predicted compositions for BO set 3 for the NNR_4layers_Wen model exhibitedMs in the range of

1.73–1.76 T, Tc in the range of 1100–1160 K, and Cost in the range of 18.5$–20$/kg, according to the experimental contour plots. The pre-

dicted compositions for BO set 3 for the NNR_4layers_Wen model consisted of higher Fe and Co content and lower Ni content compared

to that for ETRmodel. The predicted composition with the lowest objective value for BO set 3 for the NNR_4layers_Wenmodel exhibitedMs

in the range of 1.74 T, Tc of 1148 K, and Cost of 19.5 $/kg according to the experimental contour plots.
iScience 27, 109723, May 17, 2024 11



Figure 6. Experimental validation of selected multi-property models

Plot of experimental values vs. predicted values of (A) Ms, (B) log10Hc, (C) log10Tc, (D) log10 r, (E) log10HV, and (F) log10Cost with the G10% error lines (dashed)

for extra trees regressor with composition as input features (green) and neural network regressor with composition and Wen alloy features as input features

(red).
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Thepredicted compositions for BO sets 4, 5, and 6 for ETRmodel consisted of higher Fe and lowerNi content compared to that for BO sets

1, 2, and 3 as the set target value ofMs is higher andCost is lower as shown in Figure 7. For the NNR_4layers_Wenmodel, the same trend was

exhibited by BO sets 5 and 6 but the predicted compositions for BO set 4 consisted of higher Fe andNi content compared to that for BO set 3,

as shown in Figure 7. Further, it can be observed that in the predicted compositions for BO sets 4, 5, and 6 for both models, Fe content

increased, and Ni content decreased with an increase in the set target values of Ms; Co content was higher for an increase in the set target

values of Tc. These trends correlatewell with the trends expectedwith domain expertise and the subset of these propertieswith Fe, Co, andNi

observed in the database, as explained in Section database curation and analysis. Also, it can be observed that the predicted compositions for

BO sets 4, 5, and 6 for the NNR_4layers_Wenmodel were spread out over a wide range of compositions compared to that for the ETRmodel.

This can be attributed to themulti-numbered andmulti-level decision-based nature of the ETRmodel whichwouldmake the BO approach for
12 iScience 27, 109723, May 17, 2024



Table 4. Predicted compositions by MOBO for the six target sets and their respective experimental properties for BO sets 1 to 5 and predicted

properties for BO set 6 using ETR model

BO Set No. Alloy Composition Ms (T) Hc (A/m) Tc (K) r (mU$cm) HV (HV) Cost ($/kg)

1 Fe27.3Co25Ni47.7 1.47 385 1002 22.8 198 15.28

2 Fe44.7Co15.4Ni39.9 1.58 570 890 40.3 210 11.1

3 Fe23.5Co40.8Ni35.7 1.6 290 1103.7 31.5 188 18.75

4 Fe50Co20.8Ni29.2 1.77 770 1002 30 248 11.48

5 Fe61.9Co22.8Ni15.3 2.01 1350 1056.8 24.5 365 10.2

6 Fe66.8Co28Ni5.2 2.38 362.1 1190.2 17.3 254.2 10.5
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the compositions closer to each other. However, the complex non-linear inter-connected nature of the NNR_4layers_Wen model would give

BO freedom to approach different compositions, some of which may be the local optimum points.

In Figures 7A–7C, it can be observed that the predicted compositions for BO set 4 exhibited lower Ms values according to the exper-

imental contour plot compared to the set target value. However, for BO set 5, the predicted compositions exhibited similar Ms values

according to the experimental contour plot compared to the set target value. The predicted compositions for BO set 4 for the ETR model

exhibited Ms in the range of 1.73–1.78 T, Tc in the range of 990–1010 K, and Cost in the range of 10.8$–11.8$/kg, similar to the experi-

mental contour plots. The predicted compositions for the BO set 5 for the ETR model exhibited Ms in the range of 1.98–2 T, Tc in the

range of 1040–1065 K, and Cost in the range of 9.8$–10.4$/kg, according to the experimental contour plots. The predicted composition

with the lowest objective value for the BO set 4 for the NNR_4layers_Wen model exhibited a Ms of 1.79T, Tc of 1020 K, and Cost of

12.7 $/kg, similar to the experimental contour plots. The predicted composition with the lowest objective value for BO set 5 for the

NNR_4layers_Wen model was almost overlapping with the existing experimental composition of Fe61.3Co19.3Ni19.4, which exhibited a

Ms of 1.94 T, Tc of 1000 K, and Cost of 9.6 $/kg.

For the predicted compositions for all the BO sets for ETR model, the color of the predicted Hc values was blue according to the exper-

imental contour plot color bar, as shown in Figure 7D. The range of predicted Hc values for the predicted compositions using the ETR model

was as follows: BO set 1 in the range of 3–4.2 A/m, BO set 2 in the range of 38–45 A/m, BO set 3 in the range of 353–369 A/m, BO set 4 in the

range of 311–333.5 A/m, BO set 5 in the range of 549–569 A/m, and BO set 6 in the range of 362–434 A/m. Considering the experimental

contour lines, the predictions for BO set 3 using the ETR model were closest to experimental values.

The range of predictedHc values for the predicted compositions using the NNR_4layers_Wenmodel was as follows: BO set 1 in the range

of 109–122A/m, BO set 2 in the range of 55–60A/m, BO set 3 in the range of 805–964A/m, BO set 4 in the range of 97–379A/m, BO set 5 in the

range of 506–1306 A/m, and BO set 6 in the range of 894–1146 A/m. Considering the experimental contour lines, the predictions forHc for the

predicted compositions using the NNR_4layers_Wen model were not close to the experimental values.

For r, the predicted values for the predicted compositions for BO sets 1–5 using the ETR model were in the range of 18–24 mU cm, which

implies that it is challenging to discover Fe-Co-Ni compositions having r greater than 30 mU cm using the ETR model. The prediction of r for

all BO sets compositions were also lower than the estimated actual values from the contour plot in Figure 7E. For the BO set 6, the predicted

r for the predicted compositions was in the range 16–17.3 mU cm, which can be close to the actual value.

Similarly, the predicted r values for predicted compositions for BO sets 1–5 using the NNR_4layers_Wen model were in the range of

14–23 mU cm, which implies that it is challenging to discover Fe-Co-Ni compositions having r greater than 30 mU cm using the

NNR_4layers_Wenmodel. The r values in the databasewould be in this range andmost of the samples are prepared starting from the casting

method which is a different method of synthesis compared to the experimental validation method.

ForHV, it can be observed from Figure 7F that the predicted values for the predicted compositions of all the BO sets using the ETR model

were closer to the experimental values than those using the NNR_4layers_Wen model by comparing the color trend of the contour lines.

To analyze further the performance of the inverse design strategy using both MPR models, the predicted composition with the lowest

objective value for the BO sets 1–5 for both models was considered. The predicted properties were compared to the experimental values

obtained from the contour plots to calculate the deviation percentages. These results are tabulated in Section S5 of the supplementary

information. The composition predicted for BO set 1 for the ETR model has a 2% lower experimental Ms value and for BO sets 2–5 have

8.5–11.5% lower experimental Ms values compared to the predicted Ms values. Similarly, the composition predicted for BO set 1 for the

NNR_4layers_Wen model has a 2% lower experimental Ms value, for BO set 3, it has a 1.1% lower experimental Ms value and for BO sets

2, 4, and 5, it has 11% lower experimental values compared to predicted Ms values.

The composition predicted for BO sets 1–3 for the ETR model have 4–7% higher experimental Tc values, for BO set 4 has 14.8% higher

experimental Tc value, and for BO set 5 has just 0.9% higher experimental Tc value compared to the predicted Tc values. The composition

predicted for BO sets 1–5 for the NNR_4layers_Wen model have 5–9% higher experimental Tc values compared to the predicted Tc values.

For Cost, the composition predicted for the BO sets 1–5 for both models has predicted values quite similar to experimental values. This is

because Cost is calculated using the weighted average of elemental costs.

The average deviation of the predicted Ms, Tc, and Cost values of the predicted compositions were 8.2% higher, 6.4% lower, and 1.1%

lower compared to the experimental values, respectively, for the ETR model. The average deviation of predicted Ms, Tc, and Cost values
iScience 27, 109723, May 17, 2024 13



Figure 7. Experimental validation of inverse design strategy

Ternary contour plot of (A)Ms, (B) log10Tc, (C) log10Cost, (D) log10Hc, (E) log10 r, and (F) log10 HV of 40 experimentally synthesized Fe-Co-Ni alloy compositions with

predicted compositions from inverse design strategy with their respective predicted property values from ETR (points with green border) and NNR_4layers_Wen

(points with yellow border) for 6 target sets.
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of the predicted compositions were 7.2% higher, 6.6% lower, and 0.4% lower compared to the experimental values, respectively, for the ETR

model.

The deviations of the predictedHc values of the predicted compositions for the BO sets 1–5 for both models were quite high compared to

the experimentalHc values. This could be attributed to the well-knowndependence ofHc on processing parameters,microstructure, and heat

treatment parameters. Similarly, the average deviations of predicted r values of the predicted compositions for the BO sets 1–5 for both

models were 45–46% higher compared to the experimental r values. Finally, the predicted HV values of the predicted compositions for

the BO sets 1 and 5 for the ETR model were very close to the experimental HV values, with a deviation of 1.8% and 5.2%, respectively. The

predictedHV values of the predicted compositions for the BO sets 2, 3, and 4 for the ETRmodel were 20–29% higher compared to the exper-

imental HV values. The average deviation of the predicted HV values of the predicted compositions for the ETR model was 14.2% higher

compared to the experimental HV values. On the other hand, the predicted HV values of the predicted compositions for the

NNR_4layers_Wen model exhibited higher deviation percentages compared to that for the ETR model except for BO set 5. Overall, the

average deviation of predicted HV values of the predicted compositions for the NNR_4layers_Wen model was 22.9% higher compared to

the experimental HV values.
14 iScience 27, 109723, May 17, 2024
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It can be inferred that the BO composition predictions and their predicted property values using the ETRmodel performed slightly better

compared to that from the NNR_4layers_Wen model with a similar prediction performance for Ms, Tc, and Cost and better prediction per-

formance for HV. The predicted composition with the lowest objective value of MOBO for each target set using the ETR model and their

respective approximate experimental properties for BO sets 1 to 5 and predicted properties for BO set 6 are tabulated in Table 4. Comparing

the predicted property values of the BO predicted compositions for the ETR model, Fe66.8Co28Ni5.2 (predicted Ms – 2.38 T, Tc – 1190.2 K,

Hc – 362.1 A/m, r – 17.3 mU cm, HV – 254.2 HV and Cost – 10.5$/kg) and Fe61.9Co22.8Ni15.3 (predicted Ms – 2.22 T, Tc – 1047.5 K,

Hc – 549.5 A/m, r – 18.7 mU cm, HV – 347.1 HV and Cost – 10$/kg) demonstrate superior multi-property performance compared to previous

reports, and performance comparable to recently designed Fe-Co-Ni alloys using accelerated experimental methodology.123,135
Conclusion and outlook

We curated a database of bulk Fe-Co-Ni-basedmagnetic alloys containingmagnetic, mechanical, and electrical properties. The database is het-

erogeneous as alloys synthesized using differentmethods are included. The gaps in the database were filled using a uniqueML-basedmulti-step

imputation strategy. A comparative study of the performance of 12 differentML regressionmodels, from linear regressionmodels to various tree-

based models to DNNs, mapping from composition to each property and mapping between mechanical properties was performed. The best

model with the lowest MAE was chosen to fill the empty spaces for that property column. This imputed database was used to develop a multi-

propertymodel (forwarddesign)mapping fromcomposition toall thepropertiesbyusing6differentmodels. Apart fromusingonly compositional

input features, physical descriptors (Wen alloy features) were also used as input features to developmulti-property models using these 6models.

Thebestmodelwith the lowestMAE, i.e., theETRmodel, and thebest neural networkmodelwith lowestMAE, i.e.,NNR_4layers_Wenwas chosen.

Further, a multi-objective BO (inverse design) was developed to predict alloy compositions by providing a target set of properties. Both

the forward and inverse design methodology were experimentally validated by using 40 Fe-Co-Ni alloy compositions synthesized and

characterized using high-throughput techniques. Overall, the ETR model performed better compared to the NNR_4layers_Wen model in

both forward and inverse design strategies. Finally, two alloy compositions Fe65.84Co28.66Ni5.5 and Fe61.5Co23.14Ni15.35 were obtained from

inverse design using ETR model with the optimum combination of Ms > 2 T, Tc > 1050K, HV > 250 HV, Hc < 1400 A/m, r > 17 mU cm, and

Cost z 10 $/kg. The predicted properties value of the predicted compositions by MOBO were within 14% of the experimental values for

Ms, Tc, Cost, and HV. Our proposed approach can be used to design any class of materials using a heterogeneous database.
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and Bakonyi, I. (2010). Temperature
dependence of the electrical resistivity and
the anisotropic magnetoresistance (AMR) of
electrodeposited Ni-Co alloys. Eur. Phys. J.
B 75, 167–177. https://doi.org/10.1140/
epjb/e2010-00132-4.

92. Karpuz, A., Kockar, H., Alper, M., Karaagac,
O., and Haciismailoglu, M. (2012).
Electrodeposited Ni–Co films from
electrolytes with different Co contents.
Appl. Surf. Sci. 258, 4005–4010. https://doi.
org/10.1016/j.apsusc.2011.12.088.

93. Sourmail, T. (2005). Near equiatomic FeCo
alloys: Constitution, mechanical and
magnetic properties. Prog. Mater. Sci. 50,
816–880. https://doi.org/10.1016/j.pmatsci.
2005.04.001.

94. Fingers, R.T., and Kozlowski, G. (1997).
Microstructure and magnetic properties of
Fe–Co alloys. J. Appl. Phys. 81, 4110–4111.
https://doi.org/10.1063/1.365095.

95. Yu, R.H., Basu, S., Ren, L., Zhang, Y., Parvizi-
Majidi, A., Unruh, K.M., and Xiao, J.Q.
(2000). High temperature soft magnetic
materials: FeCo alloys and composites. IEEE
Trans. Magn. 36, 3388–3393. https://doi.
org/10.1109/20.908809.

96. Yu, R.H., Basu, S., Zhang, Y., and Xiao, J.Q.
(1999). Magnetic domains and coercivity in
FeCo soft magnetic alloys. J. Appl. Phys. 85,
6034–6036. https://doi.org/10.1063/1.
369073.

97. Geist, B., Peterson, T., Horwath, J.C.,
Turgut, Z., Huang, M.Q., Snyder, R.A., and
Fingers, R.T. (2003). Effect of high-
temperature aging on electrical properties
of Hiperco�27, Hiperco�50, and
Hiperco�50 HS alloys. J. Appl. Phys. 93,
6686–6688. https://doi.org/10.1063/1.
1556104.

98. Thomas, B. (1980). The influence of nickel on
the magnetic and mechanical properties of
Co-Fe-V alloy. IEEE Trans. Magn. 16,
444–454. https://doi.org/10.1109/tmag.
1980.1060594.
18 iScience 27, 109723, May 17, 2024
99. Persiano, A.I.C., and Rawlings, R.D. (1991).
Effect of niobium additions on the structure
and magnetic properties of equiatomic
iron-cobalt alloys. J. Mater. Sci. 26, 4026–
4032. https://doi.org/10.1007/bf02402943.

100. Hailer, B.T. (2001). Effect of Heat Treatment
on Magnetic and Mechanical Properties of
an Iron-Cobalt-Vanadium-Niobium Alloy
(Virginia Tech).

101. Sundar, R.S., Deevi, S.C., and Reddy, B.V.
(2005). High Strength FeCo–V Intermetallic
Alloy: Electrical and Magnetic Properties.
J. Mater. Res. 20, 1515–1522. https://doi.
org/10.1557/jmr.2005.0206.

102. Nagayama, T., Yamamoto, T., and
Nakamura, T. (2016). Thermal expansions
and mechanical properties of
electrodeposited Fe–Ni alloys in the Invar
composition range. Electrochim. Acta 205,
178–187. https://doi.org/10.1016/j.
electacta.2016.04.089.

103. Matsui, I., Kawakatsu, T., Takigawa, Y.,
Uesugi, T., and Higashi, K. (2014).
Fabrication of bulk nanocrystalline Fe–Ni
alloys with high strength and high ductility
by an electrodeposition. Mater. Lett. 116,
71–74. https://doi.org/10.1016/j.matlet.
2013.10.108.

104. Mehrizi, S., and Heydarzadeh Sohi, M.
(2015). Electrical resistivity and magnetic
properties of electrodeposited
nanocrystalline CoFe thin films. J. Mater. Sci.
Mater. Electron. 26, 7381–7389. https://doi.
org/10.1007/s10854-015-3368-6.

105. Ahmad, S., Ziya, A.B., Ashiq, M.N., Ibrahim,
A., Atiq, S., Ahmad, N., Shakeel, M., and
Khan, M.A. (2016). Improved magnetic and
electrical properties of Cu doped Fe–Ni
invar alloys synthesized by chemical
reduction technique. J. Magn. Magn Mater.
419, 125–130. https://doi.org/10.1016/j.
jmmm.2016.06.033.

106. Mikler, C.V., Chaudhary, V., Borkar, T., Soni,
V., Choudhuri, D., Ramanujan, R.V., and
Banerjee, R. (2017). Laser additive
processing of Ni-Fe-V and Ni-Fe-Mo
Permalloys: Microstructure and magnetic
properties. Mater. Lett. 192, 9–11. https://
doi.org/10.1016/j.matlet.2017.01.059.

107. Mikler, C.V., Chaudhary, V., Soni, V.,
Gwalani, B., Ramanujan, R.V., and Banerjee,
R. (2017). Tuning the phase stability and
magnetic properties of laser additively
processed Fe-30at%Ni soft magnetic alloys.
Mater. Lett. 199, 88–92. https://doi.org/10.
1016/j.matlet.2017.04.054.

108. Kustas, A.B., Susan, D.F., Johnson, K.L.,
Whetten, S.R., Rodriguez, M.A., Dagel, D.J.,
Michael, J.R., Keicher, D.M., and Argibay, N.
(2018). Characterization of the Fe-Co-1.5V
soft ferromagnetic alloy processed by Laser
Engineered Net Shaping (LENS). Addit.
Manuf. 21, 41–52. https://doi.org/10.1016/j.
addma.2018.02.006.

109. Chaudhary, V., Sai Kiran Kumar Yadav, N.M.,
Mantri, S.A., Dasari, S., Jagetia, A.,
Ramanujan, R.V., and Banerjee, R. (2020).
Additive manufacturing of functionally
graded Co–Fe and Ni–Fe magnetic
materials. J. Alloys Compd. 823, 153817.
https://doi.org/10.1016/j.jallcom.2020.
153817.

110. Mazeeva, A.K., Staritsyn, M.V., Bobyr, V.V.,
Manninen, S.A., Kuznetsov, P.A., and
Klimov, V.N. (2020). Magnetic properties of
Fe–Ni permalloy produced by selective laser
melting. J. Alloys Compd. 814, 152315.
https://doi.org/10.1016/j.jallcom.2019.
152315.
111. Yanai, T., Mieda, K., Kaji, J., Tanaka, R.,
Yamashita, A., Morimura, T., Nakano, M.,
and Fukunaga, H. (2020). Electroplated Fe-
Co films prepared in citric-acid-based
plating baths with saccharin and sodium
lauryl sulfate. AIP Adv. 10, 055001. https://
doi.org/10.1063/1.5130468.

112. Chaudhary, V., Tan, L.P., Sharma, V.K., and
Ramanujan, R.V. (2021). Accelerated study of
magnetic Fe-Co-Ni alloys through
compositionally graded spark plasma
sintered samples. J. Alloys Compd. 869,
159318. https://doi.org/10.1016/j.jallcom.
2021.159318.

113. Mitchell, M., Muftakhidinov, B., Winchen, T.,
Wilms, A., Schaik, B.v., Mo-Gul, Badger,
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