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Muscular dystrophies are chronic and debilitating disorders caused by progressive

muscle wasting. Duchenne muscular dystrophy (DMD) is the most common type. DMD

is a well-characterized genetic disorder caused by the absence of dystrophin. Although

some therapies exist to treat the symptoms and there are ongoing efforts to correct the

underlying molecular defect, patients with muscular dystrophies would greatly benefit

from new therapies that target the specific pathways contributing directly to the muscle

disorders. Three new advances are poised to change the landscape of therapies for

muscular dystrophies such as DMD. First, the advent of human induced pluripotent

stem cells (iPSCs) allows researchers to design effective treatment strategies that make

up for the gaps missed by conventional “one size fits all” strategies. By characterizing

tissue alterations with single-cell resolution and having molecular profiles for therapeutic

treatments for a variety of cell types, clinical researchers can design multi-pronged

interventions to not just delay degenerative processes, but regenerate healthy tissues.

Second, artificial intelligence (AI) will play a significant role in developing future therapies

by allowing the aggregation and synthesis of large and disparate datasets to help

reveal underlying molecular mechanisms. Third, disease models using a high volume

of multi-omics data gathered from diverse sources carry valuable information about

converging and diverging pathways. Using these new tools, the results of previous and

emerging studies will catalyze precision medicine-based drug development that can

tackle devastating disorders such as DMD.
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is a lethal genetic
disorder, primarily characterized by muscle deterioration and
wasting. Ultimately, the majority of DMD patients succumb to
cardiac and respiratory complications (1). DMD is caused by
mutations in the X-chromosome-linked DMD gene that codes
for the dystrophin protein, which is an important component
of muscle cells’ cytoskeleton. Mutations in DMD generally
result in large deletions of the dystrophin protein that reduce
structural integrity in muscle cells (2). Loss of dystrophin heavily
disrupts the connection between the inner cytoskeleton and the
extracellular matrix, known as the dystrophin associated protein
complex, leading to structural and functional abnormalities in
these mechanically active muscle cells (3). As DMD progresses,
additional cell functions are impacted (e.g., disrupted calcium
regulation, accumulation of reactive oxygen species, poor
mitochondrial energetics, etc.). Muscle cells try to adapt to the
disrupted processes (4), but can quickly overcompensate, causing
the cell to transition from a stressed to a destabilized state; at
this point it begins to secrete inflammatory cytokines, activates
fibrosis, and ultimately dies (5). As more cellular processes are
disrupted, more evidence of cellular dysfunction is exhibited
that can be detected in the form of higher levels of serum
biomarkers like creatine kinase and myoglobin as signs of muscle
wasting, and TNF-α, IFN-γ, IL-5 and IL-6 as signs of chronic
inflammation (6–9). Therapeutic efforts for DMD are therefore
divided between targeting (i) the underlying cause of DMD, loss
of dystrophin, or (ii) targeting a secondary pathology (10).

DMD is a rapidly progressing disease: it presents between
the ages 2–5, loss of ambulation can happen by age 12, and
premature death can happen by age 25–30 (1). The guidelines for
managing DMD include recommendations on nutrition, physical
therapy, and cardiovascular health that can help slow down
disease progression (11), but there is currently no cure for the
disease. Emerging therapies are targeting the underlying loss
of dystrophin via several ideas like transcriptionally inducing
the production of more dystrophin, utilizing oligonucleotides
to promote exon-skipping of the mutant region, and genome
editing the mutant exon, all with the goal of producing a healthy
dystrophin molecule (12–14). All these promising strategies are
currently being evaluated, but they are not ready to provide
current DMD patients with useful options to delay pathologic
onset. Furthermore, fixing the dystrophin issue would not
spontaneously fix all the incurred muscle damage, and thus
some additional therapy will likely be needed to achieve healthy
skeletal muscle and cardiac function. Many of the current
interventions target the compensatory processes that contribute
to muscle inflammation and oxidative stress, but are able to
only mildly decelerate loss of ambulation and cardiomyopathy
(5, 13). The information gathered through decades of pre-
clinical, clinical, and pharmaceutical studies has provided a
strong foundation for understanding and treating DMD, and can
be used to identify other targets; additionally, the information
gathered in clinical trials for any compound can inform on
efficacy for these chemicals. Clinical studies have also helped us
establish checkpoints for disease progression from early-stage

to end-stage, allowing us to predict disease progression and
informing treatment.

The advent of combining several new approaches holds
promise for better and more specific treatments of DMD in the
future (Figure 1). First, stem cell-based studies can investigate
cellular processes and the effects of different treatments on
DMD-afflicted muscle cells without risk to patients. Second, the
evolving AI tools could be used to perform high dimensional
drug screening with more efficiently streamlined analysis. Third,
multi-omics approaches allow the synthesis of information from
diverse sources and enable a more holistic understanding of
the mechanisms underlying the disease. In this review, we will
discuss all three of these approaches, their recent applications,
and their potential.

HUMAN STEM CELLS PROVIDE CELL
TYPE- AND DISEASE-SPECIFIC INSIGHTS

Both DMD-like mouse models and DMD patient samples have
yieldedmechanistic insights by comparing differential expression
of wild-type (WT) and healthy human tissues, pointing to
potential pharmaceutical targets (16–18). The mdx mouse has
been a standard pre-clinical model for DMD for deciphering how
these markers interact and contribute to muscle wasting (19). It
has also been extensively used to test the efficacy of the current
interventions for DMD (20). However, the reliability of animal
models in biomedical research has been questioned due to issues
concerning physiological context, species specificity, and clinical
relevance (21). An mdx mouse study noted a delayed onset of
cardiomyopathy, as opposed to humans which is the main cause
of death (22). Even with their contributions to our understanding
of the disease, better models that recapitulate the phenotype
are necessary (23). By utilizing induced pluripotent stem cells
(iPSCs), human disease models hold substantial promise for
the clinic, because one can study patient-specific pathologies
in multiple different tissues and cell types (24, 25). The use
of human iPSCs, in which somatic cells can be reprogrammed
to a pluripotent state by introducing four key transcription
factors (Oct4, Sox2, Klf4, and c-Myc) and then be chemically
programmed to become a cell type of interest (25, 26), has been
a ground-breaking technology that promises to treat an entire
spectrum of intractable diseases including DMD.

A current effort to directly correct the dystrophin deficiency
in DMD is being piloted in the mdx mouse using CRISPR/Cas9
to edit the genetic defect as a therapeutic strategy (15, 27). These
efforts have generated a single-cell atlas of skeletal muscle from
a dystrophic mouse model that covers both its diseased-state
and a CRISPR-corrected state (28). Many known differential
expression changes in metabolism, inflammation, and regulatory
networks were recapitulated. Moreover, the crosstalk between
skeletal myocytes, endothelial cells, macrophages, and various
other cell types was explored. In addition, Chemello et al. were
able to analyze diverse transcriptional programs stemming from
various nuclei, which is important considering that skeletal
muscle can house several myonuclei per cell. These spatially
defined tissue studies using single-cell RNA-seq can show how
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FIGURE 1 | Schematic of the approaches to broaden the therapeutics available to DMD patients. Patient-derived or genome-edited iPSCs provide a human model for

disease specific modeling of various cell types and benefits from previous knowledge using the mdx mouse. Newer experimental technologies are detailing the

intricacies of complex phenotypes. Next-generation computational tools are enabling high-dimensional analysis of multi-omics data. This figure was created

with BioRender.com.

different cell types could be targeted for their modified state. Even
with the innovation and excitement for spatial transcriptomics
studies, there still are trade-offs in utilizing these experiments
for mechanistic inference (29). Depending on the question,
if a tissue is too large, certain information could be missed
if multiple spaces are not covered or considered for analysis,
leading to biases. In addition, processing different samples using
different tissue separation or cell isolation protocols can create
significant variations in the experimental results, which is why
there is much interest in automation. Future advances in spatial
transcriptomics may overcome some of the present limitations of
these experiments (30). Studies utilizing iPSCs can be designed
for characterizing the disease-state phenotype of various cell
types and testing for drugs.

Recently, human stem cell models have been utilized to
study DMD. For example, by identifying issues with cell fate
during differentiation, studies have highlighted new potential
therapeutic targets (31, 32). There are other examples of how
stem cells were successfully deployed to better understand
DMD (14, 33). DMD patient-derived iPSCs were used to show
accelerated telomere shortening that is seen in DMD patients’

heart muscle cells (34). In yet another example, a recent study
combined data from both the mdx mouse and DMD patient-
derived iPSC-cardiomyocytes to show the overlap in phenotypes
between both species and also how both species’ cells react to
adrenergic receptor stimulation with an agonist (isoproterenol)
and antagonist (beta-blocker) (35). This is important because
it supports the use of iPSC-derived models as a proper tool
for characterizing common DMD treatment effects, just as
the mdx mouse has been used for decades. Another recent
study characterized the functional effects of known Chinese
herbal medicine components on DMD iPSC-cardiomyocytes,
highlighting the potential of stem cells for drug discovery (36).
This work showed that the anti-oxidant effects of these herbal
compounds can be effective at reducing oxidative stress. In a
recent review of DMD therapeutics, a meta-analysis of gene
expression comparisons of other DMD samples showed that
extracellular matrix (ECM) and cell-to-cell interaction molecules
are prime targets for reversing late-stage DMD, which makes
logical sense because to restore ambulation, the musculature
would need to be strengthened (10). Stem cells give us the
ability to generate and characterize the different cell types
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FIGURE 2 | Sample meta-analysis from an A.I. driven therapeutics platform. (A) Summary of some of the top gene targets associated to DMD. (B) Summary of some

of the top compounds associated to DMD for therapy. The evidence for classifying these molecules as the top targets is gleaned from various public databases plus

the funding and publications landscape using PandaOmics (http://pandaomics.com/).
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affected by DMD, as well as the ability to perform high-
throughput drug screens, paving the way toward patient-specific
treatment programs.

AI FACILITATES HIGH-DIMENSIONAL
ANALYSIS OF LARGE DMD DATASETS

Recent advances in omics technologies have led to substantial
data generation for disease modeling. However, the wealth
of information has resulted in a predictable challenge: how
to aggregate and interpret disparate data types, such as
transcriptomic, epigenomic, functional, and textual data, which
may be distributed across siloed databases (37). Advances in
AI have led to models that perform automated text processing
and comprehension. Additional AI models can process high-
dimensional, non-linear omics data and learn new features about
the data that would not be obvious using traditional analysis
(38). Simultaneously, progress in computational hardware has
increased the ability of researchers to develop and train models
to aggregate, analyze, and make predictions using very large
datasets. An emerging benefit of using “big-data” algorithms
on biomedical information is the ability to tailor treatment
programs for individual patients. Information obtained from a
person’s genome is becoming more reliable and pharmaceutically
applicable every day (39). However, designing a specific therapy
still requires precisely matching the correct treatment with the
unique underlying defect and health state of the patient. The
competitive pace of the computational market is driving the
current efforts in biotech and pharma to be in position to produce
innovative therapies.

Natural language processing (NLP), a machine learning
tool with the capability to process text to achieve automated
comprehension, translation, and generation, is perhaps one of
the most critical AI tools for biomedical research. Initially, NLP
primarily relied on recurrent neural networks as the main model
of choice. However, recurrent neural networks were limited
in the size of the datasets they could train on, and therefore
delivered limited performance on clinical and biomedical text
comprehension (40). Transformers and attention-based language
models have reshaped the landscape of NLP by bypassing existing
limitations of recurrent neural networks (41). Importantly,
transformers are capable of handling larger datasets than seen
before and delivering greater text comprehension, both of
which are required to discover novel biological mechanisms and
therapeutics from existing biomedical literature and databases
(42). When applied to DMD, these recent advances in NLP
can query large amounts of DMD-related text and databases to
identify key words of interest, annotate DMD with additional
clinical phenotypes, molecular pathways, and protein-protein
interactions. In drug development, NLP is capable of extracting
biological and chemical molecules from existing literature that
may interact with DMD pathways and have therapeutics effects.

As an example, Insilico Medicine has been developing an AI-
driven platform that combines multiple datasets from various
sources to classify therapeutic targets by their disease relevance,
“druggability,” and clinical trajectory. One of the tools is called

PandaOmics, which uses deep-learning and cloud-stored data to
enable researchers to search information on diseases and their
drug targets. The OMICs-sourced analysis of disease relevance is
derived from Genome Wide Association Studies, Transcriptome
Wide Association Studies, Online Mendelian Inheritance in
Man, and the Library of Integrated Network-Based Cellular
Signatures, to name a few data bases. For example, PandaOmics
combs through clinical trial reports, grant applications, and
publications data stemming from the labs mostly associated with
the study of a specific disease or compound. This can help
inform the larger community, including regulatory agencies,
investors, and start-ups, on the basic importance of a target. Their
proprietary pathway analysis approach uses iPANDA (in silico
Pathway Activation Network Decomposition Analysis) to infer
pathway alterations and find significant targets (43). Microarray
expression data of skeletal muscles fromDMDpatients compared
to healthy controls are used to quantify common transcriptional
changes (44–47). Figures 2A,B illustrate a sample output of a
PandaOmics meta-analysis showing some known disease targets
and compounds used to treat DMD from the pre-clinical and
clinical research stages to full approval for use. Thus, the advent
of AI, in particular NLP, allows researchers to aggregate and
unearth DMD mechanisms and potential therapeutics that was
previously impossible due to the monumental size and siloed
nature of existing DMD literature and databases.

Emerging DMD Multi-Omics Analysis Show
Concord and Complexity
Multi-omics experiments for mechanistic insights of DMD have
been performed on both animal models (e.g., mdx mouse)
and human tissues (e.g., muscle biopsies), thus significantly
increasing the diversity of datasets available for analysis. One
of the earliest studies into the differences between normal and
DMD skeletal muscle transcriptomes was performed on the
hind limb and diaphragm muscles of mdx mice compared
to control mice (48). This study reported several mechanisms
of DMD, including differential expression of IGF-II, NF-kB,
SERCA1, RYR1, α-tubulin, and collagens, among many others.
A follow-up study comparing mRNA from the gastrocnemius
muscle of mdx vs. control mouse used an array analysis of
>12,000 genes (49). This study was in agreement with previous
reports confirming differential expression of myogenin, α2-
tubulin, lysozyme M, and myostatin, among others. It also
reported upregulation of both IGF-I and IGF-II in dystrophic
muscles, but discovered inhibitory IGF-binding proteins and
regulators were also increased, thus counteracting the potential
beneficial effects of their upregulation. This demonstrates an
example of which analyses of multiple datasets are necessary
to provide deeper understanding of mechanistic insights. More
importantly, Bakay et al. compared their study with human
DMD mRNA analyses (49). This revealed notable differences
between the transcriptomes of the mdx mouse and human
samples, including discordant directional changes in mRNA
for myogenin, guanidinoacetate methyltransferase, calponin, and
mast cell chymase.
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Since these early investigations on the transcriptomic
differences, subsequent studies further built upon these
mechanistic insights using other omics approaches. For example,
studies into microRNAs and chromatin changes revealed
the importance of nitric oxide and its associated pathway
in DMD pathogenesis (50, 51). Proteomic analysis revealed
that Bromodomain and extra-terminal domain (BET) protein
BRD4 is significantly increased in the mdx mouse due to direct
association to chromatin regulatory regions of the NADPH
oxidase subunits (52). Epigenomic analysis, including that on
histone acetylation of H3K14 and H3K9 and DNA methylations
of Notch1, has revealed its role in regulating satellite cell fate
during skeletal muscle regeneration and its dysregulation in
DMD (53). Additional chromatin studies also revealed that
nuclear pore protein Nup153 associates with chromatin and
regulates cardiac gene expression in mdx hearts (54). Recent
studies began looking more comprehensively into multi-omics
analysis of mdx mouse and human iPSCs. These studies found
discrepancies between different omics, such as only a 53%
agreement in fold-change data between the proteome and
transcriptome in mdx mice (55). Nonetheless, multi-omics
studies continue to be a valuable approach in elucidating disease
mechanisms as demonstrated by their ability to provide insight
into early developmental manifestations of DMD in iPSC
models of skeletal muscle differentiation (32). A main challenge
remains in integrating these numerous multi-omics datasets
into something more precisely meaningful and individually
translatable for the patients.

SUMMARY

Discovering, developing, and delivering targeted therapeutics
requires substantial support and collaboration from both
academia and industry. It also requires interdisciplinary studies
and combinations of skillsets to enable progress. Much is said
about how interdisciplinary research is the proper approach to
tackling complex diseases even if it also brings challenges in
communication and prioritization (56, 57). These challenges can
spill over to therapeutics studies where we evaluate how the
data we generate correlate with seemingly disconnected sets and
how certain factors influence the phenomena we are studying.
Machine-learning may not be a new concept, but the influence
it has had on biological studies in the past decade is founded on
the many novel insights it has generated into how we visualize
biological processes and problems (58). The field of DMD has
been enriched by advancements in AI and deep learning that
now make it possible to aggregate, interpret, and visualize high
volumes of high-dimensional and non-linear datasets.

Theoretically, by combining better models of disease risk
and severity with detailed analysis of different compounds,
we will significantly improve our ability to treat and reduce
cardiomyopathy-related deaths. Furthermore, as we approach
the goal of fixing the underlying pathological mechanism of
diseases like DMD, we must remember to rehabilitate and
regenerate healthy tissues to counter persistent dysfunctions
and avoid long-term hauling of these issues. To realize these
precise therapies will require a convergence of data acquired
from state-of-the-art tools and the prioritization of different
research agencies and institutes. This will undoubtedly change
business models for pharmaceutical and biotech companies,
because this will involve a much greater role for drug
repurposing, intellectual property disputes and bargains in the
coming years. Moreover, on the scientific front, as the quality
of analytical tools increases, we will also need the data to
be reproducible and of higher quality. The tools we utilize
to study cells from different tissues and lineages like iPSCs
are becoming ever more reliable and sustainable with single-
cell analysis being the standard. Some advances in AI are
providing visually interesting graphics that link disease targets
to compounds with clinical context. Multi-omics analysis is
highlighting the different pathways a disease can take. These
developments hold a great potential for improving healthcare
by providing clinical researchers with accurate, high-resolution
disease-models that will help illuminate the paths to improving
patient outcomes.
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