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Abstract

Although movement ecology has leveraged models of home range formation to explore the

effects of spatial heterogeneity and social cues on movement behavior, disease ecology

has yet to integrate these potential drivers and mechanisms of contact behavior into a gen-

eralizable disease modeling framework. Here we ask how dynamic territory formation and

maintenance might contribute to disease dynamics in a territorial, solitary predator for an

indirectly transmitted pathogen. We developed a mechanistic individual-based model where

stigmergy—the deposition of signals into the environment (e.g., scent marking, scraping)—

dictates local movement choices and long-term territory formation, but also the risk of patho-

gen transmission. Based on a variable importance analysis, the length of the infectious period

was the single most important variable in predicting outbreak success, maximum prevalence,

and outbreak duration. Host density and rate of pathogen decay were also key predictors.

We found that territoriality best reduced maximum prevalence in conditions where we would

otherwise expect outbreaks to be most successful: slower recovery rates (i.e., longer infec-

tious periods) and higher conspecific densities. However, for slower pathogen decay rates,

stigmergy-driven movement increased outbreak durations relative to random movement sim-

ulations. Our findings therefore support a limited version of the “territoriality benefits” hypothe-

sis—where reduced home range overlap leads to reduced opportunities for pathogen

transmission, but with the caveat that reduction in outbreak severity may increase the likeli-

hood of pathogen persistence. For longer infectious periods and higher host densities, key

trade-offs emerged between the strength of pathogen load, the strength of the stigmergy

cue, and the rate at which those two quantities decayed; this finding raises interesting ques-

tions about the evolutionary nature of these competing processes and the role of possible

feedbacks between parasitism and territoriality. This work also highlights the importance of

considering social cues as part of the movement landscape in order to better understand the

consequences of individual behaviors on population level outcomes.
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Author summary

Making decisions about conservation and disease management relies on our understand-

ing of what allows animal populations to be successful, which often depends on when and

where animals encounter each other. However, disease ecology often focuses on the social

behavior of animals without accounting for their individual movement patterns. We

developed a simulation model that bridges the fields of disease and movement ecology by

allowing hosts to inform their movement based on the past movements of other hosts. As

hosts navigate their environment, they leave behind a scent trail while avoiding the scent

trails of other individuals. We wanted to know if this means of territory formation could

heighten or dampen disease spread when infectious hosts leave pathogens in their wake.

We found that territoriality can inhibit disease spread under conditions that we would

normally expect pathogens to be most successful: when there are many hosts on the land-

scape and hosts stay infectious for longer. This work points to how incorporating move-

ment behavior into disease models can provide improved understanding of how diseases

spread in wildlife populations; such understanding is particularly important in the face of

combatting ongoing and emerging infectious diseases.

Introduction

According to the general conceptual framework proposed by Nathan et al. [1], there are four

motivating questions for movement ecology research: (1) why move?; (2) how to move?; (3)

when and where to move?; and (4) what are the ecological and evolutionary consequences of

moving? Recently, there has been a call for the discipline of movement ecology to better

address the fourth component of this framework: the population-level consequences of mov-

ing [2]. In particular, researchers have argued for a greater synthesis of movement ecology

with biodiversity [3] and disease ecology research [4,5]. One of the goals of incorporating such

detail is to be able to observe the emergence of complex ecological and evolutionary processes

that may depend upon individual traits like personality or behavioral phenotypes [6]. Pathogen

transmission is one such process that is highly dependent on whether two conspecifics

encounter each other within a certain window of time and space.

Mechanistic models of home range formation have their roots in a spatially-biased random

walk process [7]. These models have evolved to incorporate underlying resource availability

and selection, population dynamics, and territorial behaviors such as scent marking that lead

to dynamic home range formation [8–13] resulting in individual interactions. Even so, disease

ecology has yet to universally account for contact behavior that is driven explicitly by individ-

ual movement patterns [4,5,14]. Models in disease ecology are often specific to a given-host

pathogen system or emphasize the risk of contact rather than ongoing transmission dynamics

[5].

This disciplinary trajectory is problematic because wildlife vary in social organization on

axes of gregariousness (group living vs. solitary) and territoriality (territorial vs. nonterritor-

ial); each population structure has its own potential effects on pathogen transmission [15,16].

In an evolutionary context, parasites are a possible cost of group living, and host gregarious-

ness is hypothesized to correlate with increased parasite prevalence, infection intensity, and

parasite species richness [17,18]; however, this hypothesis lacks strong empirical support

[17,18]. In particular, the relationship between group size and prevalence of parasitism may be

confounded by host movement and territorial behavior [16]. A corollary to this idea is that
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populations with smaller groups or spatially structured populations may be more protected

from parasite transmission from external groups [19].

One possible mechanism for the maintenance of territories and spatial structure within

populations is stigmergy. Stigmergy describes environmentally mediated feedback where the

signals that one individual leaves in its path alter the behavior of its conspecifics, even after the

individual has left that location [13]. In social insects, stigmergy helps to explain how individ-

ual pheromone trails can shape social organization of colonies [20]. In territorial animals,

equivalent cues include marking through urine, scat, or community scrapes [21–24]. For

example in puma (Puma concolor), males alter their visitation rates to community scrapes

depending on the presence or absence of females or male competitors [25]. In a disease con-

text, these non-contact territorial defense strategies (e.g., vocalization, scent marking, scrap-

ing) may have evolved to reduce transmission risk between individuals or groups [26,27].

Population thresholds are a key concept in epidemiology and disease ecology and lie at the

root of disease control focused on reducing a susceptible population through culling or vacci-

nation to reduce the likelihood of outbreaks [28]. Social and spatial structure, potentially medi-

ated by such signaling, is one hypothesis for why population thresholds lack strong empirical

support in wildlife populations [27–29].

Here we developed a generalizable mechanistic framework that examines the interplay

between indirect pathogen transmission and dynamic territory formation motivated by depo-

sition and response to signals left in the environment by hosts, i.e., stigmergy cues. We scale

up the consequences of these individual decisions to simulate movements, interactions, and

pathogen spread across a population. We then ask: (1) how do pathogens spread in popula-

tions responding to stigmergy stimuli (e.g., scent/territorial marking) compared to populations

where individuals move randomly?; and (2) what are the consequences in trade-offs between

strength and duration of scent mark vs. pathogen load and duration deposited in the environ-

ment? Here we explore the potential role of stigmergy not only in dynamic territory formation

[12,30], but as a potential mitigator or facilitator of pathogen transmission in populations.

Model

Individual-based stigmergy movement model

We simulated stigmergy-driven and random movement for a closed population (no births,

deaths, immigration, or emigration) [31] operating in discrete time and space. For both types

of movement, individuals could move within a Moore neighborhood (eight neighboring cells)

or remain within their current cell during each time step. For a landscape of k = 1,. . ., 9 dis-

crete grid cells, the probability of an individual moving from current location, a, to a new loca-

tion, b, over a fixed temporal time step was:

P a; bð Þ ¼
�ða; bÞ

P9

k¼1
�ða; ckÞ

Where ϕ(�) is a 2D movement kernel and ck represents the center point of each grid cell. For

the movement kernel, we assumed the simplest case of a uniform circular distribution:

�ðrÞ ¼ 1=ð2pr2Þ

where the movement kernel is inversely proportional to radial distance (r) from the center

point of the current grid cell such that:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxa � xcÞ
2
þ ðya � ycÞ

2

q
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The equation gives an inverse distance weight (i.e., 1/r) that is multiplied by the circumference

at that distance to account for a uniform circular distribution (i.e., 1/(2πr))[32]. Note that the

area under this kernel does not equal to one. By setting the minimum distance (r) for the cell

of origin to 0.75, hosts were slightly more likely to remain in the current cell (P = 0.23) than

move in one of the four cardinal directions (P = 0.13) or move in a diagonal direction

(P = 0.06).

For stigmergy-driven movement, hosts navigated the landscape randomly based on this

movement kernel, unless an individual encountered a scent marker from another individual

during the previous time step (Fig 1, t0). At each time step, every individual deposited a scent

mark with initial intensity, η0, at their current location (Fig 1). Scent mark strength in the envi-

ronment decayed exponentially through time at rate δ. Thus, the current scent mark strength

at cell, x, and at time, t, was given by: Zðx; tÞ ¼
PJ

j¼1
Z0e� dðt� djÞ, where dj is the time of deposi-

tion by individual j in a subset of the total population (j = 1. . .J individuals) that has visited

cell x.

The hosts’ movement responses to these stimuli depended on the strength of the scent load

encountered. An individual’s scent exposure was taken as: min(1,η(x,t)), where η(x,t) repre-

sents the sum of all active scent load deposited by all hosts in cell location x on the landscape at

time t. The subsequent direction of movement was determined by a Bernoulli trial: if P< min

(1,η(x,t)), the direction of movement was constrained to 45 degrees on either side of the direc-

tion of movement that brought that animal to the current cell (Fig 1, t1). For example, a host

encountering a foreign scent mark after moving to the bottom middle cell could move to the

upper left, upper, or upper right cell from the current, scent marked cell (Fig 1, t1-t2). If P>
min(1,η(x,t)), the direction of movement was random, as described by the movement kernel

above. This type of lattice model of territory formation results in dynamic territories that

change through time (Fig 2) [12,13,33].

This framework is consistent with some previous simulation models, in that individuals

move at random unless they encounter a foreign scent cue [12,13]. We have adapted these

frameworks to evaluate impact of scent cues on pathogen transmission. Unlike prior models,

movement could occur to diagonal cells, and response to scent cues was driven by the quantity

of scent load which decays through time, rather than an explicit “active scent time” after which

hosts no longer respond (per [12]). This mechanistic framework differs from prior models of

Fig 1. Schematic for individual-based stigmergy model. As hosts (solid circles) walk randomly through space they

deposit scent marks (open circles); note the green vs. blue scent marks for each host. If infected, the hosts

simultaneously leave pathogens in the environment. t0: focal individual (blue) can move to one of eight neighboring

cells or remain within its current cell. t1: In the case of encountering a conspecific cue (open green circle), the host has

some probability of constraining its next step to 45 degrees on either side of the prior direction of movement

(indicated by the directions of the red arrows); this probability depends on the strength of the conspecific cue that the

host encounters. t2: avoiding conspecific stigmergy cues results in dynamic home range formation, but also potential

pathogen exposure.

https://doi.org/10.1371/journal.pcbi.1007457.g001
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territory formation in that it assumes no directional bias, centralizing tendency, spatial auto-

correlation, or increasing marking behavior in response to foreign scent cues [8,34,35]. We

also did not consider responses to habitat, terrain, or resource availability [8,9,35]. Because we

were investigating several dimensions of pathogen transmission, we simplified the formulation

of the movement kernel to depend only on radial distance from the current location, unlike

past models, which often assume distinct distributions of step length and directionality

[35,36].

Pathogen transmission process

We simulated the spread of an environmentally transmitted pathogen in a closed population

using an SIR framework [31]. Infected individuals, in addition to leaving a scent mark, also

deposited pathogens into the environment with intensity, κ0. The pathogen load in the envi-

ronment then decayed exponentially at a rate, α. Pathogen load was cumulative—so if two

infected individuals visited the same cell in sequence, the pathogen load in the environment

reflected the sum of their two visits. Paralleling the scent mark decay process, the pathogen

load intensity in a cell location, x, and time t was given by: kðx; tÞ ¼
PQ

q¼1
k0e� aðt� dqÞ, where

the initial pathogen load, κ0, decayed exponentially at rate α since the time of deposition, dq,
by each individual q from a subset of the population (q = 1. . .Q infected individuals) that has

visited cell x.

Fig 2. Movement trajectories for simulated hosts. Simulations occurred on a 50 x 50 landscape with wrapped edges

(i.e., torus) to avoid boundary effects. Populations were simulated with 50, 100 or 150 individuals. Trajectories shown

for a simulation with 50 hosts (a density of 0.02 hosts/unit2), each represented by a different color, and a scent cue

decay rate of 0.01 per time step for 100 time steps.

https://doi.org/10.1371/journal.pcbi.1007457.g002
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The probability of a susceptible individual becoming infected was governed by a Bernoulli

trial where β corresponds to the probability of a successful transmission event:

b ¼ minð1; kðx; tÞÞ

where κ(x,t), as defined above, is the sum of active pathogen load that has not yet decayed

from all previous infected individuals visiting that cell. Thus, for a susceptible individual in a

cell with environmental contamination, the transmission rate, β, is specific to the pathogen

load, κ, remaining in the environment at time, t, in a particular cell, x. Infected hosts then have

a probability, γ, of recovering per time step.

Like simulated movement, the disease transmission process occurred probabilistically, in

discrete time, and on a spatially explicit landscape. However, a mean field approximation of

the transmission process can be conceptualized as [37]:

dS
dt
¼ � b kð ÞS

dI
dt
¼ b kð ÞS � gI

dR
dt
¼ gI

dk
dt
¼ k0I � ak

where S is the number of susceptible individuals, I is the number of infected individuals, R is

the number of recovered individuals, and κ is the total pathogen load in the environment. As

outlined above, β(κ) is a site-specific transmission probability dependent on the pathogen load

at cell x and at given time t, and infected individuals recover at a rate γ. Infectious individuals

deposit κ0 pathogen load into the environment which decays exponentially at rate, α. The total

population size (N) remains constant such that: N = S+I+R.

Initial conditions, parameter space, and outcome metrics

We simulated a 50 x 50-cell landscape with wrapped edges (i.e., torus) to avoid boundary effects

[38]. At the start of each simulation, individuals were randomly distributed across the theoretical

landscape, and one individual was randomly selected to be infected, serving as the index case. We

tested population sizes of 50, 100, and 150 individuals for respective host densities of 0.02, 0.04, and

0.06 hosts/unit area respectively. Since the transmission probability was controlled by the strength of

pathogen load encountered in the environment rather than a fixed transmission probability, we

explored the epidemiological parameter space by simulating low, medium, and high recovery rates

(Table 1). We also explored the interplay of low, medium, and high deposition strengths for scent

marking and pathogen shedding, as well as low, medium, and high rates of decay for pathogen

infectiousness and scent mark strength (Table 1). Finally, we compared stigmergy-driven, territorial

simulations with their random movement counterparts (m). In total, we tested 1,458 parameter sets

with 100 simulations per parameter set (Table 1). For each parameter set, we recorded mean out-

break success (did the disease spread beyond the initial index case?), mean maximum prevalence,

and mean outbreak duration (the number of time steps until there were no remaining infectious

individuals on the landscape). We also used a random forest variable importance analysis to assess

the relative importance of each parameter on these three outcomes.
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Variable importance analysis

We explored model sensitivity to parameter values by conducting a random forest variable

importance analysis. Random forest analysis is an approach that accounts for non-linear and

collinear relationships between variables, allows for different variable types (e.g., numerical vs.

categorical), and avoids the concerns of using frequency-based statistical p-values to assign sig-

nificance in a simulation context [39,40]. Random forest analysis generates an ensemble of

classification or regression trees for a given data set and then combines predictions from the

individual trees [39]. Variable importance results are reported as mean decrease in accuracy

scores, which describes the loss in accuracy to the predicted outcome when the given variable

is permutated randomly [39]. We used the randomforest function to generate of 1,000 trees for

the metrics of outbreak success (did the pathogen spread beyond the initially infected individ-

ual?), maximum prevalence given outbreak success, and outbreak duration given outbreak

success. With 1,000 trees, the order of variable importance did not switch with different ran-

dom seeds and the error rate or mean squared error of the random forest stabilized. We fur-

ther evaluated our model performance using separate training (80% of data) and test (20% of

data) data sets. Error rates on training data sets were less than 30%, and model accuracy on

test data sets exceeded 70% across the three outcomes (S1 Table). Finally, we also verified our

approach with the party package, which has been shown to be particularly robust to bias rela-

tive to the traditional randomforest package [41–43]. Overall, order of variable importance

order was robust to using randomforest vs. cforest approaches. All simulations and analyses

were conducted in R (version 3.5.3). Code is deposited at Zenodo (doi.org/10.5281/zenodo.

3731357).

Results

Recovery rate critical in spread of indirectly transmitted pathogens

The random forest variable importance analysis indicated that recovery rate (γ) was the single

most important variable in predicting the probability of a successful outbreak, maximum prev-

alence, and outbreak duration (Fig 3). Host density (N) and decay rate of pathogen infectious-

ness (α) followed as the next most important variables for predicting all three outbreak metrics

(Fig 3). However, for maximum prevalence specifically, pathogen decay rate (α) slightly

exceeded host density (N) in variable importance (Fig 3B). Whether or not an outbreak had

stigmergy-driven vs. random movement (m) had little impact on whether or not an outbreak

Table 1. Factorial design of 1,458 parameter combinations encompassing host density, recovery rate, pathogen

load and decay rate, and scent load and decay rate.

Parameter Values tested Description

N 50, 100, 150 hosts/50 units2 = 0.02,

0.04, 0.06 hosts/unit2
Host density

γ 0.01, 0.05, 0.10 time-1 Recovery rate

m TRUE, FALSE Stigmergy driven (T) or random movement (F)

κ0 0.1, 1, 10 Pathogen load: initial strength of pathogen load deposited

into the environment

η0 0.1, 1, 10 Scent load: Initial strength of scent mark deposited into

environment

α 0.01, 0.1, 1 Pathogen decay rate: exponential decay rate of pathogen

infectiousness in environment

δ 0.01, 0.1, 1 Scent decay rate: exponential decay rate of scent mark

strength

https://doi.org/10.1371/journal.pcbi.1007457.t001
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took place (Fig 3A), but did contribute to determining the maximum prevalence and duration

of successful outbreaks (Fig 3B and 3C). Outbreaks with faster recovery rates (i.e., 0.1 and 0.05

per time step) had a lower maximum prevalence and shorter outbreak durations regardless of

whether movement was random or driven by stigmergy cues.

Territoriality can reduce outbreak severity, but increase disease persistence

Territorial movement yielded a lower maximum prevalence in scenarios that were already

conducive to outbreaks: a higher host density and slower recovery rates (i.e., longer infectious

periods). These mitigating effects were strongest for simulations with higher host densities,

yielding a median reduction in maximum prevalence of 0.05–0.10 relative to random simula-

tions with equivalent epidemiological parameter sets (Fig 4A). These reductions in maximum

prevalence decreased to ~0.05 and ~0.025 for lower host densities (S1 and S2 Figs). In contrast,

for the highest host density, stigmergy increased outbreak duration relative to random move-

ment, most notably for simulations with slower pathogen decay rates (Fig 4B). For lower host

densities and slower recovery rates, an interaction emerged between pathogen decay rate and

movement type (S1 and S2 Figs). For the lowest host density and slower recovery rates, stig-

mergy driven movement increased outbreak duration when pathogen decay rates were slower,

but decreased outbreak duration for faster pathogen decay rates (S2 Fig).

Fig 3. Random forest analysis for: (A) outbreak success (did the pathogen spread beyond the initially infected

individual?), (B) maximum prevalence given outbreak success, and (C) outbreak duration given outbreak success.

https://doi.org/10.1371/journal.pcbi.1007457.g003
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Non-linear interactions between pathogen load, pathogen decay, scent

load, and scent decay

In the parameter space where outbreaks were most successful (e.g., slower recovery rates and

higher host densities), non-linear patterns emerged from interactions between decay rate of

pathogen infectiousness, decay rate of scent cue, initial pathogen load, and initial strength of

scent cue. With both the highest host density and the slowest recovery rate (γ = 0.01), out-

breaks reached a higher maximum prevalence for simulations with higher initial pathogen

loads, slower pathogen decay rates, lower initial scent loads, and faster scent decay rates (Fig

5A and S3 Fig, lower left quadrant). In contrast, outbreaks lasted longer on average for simula-

tions with higher initial pathogen loads, slower pathogen decay rates, but higher initial scent

loads, and slower scent decay rates (Fig 5B and S3 Fig, upper left quadrant). These trends

weakened with lower host densities (S4 Fig). However, at higher host densities with intermedi-

ate recovery rates (γ = 0.05), slow pathogen decay, fast scent decay, and high initial pathogen

and scent loads favored longer outbreaks (S5 and S6 Figs). These patterns dissolved for faster

recovery rates and lower host densities where outbreaks were less successful (S7–S10 Figs).

For simulations with slower recovery rate and higher host density, response to initial scent

load was variable: high initial scent load promoted outbreaks under slow pathogen decay, but

inhibited outbreaks under conditions of faster pathogen decay (Fig 6 and S11 Fig). Together,

fast pathogen decay and fast scent load decay rates were not conducive to outbreaks regardless

of initial pathogen load or scent load (Fig 6 and S11 Fig). Fast scent decay and slow pathogen

decay also minimized the effect of different initial pathogen and scent loads (Fig 6 and S11

Fig). Lower host density treatments increased variability across outcomes and minimized the

differences across scent decay rate, initial pathogen load, and initial scent load for a given path-

ogen decay rate (S12 Fig).

Discussion

Adaptive, dynamic, or territorial space use is one possible explanation for the lack of empiri-

cally observed density thresholds in wildlife [27,28]. This “territoriality benefits” hypothesis

suggests that reduced home range overlap could lead to reduced opportunities for pathogen

transmission [44]. Our findings support this hypothesis with the caveat that a reduction in out-

break severity may come at the cost of increased likelihood of persistence for indirectly trans-

mitted pathogens. We found that territoriality did indeed reduce maximum prevalence of

disease in conditions where we would otherwise expect outbreaks to be most successful: slower

recovery rates (i.e., longer infectious periods) and higher conspecific densities (Fig 4 and S1

Fig). However, for higher host densities, outbreak duration decreased for populations with

stigmergy-driven movement compared to their randomly moving counterparts (Fig 4). Inter-

estingly, at lower host densities, an interaction emerged with pathogen decay rate; stigmergy-

driven movement could increase outbreak duration times when pathogen decay rates were

faster (S2 Fig).

For longer infectious periods and higher host densities, key trade-offs emerged between the

strength of pathogen load, strength of the stigmergy cue, and the rate at which those two quan-

tities decayed. Intuitively, high initial pathogen load and a slower pathogen decay rate univer-

sally promoted higher maximum prevalence and longer lasting outbreaks (Figs 5 and 6). In

Fig 4. The absolute difference between stigmergy vs. random movement simulations for (A) mean maximum prevalence and (B) mean

outbreak duration as a function of recovery rate and environmental decay rate of pathogen (α, columns). Each point in the box plot

distribution represents a paired difference between the mean outcomes for stigmergy vs. random simulations for a given parameter set. Shown

for the highest host density of 0.06 hosts/unit2.

https://doi.org/10.1371/journal.pcbi.1007457.g004
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contrast, lower initial scent loads paired with faster scent decay promoted higher maximum

prevalences (Fig 5A), whereas lower initial scent loads and slower scent decay rates promoted

longer lasting outbreaks (Fig 5B). These findings raise interesting questions about the evolu-

tionary nature of the competing strength of pathogen and scent marking signals in the envi-

ronment. For indirectly transmitted pathogens, pathogens should coevolve for longer

persistence and higher virulence because individual host mortality is less important to a patho-

gen’s overall fitness [45]. This is in opposition to the prediction that populations with spatially

restricted movement will contribute to the evolution of less virulent pathogens [45]. Our

results support the idea that pathogens co-opting their hosts’ social communication system

could help to overcome territorial barriers (e.g., [46]) and that territorial behavior could offer

benefits for stochastic persistence from a pathogen’s evolutionary perspective (Fig 4). In partic-

ular, a host’s tendency to deposit less strong, but more slowly decaying scent mark could help

maintain pathogen persistence (Fig 5B).

The relationship between population thresholds and indirectly transmitted pathogens

remains an open question [28]. Feedbacks between host behavior and parasitism are likely to

complicate this relationship further. Hosts have evolved defenses and avoidance behaviors in

response to high parasitism risk (e.g., altering of ranging patterns in primates or selective for-

aging with behavioral avoidance of fecal-contaminated areas in ungulates) [16]. However,

pathogens may have co-evolved to counteract territorial barriers and exploit social signaling

behaviors. Some preliminary evidence suggests that this may occur. For example, wild banded

mongooses (Mungos mungo) transmit the mycobacterium,M.mungo, almost solely through

anal and urine secretions, which are key currencies in their social communication system [46].

Similarly, higher rates of raccoon roundworm (Baylisascaris procyonis) infection occur at

latrine sites compared to individual raccoon sites; this could lead to higher infection rates for

susceptible raccoons and intermediate hosts attracted to undigested seeds [47]. While there is

preliminary empirical evidence about the potential role of social signaling behaviors in indirect

pathogen transmission, we lack a clear understanding of whether stigmergy is a potential miti-

gator or facilitator of pathogen transmission at a population level.

In our model, indirectly transmitted pathogen dynamics could be altered by territorial cues

if hosts existed at high enough densities and shed pathogens for long enough across the land-

scape. This work, therefore, highlights the importance of exploring feedbacks between territo-

riality and parasitism. In empirical systems, hosts with lower levels of parasitism may be better

able to form and maintain territories. For example, pheasants are a competent host for Lyme

disease and are commonly parasitized by Ixodes ricinus ticks. Male pheasants with experimen-

tally reduced tick loads were more likely to gain harems and have smaller territories. In con-

trast, males with higher tick loads ranged more broadly in peripheral woods and fields leading

to a positive feedback loop of higher likelihood of tick exposure [48]. Examples of negative

feedback between parasitism and territoriality also exist. In male Grant’s gazelle (Nanger
granti), territorial behavior drives higher parasite loads, but higher parasite loads suppress

behaviors associated with territoriality [49]. Future model development might consider incor-

porating such feedback mechanisms [50], e.g., differences in movement behavior between

symptomatic and healthy individuals.

To highlight the competing axes of stigmergy cue strength and duration vs. pathogen load

strength and duration, we simulated movement using a random walk rather than

Fig 5. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for simulations with a high

host density (0.06 hosts/unit2) responding to stigmergy cues with a recovery rate of 0.01/unit time. Columns

correspond to pathogen decay rates (α) while rows correspond to scent decay rates (δ).

https://doi.org/10.1371/journal.pcbi.1007457.g005
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incorporating additional potential complexities of movement behavior; this necessarily means

that simulated individuals did not respond to the real-time presence or absence of conspecifics

in neighboring cells. Future modelling studies could explore the sensitivity of results to differ-

ences in perceptual range (i.e., extending beyond a Moore neighborhood) and memory of past

movements or past stigmergy cue encounters. Other extensions might include accounting for

dispersal behavior or inter-individual differences in home range size. Ultimately, stigmergy is

just one possible mechanism for informing territorial-like movement behavior. It is likely that

many species respond to cues in real time (e.g., visual cues, vocalization) in addition to tran-

sient environmental cues (e.g., [11]). Another important question is understanding how tem-

poral switches in the valence of the stigmergy cues might affect pathogen transmission. For

example, during mating seasons scent cues could become attractive rather than aversive [21].

Individuals are also likely to display heterogeneous responses to different members of the pop-

ulation (e.g., male vs. female) and their environmental cues [51].

The model presented here best describes indirect or environmental transmission of a single

infectious agent within a solitary, territorial host species. However, this model could also

describe the behavior of social, territorial carnivores (e.g., gray wolves, African lions), where

the movement of a single individual is usually representative of the entire group [52]. This

model framework may also be relevant for pathogens with other dominant transmission

modes that persist in the environment for extended periods. For example, canine parvovirus,

which can persist up to one year outside of a host [53], is of conservation concern for wild car-

nivores [54]. Similarly, leptospirosis, a bacterial infection of wildlife (and humans), can persist

for months in aqueous environments [55]. Small mammals, including peri-domestic species

like raccoons, secrete bacteria through urine [56,57], which can serve as a scent marking com-

munication tool [58]. Likewise, feline calicivirus remains infectious for up to 20 days at ambi-

ent temperatures [59] and is of epidemic concern for African lions [19]. Some domestic cats

remain persistently infected (shedding virus for more than 30 days) and may shed higher levels

of virus [17], which corresponds to the slower recovery rate condition in our model.

In an applied context, scent marking behavior can serve as a way to assess animal popula-

tions through time and document responses to human disturbance [46,60]. Our results sup-

port the idea that decision makers should evaluate possible changes in scent marking behavior

and its potential effects on disease control when considering culling or altering population size

in territorial species [61,62]. For example, prior attempts to control bovine tuberculosis (Myco-
bacterium bovis) in badgers through culling caused changes in scent marking behavior. At

lower densities, badgers were more likely to have dispersed patterns of fecal and urine scent

marking with higher concomitant risks of pathogen transmission [63]. Bovine tuberculosis

transmission is thought to occur primarily through direct contact, but its ability to persist in

the environment has raised questions about the role of indirect transmission routes [64,65].

Likewise, wildlife scent marking behavior at the human-livestock interface is of concern since

some wildlife species (e.g., foxes, badgers) preferentially use farm food storage buildings for

foraging and scent-marking which heightens pathogen transmission risk [66,67]. Scent mark-

ing may also influence the success of species reintroductions and population management:

introducing translocated animals into an established territorial population may increase trans-

mission risk because of increased overlap in home ranges or direct contacts [68]. Similarly,

anthropogenic resource supplementation increases risk of indirect/fomite transmission (e.g.,

bTB in deer, brucellosis in elk, chronic wasting disease in deer and elk) [69]. An interesting

Fig 6. Boxplots of (A) maximum prevalence and (B) outbreak duration for high host density (0.06 hosts/unit2) responding to stigmergy cues and a recovery

rate of 0.01/time step. Rows correspond to low and high scent loads (SL). Columns correspond to low and high pathogen loads (PL).

https://doi.org/10.1371/journal.pcbi.1007457.g006
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question moving forward would be to investigate the competing roles of habitat quality and

territoriality on disease dynamics for pathogens with environmental persistence [32].

Existing movement ecology studies have so far focused on how to model territorial behavior

and not the consequences of dynamic territories on population-level outcomes like disease [2].

This work provides a key interface between the disciplines of movement and disease ecology

[4,5,14] by exploring how mechanistic movement driven by an individual’s social landscape

affects disease dynamics. These results indicate an interesting threshold at higher host densities

where stigmergy-driven movement behavior can still support pathogen persistence. This

framework can be adapted to specific host–pathogen systems to generate hypotheses about the

competing roles of transient social cues and indirect pathogen transmission. We hope that this

model inspires additional research surrounding the role of socially driven movement behavior

and its concomitant implications for pathogen transmission.
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S1 Table. Error rate and model accuracy from random forest models for three measured

outcomes of disease dynamics.
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S1 Fig. The absolute difference between stigmergy vs. random movement simulations for

(A) mean maximum prevalence and (B) mean outbreak duration as a function of recovery

rate and environmental decay rate of pathogen (α, columns). Each point in the box plot dis-

tribution represents a paired difference between the mean outcomes for stigmergy vs. random

simulations for a given parameter set. Shown for a medium host density of 0.04 hosts/unit2.

(TIF)

S2 Fig. The absolute difference between stigmergy vs. random movement simulations for

(A) mean maximum prevalence and (B) mean outbreak duration as a function of recovery

rate and environmental decay rate of pathogen (α, columns). Each point in the box plot dis-

tribution represents a paired difference between the mean outcomes for stigmergy vs. random

simulations for a given parameter set. Shown for a low host density of 0.02 hosts/unit2.

(TIF)

S3 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a medium host density (0.04 hosts/unit2) responding to stigmergy cues

with a recovery rate of 0.01/unit time.

(TIF)

S4 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a low host density (0.02 hosts/unit2) responding to stigmergy cues with a

recovery rate of 0.01/unit time.
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S5 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a high host density (0.06 hosts/unit2) responding to stigmergy cues with

a recovery rate of 0.05/unit time.

(TIF)

S6 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a medium host density (0.04 hosts/unit2) responding to stigmergy cues

with a recovery rate of 0.05/unit time.

(TIF)
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S7 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a high host density (0.06 hosts/unit2) responding to stigmergy cues with

a recovery rate of 0.10/unit time.

(TIF)

S8 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a medium host density (0.04 hosts/unit2) responding to stigmergy cues

with a recovery rate of 0.10/unit time.

(TIF)

S9 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks for

simulations with a low host density (0.02 hosts/unit2) responding to stigmergy cues with a

recovery rate of 0.05/unit time.

(TIF)

S10 Fig. Mean maximum prevalence (A) and mean duration (B) of simulated outbreaks

for simulations with a low host density (0.02 hosts/unit2) responding to stigmergy cues

with a recovery rate of 0.10/unit time.

(TIF)

S11 Fig. Boxplots of (A) maximum prevalence and (B) outbreak duration with a medium

host density (0.04 hosts/unit2) responding to stigmergy cues and a recovery rate of 0.01/

time step. Rows correspond to low, medium, and fast scent loads (SL). Columns correspond

to low, medium, and fast pathogen loads (PL).

(TIF)

S12 Fig. Boxplots of (A) maximum prevalence and (B) outbreak duration with a low host

density (0.02 hosts/unit2) responding to stigmergy cues and a recovery rate of 0.01/time

step. Rows correspond to low, medium, and fast scent loads (SL). Columns correspond to low,

medium, and fast pathogen loads (PL).

(TIF)
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