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Abstract

Background: Many markers have been indicated as predictors of type 2 diabetes. However, the question of whether or not
non-glycaemic (blood) biomarkers and non-blood biomarkers have a predictive additive utility when combined with
glycaemic (blood) biomarkers is unknown. The study aim is to assess this additive utility in a large Japanese population.

Methods: We used data from a retrospective cohort study conducted from 1998 to 2002 for the baseline and 2002 to 2006
for follow-up, inclusive of 5,142 men (mean age of 51.9 years) and 4,847 women (54.1 years) at baseline. The cumulative
incidence of diabetes [defined either as a fasting plasma glucose (FPG) $7.00 mmol/l or as clinically diagnosed diabetes]
was measured. In addition to glycaemic biomarkers [FPG and hemoglobin A1c (HbA1c)], we examined the clinical usefulness
of adding non-glycaemic biomarkers and non-blood biomarkers, using sensitivity and specificity, and the area under the
curve (AUC) of the receiver operating characteristics.

Results: The AUCs to predict diabetes were 0.874 and 0.924 for FPG, 0.793 and 0.822 for HbA1c, in men and women,
respectively. Glycaemic biomarkers were the best and second-best for diabetes prediction among the markers. All non-
glycaemic markers (except uric acid in men and creatinine in both sexes) predicted diabetes. Among these biomarkers, the
highest AUC in the single-marker analysis was 0.656 for alanine aminotransferase (ALT) in men and 0.740 for body mass
index in women. The AUC of the combined markers of FPG and HbA1c was 0.895 in men and 0.938 in women, which were
marginally increased to 0.904 and 0.940 when adding ALT, respectively.

Conclusions: AUC increments were marginal when adding non-glycaemic biomarkers and non-blood biomarkers to the
classic model based on FPG and HbA1c. For the prediction of diabetes, FPG and HbA1c are sufficient and the other markers
may not be needed in clinical practice.
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Introduction

For the primary prevention and early intervention of type 2

diabetes, an identification of persons at high risk for developing

future diabetes is important. For this purpose, many markers have

been identified independently as a predictor or a risk factor and

include the classic markers such as blood glucose profiles for the

progression to type 2 diabetes. Glycaemic biomarker levels such as

plasma glucose at fasting (FPG) [1,2] and postload [2,3], late

insulin response at postload [4] and hemoglobin A1c (HbA1c) [5–

7] have been adopted as known biomarkers for predicting type 2

diabetes.

In addition, many other markers (non-glycaemic biomarkers

and non-biomarkers) have been proposed as an independent

predictor or risk factor for the progression to diabetes in

epidemiological studies. First, non-glycaemic biomarkers including

in the serum high levels of triglycerides [8], liver enzymes [9–15],

white blood cell count [16,17], and C-reactive protein [18–20],

uric acid [21,22] and low-density lipoprotein cholesterol [23,24],

high-density lipoprotein cholesterol [25] and creatinine [26] have

been reported to predict the risk of development of type 2 diabetes.

These epidemiologic studies have shown positive associations

between elevated or decreased levels of these risk factors and

incident diabetes, independent of classic risk factors such as age,

obesity, and fasting and postload plasma glucose levels. Second,

non-blood biomarkers or non-biomarkers such as body mass index

(BMI), waist-to-hip and waist-to-height ratio, and waist circum-

ference [2,3,27,28], physical inactivity [8,29], high blood pressure

[8], smoking [30] and age [31] have also been reported to be a

predictor or a risk factor for diabetes.

These findings of non-glycaemic biomarkers and non-blood

biomarkers may reveal the pathogenesis linking these markers with

diabetes. However, the question of the clinical utility of these
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markers as a predictor remains to be solved. The strength of

associations expressed in epidemiological terms does not neces-

sarily indicate the clinical usefulness of these markers. What

matters most is whether these markers improve the precision of

prediction made by glycaemic markers. In other words, biomarker

research should be discussed in terms of whether the promise of

biomarker research will improve the care of diabetes patients in

actual practice [32].

Accordingly, using a large retrospective cohort data set of the

Japanese population, we examined whether non-glycaemic bio-

markers and non-blood biomarkers improve the predictive power

of glycaemic markers to identify future patients of type 2 diabetes

using sensitivity and specificity analysis and receiver-operator-

characteristic (ROC) curves.

Materials and Methods

Study Subjects
We used a data set from the health-screening program provided

at Yuport Medical Checkup Center in Tokyo during April 1998

and March 2006. The details of this Center’s study have been

described elsewhere [6,33,34]. During this period, 34,303 persons

voluntarily underwent a total of 97,365 checkups. In this study, we

set a 4-year baseline period as between April 1998 and March

2002, and the 4-year follow-up period as between April 2002 and

March 2006. At the baseline period, 21,885 persons underwent

checkups at least once in the total of 47,795 checkups (Figure 1).

For repeat participants at the four-year baseline period, the first

checkup data was used as the baseline data. During the follow-up

period, 23,547 persons underwent a checkup at least once in the

total of 49,390 checkups. Total follow-up data was gathered for

each person to evaluate incident diabetes.

Next, follow-up data were merged with baseline data, yielding

11,129 persons who had been examined during both time periods.

Among them, 129 persons with known diabetes at baseline were

excluded and this left a remainder of 11,000 persons. Next, 411

who had a baseline FPG $7.00 mmol/l, and in sequence, 168

who had a baseline HbA1c $6.5% (National Glycohemoglobin

Standardization Program unit) were excluded. Among the

remaining 10,421 persons, 432 persons with less than 2 years of

follow-up duration between baseline and follow-up checkup were

excluded, and finally, 9,989 persons (5,142 men and 4,847 women)

were enrolled in this study. All the evaluation procedures were

performed in the same manner during the study period, including

blood and non-blood measurements. A blood sample was obtained

after overnight fasting and measured at the Center’s laboratory.

In accordance with the Private Information Protection Law,

information that might identify subjects was safeguarded by the

Center. This study was approved by the review board of the

Yuport Medical Checkup Center and a written informed consent

for anonymous participation in epidemiological research was

obtained at every evaluation.

Diagnosis of Type 2 Diabetes
In all follow-up analyses, type 2 diabetes was defined by a

glycaemic biomarker as an FPG level $7.00 mmol/l, in accor-

dance with the American Diabetes Association and the Japan

Diabetes Society criteria [35,36], or as a diagnosis of diabetes by a

physician sometime between the baseline and follow-up examina-

tion.

Three Types of Markers for Diabetes Prediction
Among all the study subjects, we first divided the markers for

progression of diabetes prediction into two groups: blood

biomarkers and non-blood biomarkers. Age, BMI, and blood

pressure are non-blood biomarkers, and the others are blood

biomarkers. The blood biomarkers were then reclassified into two

subgroups: glycaemic (blood) biomarkers, non-glycaemic (blood)

biomarkers. The classifications of each marker are shown in

Table 1.

Glycaemic biomarkers. For the measurements of FPG and

HbA1c levels as glycaemic biomarkers, a Toshiba TBA-40FR

Autoanalyzer (Toshiba Medical Systems, Tokyo, Japan) was used.

Plasma glucose level was measured via the hexokinase-G6PD

method (Denka Seiken, Niigata, Japan) with an inter-assay

coefficient of covariation of 3.0% or less. HbA1c level was

measured by the latex immuno-agglutinin method (Determiner

HbA1c, Kyowa Medex, Tokyo, Japan), with an inter-assay

coefficient of covariation of 1.7–2.1%, which was comparable to

that of plasma glucose and aligned to the Japan Diabetes Society

assigned values. The Japan Diabetes Society value of HbA1c was

converted into National Glycohemoglobin Standardization Pro-

gram units in this study by adding 0.4% [36].

Non-glycaemic biomarkers. Non-glycaemic biomarkers

including serum levels of lipids and hepatic enzymes, and white

blood cell count, uric acid and creatinine level were used to

compare with the glycaemic biomarkers (FPG and HbA1c) for the

prediction of diabetes. Triglycerides, and total cholesterol and

high-density lipoprotein cholesterol were measured using enzy-

matic methods (reagents supplied by Daiichi Pure Chemicals,

Tokyo, Japan). Low-density lipoprotein cholesterol was calculated

by Friedewald’s equation [37]. Aspartate aminotransferase (AST)

and alanine aminotransferase (ALT) were measured using

enzymatic methods (reagents supplied by Denka Seiken, Niigata,

Japan), as were gamma-glutamyltranspeptidase (GGT) levels

(Wako Junyaku, Osaka, Japan). White blood cell count was

measured using the differential count detection method (reagents

supplied by Sysmex, Kobe, Japan). Uric acid and creatinine level

Figure 1. Enrollment of the study subjects. FPG, fasting plasma
glucose; HbA1c, hemoglobin A1c.
doi:10.1371/journal.pone.0066899.g001
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were measured using enzymatic methods (reagents supplied by

Mitsubishi Kagaku Iatron, Tokyo, Japan). All of these markers

have been reported to be independent risk factors for diabetes, as

previously mentioned [8–26].

Non-blood biomarkers. The following four non-blood

biomarkers were examined for their ability to predict diabetes;

age, BMI, and systolic and diastolic blood pressure. BMI was

defined as weight divided by height squared (kg/m2). Blood

pressure was measured by trained nurses using a sphygmoma-

nometer.

Statistical Analysis
The power of each marker to predict a progression to diabetes

was evaluated with a ROC curve. The area under the curve

(AUC) of the ROC and a 95% confidence interval (CI) were

calculated by the Delong method to evaluate the simple and

combined diagnostic utilities of the marker for diabetes prediction

[38]. The optimal cut-off point of each marker was determined by

calculating the Youden index that maximizes a combination of

sensitivity and specificity [39]. Then, its sensitivity, specificity, and

positive likelihood ratio for the progression to diabetes were

calculated using the cut-off. The likelihood ratio describes how the

probability of disease shifts when the finding is present. The higher

likelihood ratio means a better test for diagnosis, e.g., a likelihood

ratio of ‘‘2’’ means that someone’s positive result would be about 2

times as likely to be seen in someone with a disease than in

someone without a disease. In this evaluation, we created following

four models: (1) a single marker model, (2) a base model

(FPG+HbA1c), (3) an additional model (FPG+HbA1c+non-

glycaemic biomarker or non-blood biomarker), and (4) a full

model. In the first model (single marker model), we evaluated the

predictive ability of the each single marker separately. In the

second model (base model), because glycaemic biomarkers (FPG

and HbA1c) have been adopted as a component of the criteria for

diagnosing diabetes in the guidelines of the American Diabetes

Association and the Japan Diabetes Society, a logistic regression

equation with those biomarkers as explanatory variables for

predicting diabetes was created. The combination of FPG and

HbA1c was also reported as a better biomarker for the progression

of diabetes than the single FPG biomarker in line the Yuport study

[6]. In the third model (additional model), we then added each

non-glycaemic biomarker or non-blood biomarker to the base

model, and evaluated the predictive ability. In the last model (full

model), we entered all the markers (including FPG and HbA1c)

into the base model.

The correlations between AST and ALT, and systolic and

diastolic blood pressure were high (at 0.82 and 0.90 among men,

and 0.82 and 0.89 among women, respectively) which indicates

multi-collinearity. Thus, we excluded AST and diastolic blood

pressure from the full-model analysis, since the predictive ability of

ALT and systolic blood pressure for diabetes was superior to that

of AST and diastolic blood pressure at our prior examination,

respectively. For each curve, a test for the equality of the AUC of

ROC between the base model and the additional model was

evaluated using an algorithm suggested by DeLong and Clarke-

Pearson [38]. In addition, we calculated a percentage of

incremental AUC above 0.5 over the base model (FPG+HbA1c)

as 0.5 is an AUC value of the ROC for a diagnostic test which is

not better than ‘flipping a coin’ (chance alone).

We conducted separate analysis for men and women because of

the gender-difference in anthropometric characteristics and the

prevalence of diabetes. All test characteristics and the AUC of

ROC was calculated using STATA software (version 12, College

Station, TX, USA). Since multiple measures to predict the

progression to diabetes are being tested, a statistical P value of 0.01

was used to determine statistical significance to reduce the

possibility of statistical type I error.

Results

Over the entire 28,757 person-years of follow-up for men and

26,686 person-years for women, 257 men (5.0%) and 88 women

(1.8%) were newly diagnosed as having diabetes. A mean follow-

up period was 5.6 (standard deviation: 1.4) years in men with

mean age of 51.9 years at baseline and 5.5 (standard deviation:

1.5) in women with mean age of 54.1 years. The baseline

characteristics of the men and women study subjects are shown in

Table 2. Among them, 226 of men and 75 of women were

discovered to have a FPG level $7.00 mmol/l and, 9 and 4 were

diagnosed as new-onset diabetes by a physician, and 22 and 9 had

both, respectively.

Table 3 shows the predictive ability of the marker in the single

marker model among men and women. The AUCs to predict the

progression of diabetes among glycaemic biomarkers were 0.874

(95% CI: 0.852–0.896) and 0.924 (95% CI: 0.896–0.952) for FPG,

0.793 (95% CI: 0.767–0.818) and 0.822 (95% CI: 0.777–0.867) for

HbA1c, in men and women, respectively. Clearly, glycaemic

Table 1. Classification of the examined markers to predict diabetes in this study.

Glycaemic (blood) biomarker Non-glycaemic (blood) biomarker Non-blood biomarker

Fasting plasma glucosea [1,2] Triglycerides [8] Sexb

Hemoglobin A1ca [5–7] Low-density lipoprotein cholesterol [23,24] Age [31]

High-density lipoprotein cholesterol [25] Body mass index [2,3,27,28]

Asparate aminotransferase [12,15] Systolic blood pressure [8]

Alanine aminotransferase [9–15] Diastolic blood pressure [8]

Gamma-glutamyltranspeptidase [9,11–15]

White blood cell count [16,17]

Uric acid [21,22]

Creatinine [26]

aThe combination of fasting plasma glucose and hemoglobin A1c were used in the base predictive model for diabetes.
bFor the obvious sex difference in the prevalence of diabetes, men and women were separately analyzed.
Each number in a square bracket represents the correspondence to the reference number.
doi:10.1371/journal.pone.0066899.t001
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biomarkers were the best and second-best markers for diabetes

prediction, running ahead of the other markers. Among the non-

glycaemic biomarkers and non-blood biomarkers, the highest

AUC among men was observed at ALT as 0.656 (95% CI: 0.621–

0.691), and among women it was at BMI as 0.740 (95% CI:

0.694–0.785). The lowest AUC in both of men and women was

creatinine as 0.506 (95% CI: 0.470–0.541) and 0.553 (95% CI:

0.496–0.610). In contrast, all the AUC of non-glycaemic

biomarkers and non-blood biomarkers, except for uric acid in

men and creatinine in both sexes, were significantly larger than 0.5

(i.e., the 95% CI did not include 0.5), and these markers therefore

predicted the progression to diabetes.

Table 4 shows the predictabilities of the base model

(FPG+HbA1c), and the additional model (FPG+HbA1c+non-

glycaemic biomarker or non-blood biomarker) among men and

women. The AUC of the base model was 0.895 (95% CI: 0.877–

0.914) and 0.938 (95% CI: 0.916–0.960). The incremental AUC

above 0.5 over the base model was slightly, but significantly

increased by 2.3% from the AUC of the base model in the

additional model of ALT (P = 0.02), which was the best marker for

diabetes prediction in the single model with men excluding the

model of glycaemic biomarkers, and 0.2% in the model with BMI

(not significant), which was the best such marker in women. The

highest AUCs among the additional models with non-glycaemic

biomarkers and non-blood biomarkers were, however, observed in

the model with ALT in both sexes. Although the differences

between the base model and the additional models with HDL-

cholesterol and GGT in men were statistically significant, the

differences were marginal (incremental AUCs above 0.5 over the

base model were 0.4% and 24.0%, respectively). None of the

incremental AUCs above 0.5 over the base model showed

significant differences in women. Comparing the all-additional

models with the base model, the increment in the ROC curves

were marginal in both sexes, irrespective of the non-glycaemic

biomarkers and non-blood biomarkers enrolled into each model.

Regarding the results of the full model, the increments of AUCs

above 0.5 from the base model were also marginal (3.3% among

men and 0.8% among women, respectively). In this full model,

only the three coefficients of FPG, HbA1c and ALT were observed

to be significant in predicting diabetes among both sexes.

Figure 2 shows the ROC curve of the single-marker models, the

base model (FPG+HbA1c), and the additional model. For

simplicity and clarity, the single-marker models and the additional

model were shown only with the markers of the glycaemic

biomarker (FPG and HbA1c) and ALT, which had the highest

AUC in the additional models for each sex. Comparing the

additional model with ALT with the base model, the ROC curve

was marginal in both sexes.

Discussion

None of the non-glycaemic biomarkers and non-blood bio-

markers showed a substantial improvement in predictive ability for

the progression to type 2 diabetes when it was added to the

conventional prediction model based on FPG and HbA1c. As

indicated in many studies [2,3,8–28], all of the non-glycaemic

biomarkers [serum lipids, liver enzymes, white-blood cell count,

and uric acid (only in women)] and non-blood biomarkers (age,

blood pressure, and body mass index) examined in this study in

some way predicted the progression to diabetes. Although these

markers may play some role in the pathogenesis of diabetes, these

markers do not appear to add a practical precision to the

diagnostic power of plasma glucose and HbA1c levels. The classic

glycaemic biomarkers seem to be sufficient as a diagnostic marker

in clinical practice.

In this study, additive values of non-glycaemic markers were

also evaluated. Many previous studies have evaluated the

association between the non-glycaemic markers and future

diabetes [2,3,8–28]. These findings are obviously important in

considering the pathogenesis of diabetes. However, whether these

markers should be added in practice to classical glycaemic

biomarkers in predicting diabetes is, of course, another issue. In

our study, for example, ALT independently and substantially

predicted a patient’s progression to diabetes, as shown in previous

studies [9–15]. However, the diagnostic power was not substan-

tially improved when ALT was added to FPG and HbA1c (only a

2.3% AUC increment above 0.5 over the base model for men and

0.63% for women). Sattar et al., have proposed that new

biomarker research should focus more on the usefulness of the

biomarkers in real clinical practice [32]. Our study is in line with

this argument.

In the simple ROC analysis in the single predictor model, the

best markers other than glycaemic ones for predicting diabetes

were those related with adiposity. The best marker was ALT in

men and BMI in women. ALT potentially reflects fatty change in

the liver, which is one component of visceral/central adiposity.

Visceral/central adiposity is also considered as a risk for diabetes

[40], and is more prevalent in men than in women [41]. On the

other hand, BMI is an indicator for overall body obesity and might

be a better marker for diabetes prediction in women who tend to

have subcutaneous (pear-shaped) obesity rather than visceral/

central adiposity. It can be noted that non-glycaemic markers have

a role in understanding the underlying pathogenesis of diabetes

and also in clinical practice even though these markers have little

additive value on glycaemic markers for the prediction of diabetes.

Although both of the markers did not add substantial value to

conventional diagnostic markers, health professionals may be able

to refer to these markers in diagnosing or managing diabetes. For

example, clinicians may advise high-risk individuals with elevated

Table 2. Baseline characteristics of the 9,989 study subjects.

Characteristic Men (N = 5,142)
Women
(N = 4,847)

Fasting plasma glucose (mmol/l) 5.4160.49 5.1260.46

Hemoglobin A1c [mmol/mol (%)] 3664 (5.460.4) 3664(5.460.4)

Age (years) 51.9611.9 54.1611.1

Systolic blood pressure (mmHg) 126.0617.2 121.1617.9

Diastolic blood pressure (mmHg) 76.8610.7 72.5610.8

Body mass index (kg/m2) 23.562.8 22.363.0

Triglycerides (mmol/l) 1.26 (0.90, 1.82) 0.93 (0.69, 1.28)

LDL cholesterol (mmol/l) 3.4360.83 3.5060.88

HDL cholesterol (mmol/l) 1.3860.35 1.6760.38

Asparate aminotransferase (U/l) 22 (18, 26) 20 (17, 23)

Alanine aminotransferase (U/l) 22 (16, 30) 16 (12, 20)

Gamma-glutamyltranspeptidase
(U/l)

23 (15, 41) 11(8, 17)

White blood cell count (109/l) 5.8 (5.0, 6.9) 5.2 (4.5, 6.2)

Uric acid (mmol/l ) 364.5676.3 269.9660.0

Creatinine (mmol/l ) 72.8611.6 54.169.8

Data are expressed as mean 6 standard deviation, median (25 percentile, 75
percentile) or number (%).
HDL, high-density lipoprotein; LDL, low-density lipoprotein.
doi:10.1371/journal.pone.0066899.t002
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liver enzymes (such as ALT) or obesity (expressed as a high BMI)

to modify lifestyle factors such as diet and exercise and body

weight loss.

It is to be noted that the FPG was used both for the prediction

and diagnosis of diabetes. In addition, HbA1c is closely related to

plasma glucose levels. Because FPG gradually rises from normal to

diabetic levels to qualify for the diagnosis of diabetes, individuals

already at high FPG levels within the normal range obviously tend

to have the highest likelihood of showing a further increase in

FPG. Furthermore, these individuals will have the highest

likelihood that an increase of a certain magnitude in their FPG

eventually will lead to a certain higher level of FPG to match the

diagnosis of diabetes compared with individuals having lower

values of FPG. Thus, the two glycemic markers (FPG and HbA1c)

used in the base model may be referred as self-fulfilling predictors

for diabetes. Accordingly, the high odds of glycemic markers (FPG

and HbA1c) as predictors for diabetes may be inherent, and it may

be expected that the addition of non-glycemic markers will show

little or no incremental prediction for diabetes. The advantage of

glycemic markers over non-glycemic markers due to a self-fulfilling

predictors is a characteristic of this study design.

Several limitations should be mentioned about this study. First,

since the study subjects participated on a voluntary basis, they may

be healthier than the general population, causing a selection bias.

This may have underestimated the incidence of diabetes.

However, the 10-year cumulative incidence detected is similar to

the estimate derived from a population-based study of middle-aged

Japanese [42]. Second, there might be subjects who rapidly

Table 3. Area under the receiver operating characteristics and predictabilities of single markers for progression of diabetes.a

Single marker AUC (95% CI)
Optimal cutoff
pointb

N of test
positive
(%)

Sensitivity (%)
(95% CI)

Specificity (%)
(95% CI)

Positive
likelihood
ratio

Men (N = 5,142)

Fasting plasma glucose 0.874 (0.852–0.896) $5.7 1340 (26) 83.7 (78.6–88.0) 77.0 (75.8–78.1) 3.63

Hemoglobin A1c 0.793 (0.767–0.818) $37 (5.5) 2050 (40) 80.9 (75.6–85.5) 62.3 (60.9–63.7) 2.15

Triglycerides 0.609 (0.574–0.643) $1.55 1818 (35) 52.1 (45.8–58.4) 65.5 (64.2–66.9) 1.51

LDL cholesterol 0.567 (0.532–0.603) $3.22 2991 (58) 69.3 (63.2–74.8) 42.4 (41.0–43.8) 1.20

HDL cholesterol 0.577 (0.543–0.611) #1.35 2588 (50) 64.6 (58.4–70.4) 50.4 (49.0–51.8) 1.30

Asparate aminotransferase 0.612 (0.576–0.649) $22 2657 (52) 68.5 (62.4–74.1) 49.2 (47.8–50.6) 1.35

Alanine aminotransferase 0.656 (0.621–0.691) $26 1856 (36) 58.4 (52.1–64.5) 65.1 (63.7–66.4) 1.67

Gamma-glutamyltranspeptidase 0.626 (0.593–0.660) $23 2636 (51) 68.5 (62.4–74.1) 49.6 (48.2–51.1) 1.36

White blood cell count 0.573 (0.537–0.609) $5.8 2702 (53) 65.0 (58.8–70.8) 48.1 (46.7–49.5) 1.25

Uric acid 0.535 (0.497–0.573) $410.4 1404 (27) 35.8 (29.9–42.0) 73.1 (71.9–74.4) 1.33

Creatinine 0.506 (0.470–0.541) #88.4 4911 (96) 92.6 (88.7–95.5) 4.3 (3.8–4.9) 0.97

Age 0.547 (0.516–0.578) $42 3988 (78) 89.5 (85.1–93.0) 23.1 (21.9–24.3) 1.16

Body mass index 0.640 (0.605–0.676) $24.9 1505 (29) 49.0 (42.8–55.3) 71.8 (70.5–73.0) 1.74

Systolic blood pressure 0.569 (0.532–0.606) $126 2482 (48) 59.1 (52.9–65.2) 52.3 (50.9–53.7) 1.24

Diastolic blood pressure 0.556 (0.519–0.593) $80 2029 (39) 49.0 (42.8–55.3) 61.0 (59.7–62.4) 1.26

Women (N = 4,847)

Fasting plasma glucose 0.924 (0.896–0.952) $5.7 490 (10) 80.7 (70.9–88.3) 91.2 (90.4–92.0) 9.16

Hemoglobin A1c 0.822 (0.777–0.867) $40 (5.8) 925 (19) 67.0 (56.2–76.7) 81.8 (80.7–82.9) 3.68

Triglycerides 0.684 (0.628–0.739) $1.22 1365 (28) 58.0 (47.0–68.4) 72.4 (71.1–73.7) 2.10

LDL cholesterol 0.594 (0.534–0.654) $3.67 1972 (41) 54.5 (43.6–65.2) 59.6 (58.2–61.0) 1.35

HDL cholesterol 0.611 (0.555–0.666) #1.81 3177 (66) 81.8 (72.2–89.2) 34.8 (33.4–36.1) 1.25

Asparate aminotransferase 0.629 (0.569–0.690) $19 2939 (61) 78.4 (68.4–86.5) 39.7 (38.3–41.1) 1.30

Alanine aminotransferase 0.727 (0.675–0.779) $17 2161 (45) 80.7 (70.9–88.3) 56.1 (54.7–57.5) 1.84

Gamma-glutamyltranspeptidase 0.648 (0.598–0.698) $12 2332 (48) 71.6 (61.0–80.7) 52.3 (50.9–53.7) 1.50

White blood cell count 0.617 (0.560–0.674) $5.3 2394 (49) 71.6 (61.0–80.7) 51.0 (49.6–52.4) 1.46

Uric acid 0.622 (0.559–0.685) $285.5 1857 (38) 59.1 (48.1–69.5) 62.1 (60.7–63.5) 1.56

Creatinine 0.553 (0.496–0.610) #44.2 1239 (26) 35.2 (25.3–46.1) 74.6 (73.4–75.8) 1.39

Age 0.630 (0.581–0.679) $51 3160 (65) 86.4 (77.4–92.8) 35.2 (33.8–36.6) 1.33

Body mass index 0.740 (0.694–0.785) $22.9 1828 (38) 79.5 (69.6–87.4) 63.1 (61.7–64.4) 2.15

Systolic blood pressure 0.684 (0.635–0.733) $124 2068 (43) 71.6 (61.0–80.7) 57.9 (56.5–59.3) 1.70

Diastolic blood pressure 0.642 (0.593–0.691) $71 2669 (55) 79.5 (69.6–87.4) 45.4 (44.0–46.8) 1.46

AUC, area under the receiver operating characteristic curve; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
aDiabetes was defined as FPG $7.00 mmol/L or known diabetes at follow-up.
bThe units of each optimal cutoff point was shown in Table2, respectively.
doi:10.1371/journal.pone.0066899.t003
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progressed to diabetes between the first and second checkups, who

therefore were not eligible to participate in this health checkup

program thereafter. This would tend to cause an underestimation

of the prevalence of diabetes at the second visit. Third, our

definition of diabetes favors prediction using FPG over non-FPG

and HbA1c, which was indicated in the ROC analysis, i.e., a lesser

AUC of HbA1c than of FPG (Table 3 and Figure 2). If the

definition using HbA1c was added in the definition of the

outcome, more persons would be diagnosed as having diabetes.

However, the main research topic is a comparison of the clinical

utility of the additional and full models with the base model

(FPG+HbA1c). Thus, the conclusion does not appear to be

affected substantially by the definition of diabetes. Fourth, similar

to the third limitation, at follow-up evaluations, we used a single

FPG level for the diagnosis of diabetes. Thus, it is possible that

some of the diabetes cases defined in this study had levels higher

than the cut off due to chance or the inter-variation of assays.

However, it is considered acceptable to be based upon a single

fasting glucose measurement for epidemiological estimates of

diabetes prevalence and incidence [43] [44]. In addition, data

from an oral glucose tolerance test was not obtained in this study,

which may cause an underestimation of the true incidence of

diabetes. Fifth, not all relevant biomarkers were analyzed, such as

vitamin D, adiponectin and other inflammatory markers (eg.,

high-sensitivity C-reactive protein, interleukins and tumor necrosis

factors) other than white blood cell count. For example, higher

Table 4. The area under the receiver operating characteristics and predictabilities of multiple markers for progression of diabetesa

by logistic regression models.b

Multiple markers AUC (95% CI) P valuec

Incremental
AUC above
0.5d (%)

Sensitivity
(%) (95% CI)

Specificity
(%) (95% CI)

Positive
likelihood
ratio

Men (N = 5142)

FPG+HbA1c 0.895 (0.877–0.914) 83.7 (78.6–88.0) 80.5 (79.4–81.6) 4.29

FPG+HbA1c+triglycerides 0.896 (0.878–0.915) 0.42 0.3 84.0 (79.0–88.3) 81.8 (80.6–82.8) 4.61

FPG+HbA1c+LDL-cholesterol 0.895 (0.876–0.914) 0.36 20.2 84.4 (79.4–88.6) 80.1 (78.9–81.2) 4.23

FPG+HbA1c+HDL-cholesterol 0.897 (0.878–0.915) ,0.01 0.4 84.8 (79.8–89.0) 79.9 (78.7–81.0) 4.22

FPG+HbA1c+ AST 0.898 (0.880–0.916) 0.07 0.7 92.2 (88.2–95.2) 71.9 (70.6–73.2) 3.28

FPG+HbA1c+ALT 0.904 (0.887–0.921) 0.02 2.3 83.7 (78.6–88.0) 83.1 (82.0–84.1) 4.94

FPG+HbA1c+GGT 0.879 (0.858–0.900) ,0.01 24.0 82.5 (77.3–86.9) 80.2 (79.1–81.3) 4.17

FPG+HbA1c+white blood cell count 0.896 (0.877–0.915) 0.03 0.2 83.3 (78.1–87.6) 81.5 (80.3–82.5) 4.49

FPG+HbA1c+uric acid 0.895 (0.877–0.914) 0.67 0.0 84.4 (79.4–88.6) 80.1 (79.0–81.2) 4.25

FPG+HbA1c+creatinine 0.892 (0.873–0.911) 0.05 20.9 84.8 (79.8–89.0) 78.9 (77.8–80.1) 4.03

FPG+HbA1c+age 0.896 (0.878–0.915) 0.19 0.3 83.3 (78.1–87.6) 81.5 (80.3–82.5) 4.49

FPG+HbA1c+body mass index 0.898 (0.880–0.916) 0.02 0.8 88.3 (83.8–92.0) 77.4 (76.2–78.5) 3.90

FPG+HbA1c+systolic blood pressure 0.894 (0.876–0.913) 0.07 20.2 84.8 (79.8–89.0) 79.6 (78.5–80.7) 4.16

FPG+HbA1c+diastolic blood pressure 0.895 (0.876–0.914) 0.95 0.0 83.7 (78.6–88.0) 80.3 (79.2–81.4) 4.25

Women (N = 4847)

FPG+HbA1c 0.938 (0.916–0.960) 92.0 (84.3–96.7) 81.2 (80.1–82.3) 4.91

FPG+HbA1c+triglycerides 0.940 (0.919–0.961) 0.22 0.4 90.9 (82.9–96.0) 83.6 (82.5–84.7) 5.55

FPG+HbA1c+LDL-cholesterol 0.938 (0.917–0.960) 0.45 0.1 86.4 (77.4–92.8) 87.5 (86.5–88.4) 6.91

FPG+HbA1c+HDL-cholesterol 0.938 (0.917–0.960) 0.61 0.1 89.8 (81.5–95.2) 83.7 (82.6–84.7) 5.49

FPG+HbA1c+AST 0.938 (0.916–0.961) 0.75 0.1 85.2 (76.1–91.9) 88.3 (87.3–89.2) 7.26

FPG+HbA1c+ALT 0.940 (0.919–0.962) 0.11 0.6 93.2 (85.7–97.5) 81.2 (80.1–82.3) 4.96

FPG+HbA1c+GGT 0.938 (0.916–0.960) 0.81 0.0 84.1 (74.8–91.0) 88.9 (88.0–89.8) 7.58

FPG+HbA1c+white blood cell count 0.938 (0.917–0.960) 0.33 0.1 88.6 (80.1–94.4) 84.5 (83.4–85.5) 5.70

FPG+HbA1c+uric acid 0.938 (0.915–0.960) 0.78 0.0 86.4 (77.4–92.8) 87.0 (86.0–87.9) 6.62

FPG+HbA1c+creatinine 0.939 (0.917–0.960) 0.66 0.2 90.9 (82.9–96.0) 83.5 (82.4–84.5) 5.51

FPG+HbA1c+age 0.938 (0.916–0.960) 0.86 0.0 92.0 (84.3–96.7) 80.8 (79.6–81.9) 4.79

FPG+HbA1c+body mass index 0.939 (0.917–0.960) 0.48 0.2 93.2 (85.7–97.5) 80.7 (79.5–81.8) 4.82

FPG+HbA1c+systolic blood pressure 0.938 (0.916–0.960) 0.93 0.0 86.4 (77.4–92.8) 87.2 (86.2–88.1) 6.75

FPG+HbA1c+diastolic blood pressure 0.938 (0.916–0.960) 0.91 20.4 85.2 (76.1–91.9) 88.5 (87.5–89.4) 7.39

ALT, alanine aminotransferase; AST, asparate aminotransferase; AUC, area under the receiver operating characteristic curve; CI, confidence interval; FPG, fasting plasma
glucose; GGT, gamma-glutamyltranspeptidase; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
aDiabetes was defined as FPG $7.00 mmol/L or from known diabetes.
bFPG and HbA1c are placed into all models as the basic predictors.
cP value was for comparing the AUC between base model (FPG+HbA1c) and additional models with multiple markers (FPG+HbA1c+non-glycaemic- non-blood
biomarker).
dIncremental AUC above 0.5 was incremental AUC above 0.5 over base model (FPG+HbA1c).
doi:10.1371/journal.pone.0066899.t004
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vitamin D status was associated with decreased risk of type 2

diabetes [45]. However, serum assays of these specialized markers

are costly and not common in clinical practice. Furthermore,

addition of these inflammatory biomarkers to classic glycaemic

biomarkers were in doubt for clinical practice as a resource to

predict diabetes [46]. Therefore, the absence of assays of these

markers may be justified.

In summary, non-glycaemic biomarkers and non-blood bio-

markers gave little or marginal improvement to diagnostic

precision when added to the classic predictive model for diabetes

using FPG and HbA1c. For the prediction of diabetes, FPG and

HbA1c are sufficient, at least, as long as the current diagnostic

criteria are used.
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