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ABSTRACT: Determination of protein−protein binding affinity values is key
to understanding various underlying biological phenomena, such as how
missense variations change protein−protein binding. Most existing non-
rigorous (fast) and rigorous (slow) methods that rely on all-atom
representation of the proteins force the user to choose between speed and
accuracy. In an attempt to achieve balance between speed and accuracy, we
have combined rigorous umbrella sampling molecular dynamics simulation
with a coarse-grained protein model. We predicted the effect of missense
variations on binding affinity by selecting three protein−protein systems and
comparing results to empirical relative binding affinity values and to non-
rigorous modeling approaches. We obtained significant improvement both in
our ability to discern stabilizing from destabilizing missense variations and in
the correlation between predicted and experimental values compared to non-
rigorous approaches. Overall our results suggest that using a rigorous affinity
calculation method with coarse-grained protein models could offer fast and reliable predictions of protein−protein binding free
energies.

■ INTRODUCTION

Protein−protein interactions are at the heart of regulation for
all biological processes in a cell. Missense variations (or
mutations) of the amino acids that make up these proteins play
an essential role by introducing diversity into genomes. These
missense variations can lead to an altered protein affinity and
can result in dysfunction of the protein interaction network.1

To understand living organisms, it is thus vital to have a
comprehensive knowledge of how proteins interact under
physiological conditions, that is, to determine their binding
affinities and how these affinities can be modified.2

Many techniques have been successful in determining the
Gibbs free energy change of protein−protein binding due to a
missense variation (i.e., relative affinity, ΔΔG). Experimental
biophysical methods can quantitatively measure ΔΔG values
for protein interactions, but these methods are typically costly,
laborious, and time-consuming since all mutants must be
expressed and purified.3 Consequently, many researchers have
developed and utilized computational methods to predict ΔΔG
values. The most promising in terms of accuracy are rigorous
methods based on statistical mechanics that use molecular
dynamics (MD) simulations and are capable of addressing
conformational flexibility and entropic effects; however, these
approaches are computationally highly expensive.4 By contrast,
non-rigorous, computationally less expensive, methods have
been developed using the static all-atom protein complex
structure. Such methods typically involve the following: (i)
empirical energy scoring function;5 (ii) potentials derived using

molecular mechanics principles that enumerate the interactions
in physically meaningful terms;6 (iii) statistical potentials based
on the likelihood of similar interactions and local conforma-
tions occurring in the Protein Data Bank (PDB);7 (iv)
combination of the first three;1c and (v) protein−protein
docking.3b,8 Other approaches have also emerged relying on
either coarse representation of the protein (use of Cα or Cβ
backbone atoms) to derive a simple contact map potential9 or
machine learning on sequence conservation, solvent accessi-
bility, and secondary structure information to predict ΔΔG
values.10 These approaches are fast and show some degree of
success, but they do not account for the conformational
changes that can be induced due to missense variation that can
prevent clashes and allow residues to form more favorable
interaction.1c Protein−protein docking has been successful in
identifying the interface region but struggles to correctly predict
ΔΔG values.3b,8 Some efforts have also been put into
addressing flexibility into non-rigorous binding affinity
calculations.6,11 However, such approaches could only model
small deviations in the protein complex fearing the loss of
computational speed.
A promising approach to increase MD simulation speed is to

use coarse-grained (CG) force fields that rely on abstract
descriptions of the biomolecular system including the solvent,
yet retain essential physicochemical information. Several CG
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models for water and proteins have emerged over the years,
each with their strengths and limitations. These models have
the potential to significantly increase the speed of a molecular
simulation with a cost to biochemical accuracy as compared to
atomistic force fields.2,12 CG models came into existence
mainly with the purpose of modeling the structure and the
dynamics of the biomolecular systems.12b However, in recent
years CG simulations have been employed in combination with
enhanced sampling/biasing methods to obtain single-dimen-
sional and multidimensional projections of the free energy
landscape of association and dissociation processes of
biomolecular assembly systems13 (also see review by Baaden
and Marrink2 on this topic). CG modeling can enable
researchers to extend the time scale of the simulation and
increase the phase space exploration allowing the study of rare
events and large-scale motions of the biomolecules at less
computational expense compared to all-atom.2,12b,14

In this work, we investigate the performance of a strategy
combining a SIRAH CG protein model15 with rigorous
umbrella sampling16 molecular dynamics to predict the ΔΔG
values of single amino acid missense variations. We are
interested in predicting the effect of multiple missense
variations and thus have developed a semi-automated strategy
with default values for input simulation parameters that avoids
fine-tuning each parameter to individual complex systems. To
investigate whether this strategy has a good trade-off between
speed and accuracy, we chose three protein−protein test
systems with empirical ΔΔG values for observed missense
variations. For each test system we selected eight different
missense variations occurring at the different sites with varying
empirical ΔΔG values. We calculated ΔΔG values for each
missense variation using fast umbrella sampling simulations
(i.e., short simulation time with similar input parameters) and
compared the results with empirical ΔΔG values and with two
non-rigorous approaches.11a,17 We obtained significant im-
provement in the correlation between predicted and exper-
imental ΔΔG values compared to faster approaches. Moreover,
our strategy predicted the sign of ΔΔG values correctly at a
much higher rate compared to the other tested methods. To
our knowledge, there is only one study by May et al.13a that has
previously applied a strategy of using Martini CG models18

combined with restrained simulations to estimate effect of
single missense variations on protein−protein binding affinities.
In their study, absolute affinity values were calculated and found
to be in reasonable agreement with those from atomistic

simulation and correlated well with evolutionary likelihood.
However, their predictions lacked experimental validation, and
the study did not investigate the performance of this strategy in
computing ΔΔG compared to other methods or in predicting
the sign of ΔΔG. Combining CG models with enhanced
sampling techniques is slowly gaining traction for calculating
the free energy of various physiological processes. However,
previous studies have mainly employed the Martini CG model
or a highly coarse Go̅-like model and lacked a systematic
evaluation of these models in predicting the effect of missense
variations.

■ METHODS

Test Systems. To provide a test of the speed and accuracy
of predicting relative binding free energy differences (ΔΔG),
we selected three different protein−protein complexes (see
Figure 1) from the SKEMPI database:19 (i) Complex between
human leukocyte elastase (218 aa) and the third domain of the
turkey ovomucoid inhibitor (56 aa) (PDB ID 1PPF);20 (ii)
Barnase (110 aa)−Barstar (89 aa) complex (PDB ID 1BRS);21

(iii) an antigen−antibody complex of the lysozyme (129 aa)−
HY/HEL-10 FAB (429 aa) (PDB ID 3HFM).22 We chose
eight missense variations for each of the three protein complex
systems. The choice of these missense variations was driven by
several factors: (i) the values for ΔΔG for reported
experimental missense variations were varied in sign, important
since negative, stabilizing values are often harder to predict than
positive, destabilizing values; (ii) there were non-alanine-
scanning point missense variations at differing sites; (iii) the
structures in the PDB were not missing a large number of
residues; (iv) there was a range in the size of the chosen protein
complexes; and (v) missense variations were reported on one
chain (1PPF), on both chains (1BRS), and on multiple chains
(3HFM) (see Figure 1).

Preparation of the Wild-Type and Mutant Complexes.
Each test complex was prepared in an identical manner using
the following steps: (i) experimental structures were down-
loaded from the PDB Web site (http://www.rcsb.org/pdb/
home/home.do); (ii) the structure files were edited to remove
all but the two interacting chains listed in the SKEMPI
database;19 (iii) all missing residues or atoms in the PDB files
were added using MODELER v9.15;23 and (iv) mutant
complexes were generated using Dunbrack rotamer library24

in UCSF Chimera.25

Figure 1. Three-dimensional structures of test protein−protein complexes. System names (PDB IDs) are given above each panel (1PPF, 1BRS, and
3HFM). Each protein pair is colored in orange and green. The red spheres along the interface of the protein complex indicate the sites of the single
missense variations chosen for the present study.
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Coarse-Grained Molecular Dynamics Simulations. All
MD simulations were carried out using GROMACS v5.1.2.26

Biasing potentials necessary to carry out umbrella sampling16

(US) with restraints were introduced via the PLUMED v2.2
plugin27 integrated in the GROMACS code.
Coarse-grained simulations were performed using the SIRAH

force field15 (http://www.sirahff.com) for all three systems.
SIRAH CG force field aims to address some common
limitations of CG force fields such as the use of uniform
dielectric constant, lack of long-range interactions, use of
topological information to maintain the secondary structure,
and implicit or no ionic strength effects, etc.15 In contrast to the
“four heavy atoms to one CG bead” rule used by the popular
Martini force field,18,28 SIRAH CG force field treats the peptide
bonds with a relatively high degree of detail, preserving the
positions of the nitrogen (N), α-carbon (Cα), and oxygen (O),
while side chains are modeled more coarsely. WT4 water
model29 included in SIRAH CG force field is formed by four
linked beads, each carrying a partial charge, thus allowing it to
generate its own dielectric permittivity. Moreover, the CG
electrolytes are capable of mimicking the ionic strength effects
and osmotic pressure. This residue-based CG model provides
all the interactions within a classical Hamiltonian, which is
commonly found in most MD simulation packages.15

We followed the protocol reported in Darre ́ et al.15 for
carrying out CG simulations. Coordinate mapping and analysis
were performed with SIRAH tools.30 Prior to mapping to the
SIRAH CG model, protonation states were assigned based on
the assumption of neutral pH using PDB2PQR server31 and
choosing the AMBER32 naming scheme as an output.
Following the all-atom to CG conversion, the protein
complexes were placed in a dodecahedral box of SIRAH
WT4 water and given neutral charge by adding Na+ and Cl−

ions at a concentration of 0.15 mol/L. Thickness of the water
layer was kept at 4 nm resulting in the following number of
WT4 molecules added to each protein complex: 1PPF, 5472;
1BRS, 5687; 3HFM, 10943. The large box size was chosen to
make sure that when the two proteins are at the maximum
separation distance, they do not interact with each other via
their periodic images. Each system was then minimized using
the steepest decent for 10,000 steps. To allow for equilibration
of the water around the protein complex, each system was then
simulated for 1 ns with the positions of all CG atoms in the
complex harmonically restrained. During the restrained
simulations, the temperature of the systems was set to 300 K
and the pressure to 1 atm using respectively the V-rescale
thermostat33 and Parrinello−Rahman barostat34 with isotropic
pressure coupling. Unrestrained simulations were then carried
out for 2 ns. All the simulations used a time step of 20 fs and
updated neighbor lists every 10 steps. Electrostatic interactions
are calculated using particle mesh Ewald35 with a direct cutoff
of 1.2 nm and a grid spacing of 0.2 nm, and a 1.2 nm cutoff was
used for van der Waals (vdW) interactions.
Coarse-Grained-Umbrella Sampling Simulations. To

calculate the potential of mean force (PMF) for the wild-type
and mutant protein complexes, we chose the widely used
umbrella sampling (US) method.16 Since we were interested in
predicting the effects of missense variations on protein−protein
binding affinity, we selected interprotein separation (i.e.,
distance) as the reaction coordinate (RC; i.e., pulling variable).
To avoid any distortions of the protein as a consequence of
application of external harmonic potential, this distance was
defined between the center of mass of all the coarse-grained

atoms of both proteins in the complex (see Supporting
Information (SI) Figure S1). Suitable spring constants for each
complex (1PPF, 500 kJ/mol/nm2; 1BRS, 2000 kJ/mol/nm2;
3HFM: 1500 kJ/mol/nm2) were chosen by test simulations
performed on wild-type complexes to be strong enough to
separate the two proteins in a short amount of time without
affecting the overall structure of the proteins. The maximum
pulling length was chosen to be 1.7 nm, which ensured the
complete solvation of both the proteins in the complex in their
unbound states. (see SI Figure S2) The unbinding pathway was
chosen to be a vector joining the center of masses of the two
proteins. To prevent the drifting of the systems, a weak
harmonic restraint with force constant of 20 kJ/mol/nm2 was
added to all the CG atoms of a largest protein in the case of
1PPF and 1BRS complexes and to the antibody in 3HFM
antigen−antibody complex. The RC for the US simulation of
each complex was discretized into 35 windows with a spacing of
0.05 nm adopted from May et al.13a for each complex, ensuring
sufficient overlap of the probability distribution of each
window. The simulation length for each window was 8 ns
(coarse-grained time scale). The time scale for the US
simulations was intentionally kept small to match the time
scales of non-rigorous approaches used in this study and also to
match the same order of magnitude of CPU hours (CPUh)
time used in protein−protein simulations using the Martini
coarse-grained model in May et al.13a To improve the
convergence of the PMF, we used a cylindrical harmonic
restraint to prevent interactions between the protein being
pulled out of the pocket with the full surface of the other
protein. (see SI Figure S1) This cylindrical restraint was
implemented using the distance from the center of mass of all
the CG atoms of the protein being pulled from an axis between
the centers of mass of two groups of atoms of the other. One of
these two groups was the same as that used to define the RC,
and the atoms in the second group are denoted in the
Supporting Information. A harmonic restraint of 500 (kJ/mol)/
nm2 on the center of mass of each unbinding protein was
applied when the distance from the axis was 0.3 nm or larger.
This cylindrical restraint was applied only to the US windows
with pulling length greater than 1.5 nm, i.e., only in the
unbound state. The effect of this cylindrical restraint was not
factored into the calculation of relative binding free energy
differences (ΔΔG) since the same restraint was applied to all
protein complexes in the same fashion.

Potential of Mean Force and ΔΔG Calculation. In the
US method,16 a biasing potential is used at a certain position
along the RC (distance in our case) to enhance the sampling of
the regions involved in high potential barriers. The RC was
discretized into 35 windows, and a harmonic potential, eq 1,
was added to the original potential (unbiased potential) in each
window to drive the system from one thermodynamic state
(bound) to another (unbound).

= −V s
k

s q s( )
2

( ( ) )n n
2

(1)

where s(q) is the current RC (distance) and Vn(s) is the biasing
potential. Here, sn is the reference distance for the nth window,
k is the spring constant, and q are the microscopic coordinates.
We used the weighted histogram analysis method (WHAM)36

to eliminate the bias from the restrained US simulations and
construct PMFs using 100 bins along the RC.
Binding free energy (ΔG) for a protein complex was

calculated by taking a difference of free energy in the bound
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and unbound states. A cutoff distance of 1.5 nm was chosen to
differentiate a bound from an unbound state as the protein
being pulled had no residual contact beyond this distance (see
SI Figure S2):

∫

∫
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where Φi is the PMF associated with the ith bin along the RC.
The relative binding free energy difference (ΔΔG) for a
missense variation is then calculated using

ΔΔ = Δ − Δ ‐G G Gmutant wild type (3)

The average PMF profiles for each wild-type and mutant
complex for all three chosen systems were calculated by
averaging the outcomes of four independent trials per complex.

■ RESULTS AND DISCUSSION
The purpose of our study was to assess the ability of combining
the SIRAH CG model and US (CG-US) using short simulation
times with similar input parameters to calculate ΔΔG values for
missense variations and to compare the results with both
experimental ΔΔG values and two semiempirical modeling
methods FoldX5,17 and MD-FoldX.11a Our strategy was applied
to three different protein complexes: 1PPF, 1BRS, and 3HFM
(see Figure 1), for which experimental ΔΔG values for the
reported missense variations are available in the literature. The
total of eight missense variations for each protein complex were
chosen as per our criteria listed in Methods (see Figure 1).
Figure 2 shows the PMF profiles resulting from CG-US

simulations for each missense variation for all three protein
complexes. Each PMF is an average from four independent
simulation trials. The panels indicate our chosen 1.5 nm
distance used to distinguish bound versus unbound as seen in
eqs 2 and 3. In comparison to wild-type, a stabilizing (ΔΔG <
0) missense variation will typically be indicated by a PMF
profile with larger barrier, and destabilizing missense variations
(ΔΔG > 0) will typically have a lower barrier. As the
interactions between the proteins diminish in the unbound
state, the PMF profiles for most protein complexes approach a
plateau. We acknowledge that these profiles have not yet
reached full convergence due to the use of a short simulation
time per US window (e.g., see 1BRS). Averaged PMF profiles
were used to compute the corresponding ΔΔG value for each
missense variation. The goal of this work is to compare our
results with the experimental data and not with atomistic
simulation results, but we note that the PMF profile obtained
for wild-type 1BRS complex is similar to what was obtained
using an atomistic model.4c This is an interesting observation
considering the small simulation time per window and the
granularity of the SIRAH CG model.
Figure 3 summarizes our ability to estimate ΔΔG values for

single missense variations. In the case of 1PPF our strategy
clearly outperforms FoldX and MD-FoldX; CG-US shows a
high correlation (R2 = 0.88) with the experimental data, and
five out of eight missense variations were predicted with high
accuracy of within ±1.0 kcal/mol (see SI Table S1). Although
we obtained high correlation, the CG-US strategy led to a large
error for the R21P mutant complex. We believe this is due to
the fact that predicting missense variation to proline is difficult

due to their uniquely fused side chain, even for atomistic
methods. CG-US performed equally well for 1BRS with R2 =
0.92, but in this case FoldX and MD-FoldX also have high R2

values. This is perhaps not surprising since the FoldX energy
function was trained on a set of protein complexes that
included 1BRS.5 CG-US was able to estimate four out of eight
missense variations with high accuracy (see SI Table S1).
However, we observed significant overestimation of ΔΔG
values in the cases of R83Q and D39A missense variations. We

Figure 2. PMF profiles (kcal/mol) for the protein complexes as a
function of separation distance (nm). System names (PDB IDs) are
given above each panel (1PPF, 1BRS, and 3HFM). PMF profiles for
wild-type protein complexes are shown using bold black lines, and
mutant protein complex profiles are shown using other colors as
denoted in the legends. The dashed black line at the 1.5 nm illustrates
the bound from unbound state. Each PMF profile shown above is
shifted so that the average PMF value in the unbound state is 0 kcal/
mol.
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believe this is because the spring constant used for all missense
variations in the case of 1BRS was tuned to wild-type protein
complex and using the same constant for R83Q and D39A
complexes led to probability distributions that were not
sufficiently overlapped, causing larger errors. For the third
and the larger protein complex 3HFM, CG-US significantly
outperforms FoldX and MD-FoldX but yields a lower
correlation to experiments compared to the other systems
with R2 = 0.59. CG-US still predicted five out of eight missense
variations with high accuracy despite having a low R2 value (see
SI Table S1). It is important to note that the large error
associated with the calculation of the D101 K mutant is
significantly lowering the overall R2 value (see Figure 3).
Experimental data suggest this mutant has a positive ΔΔG
value but interestingly all the approaches here predict it to have
a negative ΔΔG. We assume that the experimental data are
correct, and this error is likely associated with modeling;
however we also note that there are at least two serine residues
in the neighborhood of the mutation site that can interact with
the positively charged lysine.
It is worth noting that our CG-US strategy consistently

outperforms FoldX and MD-FoldX in predicting the signs of
the ΔΔG values even if we consider the associated standard
errors (see Figure 4). We believe this is an important
achievement of the CG-US strategy since correctly predicting
the sign of ΔΔG allows discrimination between missense
variations that enhance or disrupt binding, e.g., for predicting
antibody escape missense variations.
FoldX, as expected, was the fastest among three approaches

tested in this work, requiring ∼0.42 CPUh to complete a single
ΔΔG calculation for 3HFM, the largest among three test
protein complexes. MD-FoldX and CG-US approaches for the
same consumed ∼4093 and ∼425 CPUh, respectively (see the
SI for more details). It should be emphasized that CG-US is
trivially parallelizable in that each US window can run
independently without relying on the completion of the
previous simulation window; thus, the speed of the calculation
depends on the availability of the computational resources.
Our current strategy assumes that conformations in the

bound and unbound states do not significantly change due to
missense variation. When the protein−protein interaction
involves induced fit effects, it is unlikely that our strategy will

be directly applicable because of our use of shorter simulation
times and mild restraints used to prevent the drifting of stable
protein. All-atom MD simulations would be equally unfeasible
in this case due to the cost of achieving adequate conforma-
tional sampling.
Given that our interest is in calculating relative binding

affinities, it should be noted that a more efficient
implementation of our approach would be to use alchemical
simulation, i.e., using the well-studied single- or dual-topology
methods.37 Such methods have the potential for shorter
simulation times and smaller system sizes. However, these
methods also require the generation of hybrid structures and
topologies, significantly increasing the challenge associated with
proper calculation of affinities, and thus will be investigated in
future studies.

■ CONCLUSIONS

In this article, we have described a computational strategy
combining the SIRAH coarse-grained (CG) force field with
rigorous umbrella sampling (US) simulations using short
simulation times with similar input parameters and tested it
to predict the effects of single missense variations on protein−
protein binding affinity. We have shown that our strategy is
capable of delivering more accurate results than two non-
rigorous, semiempirical methods. Moreover, it predicted the
signs of relative binding free energy (ΔΔG) values of the
studied missense variations with high accuracy compared to
those of non-rigorous approaches, which is remarkable given
that the simulation times were intentionally kept short to match
the speed of the non-rigorous approaches. With ever-increasing
computational power, this strategy has the potential of
becoming a routine tool to screen the effect of missense
variations. In future work, we will test the generality of these
findings by using a larger test set. In addition, we will test the
ability of the CG-US strategy in predicting relative affinity
changes due to missense variations far from the binding
interface, and for multiple missense variations.

Figure 3. Experimentally observed ΔΔG compared to calculated ΔΔG (kcal/mol) for all three test protein complexes. System names (PDB IDs) are
given above each panel (1PPF, 1BRS, and 3HFM). The three methods of ΔΔG are (i) using FoldX on the experimental structure (FoldX); (ii) using
FoldX on each of 100 samples taken from a MD simulation and averaging (MD-FoldX); and (iii) using our strategy of combining SIRAH CG with
US simulation (CG-US). A perfect fit to experimental data would fall along the gray diagonal line. The solid (green and blue) and dashed (red) lines
show the linear relationship between calculated and experimental observation with method of prediction (FoldX, MD-FoldX, or CG-US), and
corresponding R2 values are given in the inset legends. Error bars shown on the CG-US data points represent the standard errors.
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