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This work presents a novel framework to simultaneously address the optimal planning of COVID-19 vac-
cine supply chains and the optimal planning of daily vaccinations in the available vaccination centres. A
new mixed integer linear programming (MILP) model is developed to generate optimal decisions regard-
ing the transferred quantities between locations, the inventory profiles of central hubs and vaccination
centres and the daily vaccination plans in the vaccination centres of the supply chain network. Specific
COVID-19 characteristics, such as special cold storage technologies, limited shelf-life of mRNA vaccines
in refrigerated conditions and demanding vaccination targets under extreme time pressure, are aptly
modelled. The goal of the model is the minimization of total costs, including storage and transportation
costs, costs related to fleet and staff requirements, as well as, indirect costs imposed by wasted doses. A
two-step decomposition strategy based on a divide-and-conquer and an aggregation approach is pro-
posed for the solution of large-scale problems. The applicability and efficiency of the proposed
optimization-based framework is illustrated on a study case that simulates the Greek nationwide vacci-
nation program. Finally, a rolling horizon technique is employed to reactively deal with possible distur-
bances in the vaccination plans. The proposed mathematical framework facilitates the decision-making
process in COVID-19 vaccine supply chains into minimizing the underlying costs and the number of doses
lost. As a result, the efficiency of the distribution network is improved, thus assisting the mass vaccina-
tion campaigns against COVID-19.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The unprecedented effects of SARS-COV-2 virus have risen an
immense global interest regarding the development and distribu-
tion of safe and effective vaccines. Worldwide, more than 160 mil-
lion people have been already infected, while close to 3.5 million
passed away. In addition, the necessitated protective measures,
and lengthy lockdowns have a severe financial impact on the soci-
ety. The urge to rapidly decrease the toll of COVID-19 on health
and global economy led to the rapid authorization of various vac-
cine candidates within a record time. While the focus in the vac-
cine world has been on developing the required vaccines and
measuring their effectiveness, the struggle to understand and
properly address the issues of the Vaccine Supply Chain (VSC)
greatly reduces the impact of any vaccination program [1]. Mass
vaccination of the world’s population will achieve herd immunity,
the first step for the progressive transition to the pre-COVID-19
normalcy. As a result, the biggest vaccination program in human
history is currently in action pushing the COVID-19 VSC to its lim-
its. Furthermore, special characteristics, like limited shelf-life and
storage requirements in freezing conditions, makes its manage-
ment a critical logistical challenge. Efficient and effective planning
and operation of the supply chain is crucial for the success of the
vaccination program, otherwise, numerous valuable doses will be
wasted, and the program’s progress will slow down, imposing
important financial losses.

Few studies focus on VSCs, despite the substantial published
research on supply chain optimization. Most related studies are
concerned with problems related to the pharmaceutical sector
[2–8]. More recent contributions address key problems of the phar-
maceutical supply chain, like vehicle routing decisions [9,10],
uncertainty [11], product perishability [12] and integrated capacity
planning and scheduling [13], while few recent contributions
focused on supply chains of CAR T-cell therapies [14–16]. Lately,
the scientific community has shown an increasing interest in VSCs
[17–19], especially on the design/redesign problem of VSC net-
works in developing countries [20–22]. Two extensive literature
reviews on the topic of VSCs were recently published [23,24].
The optimal planning of the supply chain network has a strong
positive effect on its efficiency. Therefore, a plethora of mathemat-
ical programming models have been proposed to address this
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Nomenclature

Indices
i; j Locations (manufacturing plants-hubs-vaccination cen-

tres)
v Vaccine
c Cold storage technology
t Time periods
w weeks

Sets
f i Manufacturing plants
hi Hubs
vci Vaccination centres
cli Clusters
FV Vaccine v produced in manufacturing plant f
IJ Connectivity between the locations of the supply chain
HVC Connectivity between hubs h and vaccination centres vc
CV Cold storage technology c necessary for long term stor-

age of vaccine v
SLv Subset of vaccines that have a shelf-life smaller than the

considered horizon

Parameters
pmax
h;v Maximum supply of vaccine v to hub h (vials)

ai;v Initial stored amount of vaccine v in location i (vials)
bi Ratio of vaccine wasted in location i
ch;c Storage capacity of technology c in hub h (vials)
hvc Storage capacity in vaccination centre vc (vials)
ei;v Safety stock of vaccine v in location i (vials)
qmin
i;j Minimum flow allowed between locations i and j

qmax
i;j Maximum flow allowed between locations i and j

dv Doses per vial of vaccine v
kv Shelf-life of vaccine v in refrigeration (days). Only rele-

vant for vaccines with a shelf-life smaller than the con-
sidered horizon.

fvc Vaccination appointments goal for each vc
g Number of vaccinations done daily by a vaccination line

(Two healthcare workers)
ivc Base number of healthcare workers in vaccination cen-

tre vc
wc Operating cost of cold storage technology c (€ per daily

storage of a single vial)
j Average fuel consumption of truck transporting vacci-

nes (litres/100 km)

u Fuel price (€/litre)
li;j Distance between locations i and j (km)
s Average speed of vehicles transferring the vaccines
o Cost of employing a driver (€/hour)
nv Cost of vaccine v (€/dose)
r Cost for utilizing extra healthcare workers (daily)
m Cost of renting a truck (Two weeks)

Variables
Xi;j;v;t Amount of vaccine v transferred from location i to j in

period t (vials)
Si;v ;t Amount of vaccine v stored in location i in period t

(vials)
Pf ;v ;t Amount of vaccine v supplied by manufacturing plant f

in t (vials)
LSi;v ;t Wasted vials of vaccine v in location i in time period t
VUvc;v ;t Vials of vaccine v used in vc in period t
Lvc;v ;t;t0 Amount of vaccine v transferred in vc in t and used in t’

(vials)
WDvc;v ;t Wasted doses of vaccine v in vaccination centre vc in

period t
DUvc;v ;t Doses of vaccine v used in vc in period t
DAvc;t Vaccination appointments in location i in time period t
VAi;v ;t Appointments using vaccine v in location i in time

period t
WEi;t Vials wasted due to expiration in location i in time

period t
WEIi Vials from initial storage wasted due to expiration in

location i in time period t
HWi;t Number of healthcare workers required in location in

location i in time period t
AHi;t Additional healthcare workers (more than base)

required in location i in time period t
NT Number of trucks required for transportation
SUvc;slv ;t Vials of initially stored vaccine slv used in vaccination

centre vc in period t
VUI

vc;v ;t Integer number of vials of vaccine v used in period t
Yi;j;t Binary variable that equals 1 if vaccines are transferred

between locations i and j in period t
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problem [25–27]. Despite the rich literature, only a handful of con-
tributions consider the optimal planning of VSCs. Chen et al. devel-
oped the first planning model for a World Health Organization’s
Expanded Program on Immunization (WHO-EPI) distribution chain
in developing countries [28]. Another study proposed a multi-
objective, multi-period Mixed-Integer Linear Programming (MILP)
model to address the simultaneous optimal design and planning of
sustainable VSCs [29]. Trade-offs between the sustainability
dimensions considered (economic, environmental, and social) are
highlighted. Recently, Yang investigated the optimal design and
operation of WHO-EPI vaccine distribution chains [30]. The author
developed an MILP model and a disaggregation-merging technique
to generate optimal solutions for real-world cases. Recently, Kon-
toravdi et al. presented a thoughtful discussion on the production
phase of the vaccine [31]. The distribution phase of the COVID-19
supply chain has not been studied so far. A few contributions focus
on the effect of the COVID-19 pandemic on other distribution sup-
ply chains [32]. The COVID-19 distribution chain displays special
5303
characteristics that differentiate them from other VSCs. A promi-
nent concern regarding the distribution of COVID-19 vaccines is
the strict temperature requirements during transportation and
storage. Inefficient planning can lead to losses of many valuable
doses and thus to increased operational costs. These negative
implications are further amplified due to the enormous scale of
the COVID-19 vaccination programs.

In this work, a new MILP model is presented for the optimal
short-term planning of the COVID-19 supply chain network. Tacti-
cal and operational decisions regarding the inventory levels in the
central hubs and vaccination centres, the vaccine flows between
the various locations of the distribution network, the fleet require-
ments, the scheduling of citizens’ vaccinations, as well as, staffing
of the vaccination centres are simultaneously considered. The goal
of the optimization is the minimization of cost. While previous
works have addressed the medium-term VSC planning problem,
the developed model is the first to consider key issues of the
COVID-19 supply chain, like storage and supply limitations,
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multiple cold storage technologies, demanding vaccination targets,
transportation lead-times and vaccine perishability. Moreover, the
literature models focus on economic or social objectives and do not
take into account the minimization of wasted doses, a critical tar-
get for the effectiveness of the COVID-19 vaccination program. In
addition to considering the minimization of dose wastage, the
developed model is the first to simultaneously take optimal
short-term decisions for the VSC and planning decisions for the
vaccination program in each vaccination centre. Integrating these
decisions enhances the efficiency of the overall vaccination pro-
gram. An MILP-based solution strategy is introduced for the effi-
cient solution of large-scale realistic case studies and is
successfully applied to a case simulating the Greek COVID-19
VSC. Furthermore, a rolling-horizon technique is incorporated to
replan the supply chain, in case of demand fluctuations originating
from citizens that reschedule their vaccination appointment at the
last minute or cancel a scheduled appointment. To the best of our
knowledge this is one of the first contributions that examines the
optimal planning of COVID-19 VSCs by integrating all key planning
decisions for the efficient and cost effective realization of the citi-
zens’ vaccinations program.

2. Problem statement

The problem addressed in this work considers the optimal
short-term planning of the COVID-19 VSC, as well as the optimal
planning of appointments in the vaccination centres, in order to
minimize the total costs. Fig. 1 illustrates a generic representation
of the underlying network. The supply chain consists of three ech-
elons: the manufacturing plants with a known maximum produc-
tion capacity, the hubs, where the vaccine vials are stored and the
vaccination centres, where the citizens are vaccinated. The product
(vaccines) flow is unidirectional, from the manufacturers to the
hubs and finally to the vaccination centres. Reverse flows from
the vaccination centres to the hubs are not allowed, while intra-
layer flows between the hubs or the vaccination centres are not
considered. Finally, the vaccines are used in the vaccination pro-
gram of the population. Planning of the appointments is consid-
ered simultaneously with the planning the distribution of the
COVID-19 vaccines. The capacity of the vaccination centres varies
according to the employed healthcare personnel. To properly con-
sider the low shelf-life of sensitive vaccines (5 days), a 14-day hori-
zon is considered. The problem is described in terms of an MILP
model that relies on a daily discretization of the time horizon.
Within the given horizon a specific number of completed appoint-
ments must be satisfied. The model distributes them throughout
the available periods. As a result, optimal decisions regarding the
daily appointments at each centre are generated, which impose
the needs in healthcare personnel.

Four vaccines with different characteristics are studied. In par-
ticular, the vaccines of Astrazeneca (A), Johnson& Johnson (J), Mod-
erna (M) and Pfizer (P) are considered. Extension to more types of
vaccines is straightforward since no changes in the developed
model are necessary. Rather only an update on the set of vaccines
v and all associated data, e.g. storage conditions, shelf-life etc. is
required. The hubs are equipped with all necessary cold storage
Fig. 1. Covid-19 Vaccine Supp
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technologies for the long-term storage of the vaccines. More specif-
ically, deep freezers (�70 �C) are required for Pfizer and regular
freezers (�20 �C) for Moderna vaccines, while simple refrigeration
suffices for the non-mRNA alternatives (A and J). In contrast, the
vaccination centres are only equipped with regular refrigerators.
This reinforces the need for the proper organization of the supply
chain, since mRNA vaccines, especially the Pfizer vaccine, cannot
be maintained long-term in refrigerated conditions. Therefore, per-
ishability considerations are included in the proposed MILP model.
A homogeneous fleet of trucks is employed to transport the vacci-
nes from the hubs to the vaccination centres. The trucks are
equipped with dry shippers to maintain low temperatures during
transportation and ensure that the cold chain remains uninter-
rupted. Explicit truck capacity limits are not considered, they are
matched by the vaccination centre’s capacity. Vehicle routing is
not considered in this study. It is assumed that in each period a
truck can visit a single vaccination centre and must return to the
hub from which it started. A daily lead-time is necessary for the
transportation of vaccines between the echelons of the supply
chain. An important issue in VSCs is related with the wasted doses.
This is especially relevant for perishable products like the mRNA
COVID-19 vaccines. The World Health Organization (WHO) catego-
rizes the wasted doses into closed vial wastage, which is caused by
inefficiencies in the supply chain and open vial wastage, which is
further divided into avoidable and unavoidable open vial wastage
[33]. The first is attributed to immunization workers and include
errors in patients’ reactions, suspected contamination, reconstitu-
tion, and excess heat. The latter refers to the discarded doses from
multidose vials. Closed vial wastage and avoidable vial wastage are
included in the model based on the wastage ratios recommended
by WHO, while the minimization of the unavoidable open vial
wastage is included in the objective function of the proposed
model.

The objective of the proposed framework is to determine a) the
transferred amounts and inventory profiles in each location, b) the
daily vaccination appointments and the doses wasted due to open
vials that are not fully exploited or due to expiration and c) the
needs in healthcare personnel and fleet size to realize the vaccina-
tion program, so that the total cost of the supply chain is mini-
mized. A cost term considers the valuable doses being wasted,
while a backlog term is not included, since failing to realize a
scheduled appointment is not allowed. Finally, the proposed
framework examines a mature COVID-19 VSC, where vaccine avail-
ability issues have been overcome.

3. Mathematical framework

In this chapter the MILP-based mathematical frameworks that
have been developed to deal with the optimization problem of
planning the COVID-19 VSC are presented.

3.1. MILP model

The proposed model utilizes a discrete time grid to efficiently
capture the inventory balances in the various locations of the
supply chain. The constraints related to the material balances,
ly Chain Representation.
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inventory capacities and vaccine flows are inspired by the model
proposed by Carvalho et al. [29]. In addition to the material bal-
ance, inventory capacity and flow limitation constraints, the pro-
posed model introduces efficient constraints for the
incorporation of lead-time, shelf-life limitations and the vaccina-
tion plan.

The supply limitations provided by the manufacturer are
expressed by constraints (1) and (2). More specifically, constraints
(1) ensure that the vials of vaccine v supplied by the corresponding
manufacturer f (Pf ;v ;t) throughout the considered planning horizon
are limited by the upper bound of production (pmax

h;v ). Furthermore,
it is assumed that each manufacturer f can supply each hub h at
most once per week, as imposed by constraints (2). Constraints
(3)–(7) encapsulate the material balances around each location of
the supply chain. Firstly, constraints (3) guarantee that the amount
of a vaccine v transferred from a factory f to all hubs h (Xf ;h;v ;t)
equals the total amount supplied by the factory in time period t.
The next two constraints set the material balances around the
hubs. Constraints (4) state that the inventory at the end of the first
time period equals the initial inventory of the hub (ah;v ) plus the
amount transferred from the factories, minus the amount that
has been sent to the vaccination centres (Xh;vc;v ;t) and the number
of vials lost (LSh;v ;t). For all next time periods, the constraints
remain the same, but instead of using the initial inventory, the
inventory of the previous period is used. Similarly, constraints (6)
and (7) monitor the material balances around the vaccination cen-
tres. Constraints (8) calculate the vials of vaccine v lost in each
location i and time period t. Constraints (9) impose a minimum
safety stock at the end of the planning horizon (ei;v ), which is
required to ensure the future availability of vaccines in the hubs
and the vaccination centres. The storage capacities of the various
technologies in the hubs and the vaccination centres are respected
by constraints (10) and (11) accordingly. The minimum (qmin

i;j ) and
maximum (qmax

i;j Þvial flows between locations are incorporated
with constraints (12) and (13). Notice that when a connection is
not realized in time period t (Yi;j;t ¼ 0), the associated transferred
quantities (Xi;j;v;t) are zero.

At this point we should note, that while many variables are
associated with an integer number of vaccines, e.g. Xf,h,v,t, Sh,v,t
etc., they are modelled as continuous variables. This is done
to allow the prompt generation of optimal decisions. Modelling
these variables as integer would result to a computationally
intractable model even for medium-sized problem instances.
To generate integer decisions, one could manually round the
non-integer solution extracted by the model. Alternatively, the
generated non-integer solution can be used as an initial solu-
tion for the same model, but with these variables defined as
integer.

X

f2FV

X

t

Pf ;v ;t 6 pmax
h;v 8h;v ð1Þ

X

t2TW
Yf ;h;t 6 1 8f ; h;w ð2Þ

X

h

Xf ;h;v;t ¼ Pf ;v;t 8f 2 fv ;v ; t ð3Þ

Sh;v;t ¼ ah;v þ
X

f

Xf ;h;v;t �
X

vc2HVC
Xh;vc;v;t � LSh;v;t 8h; v ; t ¼ 1 ð4Þ

Sh;v;t ¼ Sh;v;t�1 þ
X

f2FV
Xf ;h;v ;t �

X

vc2HVC
Xh;vc;v;t � LSh;v;t 8h;v ; t

> 1 ð5Þ
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Svc;v ;t ¼ avc;v þ
X

h2HVC
Xh;vc;v ;t � VUvc;v ;t � LSvc;v;t 8vc;v ; t ¼ 1 ð6Þ

Svc;v ;t ¼ Svc;v;t�1 þ
X

h2HVC
Xh;vc;v;t � VUvc;v;t � LSvc;v;t 8vc;v ; t

> 1 ð7Þ

LSi;v;t ¼ Si;v;t � qi 8i; v ; t ð8Þ
X

v
Si;v;t P

X

v
ei;v 8i 2 ðvci [ hiÞ; t ¼ Tj j ð9Þ

X

v2CV
Sh;v;t 6 cc;h 8h; c; t ð10Þ

X

v
Svc;v;t 6 hvc8vc; t ð11Þ

qmin
f ;h � Yh;vc;t 6

X

v2FV
Xf ;h;v;t 6 qmax

f ;h � Yh;vc;t 8f ;h; t ð12Þ

qmin
h;vc � Yh;vc;t 6

X

v
Xh;vc;v;t 6 qmax

h;vc � Yh;vc;t 8h 2 HVC;vc; t ð13Þ

An important characteristic of the studied supply chain con-
cerns the required transportation time between the supply chain
nodes. Theoretically, within the same day a vial could be trans-
ferred from the manufacturers to the hubs and then the vaccina-
tion centres to be used. However, this would require a finer
discretization of time, thus resulting in large and computationally
intractable models. Therefore, to ensure the feasibility of the pro-
posed logistics operations using a daily discretization, it is assumed
that a vial that is transferred from a manufacturing plant to a hub
in period t, can only be further transferred to a vaccination centre
after the next period (t + 1). The same holds for the hubs to vacci-
nation centres connections. So, a transportation lead-time of one
time period is included in the proposed model. These considera-
tions are introduced to the model through constraints (14) and
(15). Fig. 2 illustrates the role of the constraint for the vaccination
centres. More specifically, the vials of vaccine v used in the vacci-
nation plan in a vaccination centre for all periods t0 6 t, have to
be less than or equal to the initial inventory plus the vials that
arrived from the hubs in all periods t00 6 t� 1, minus the vials lost
in the same periods.
X

vc

X

t06t

Xh;vc;v ;t0 6 ah;v þ
X

f2FV

X

t006t�1

Xf ;h;v;t00

�
X

t006t�1

LSh;v;t00 8h;v ; t ð14Þ

X

t06t

VUvc;v;t0 6 avc;v þ
X

h

X

t006t�1

Xh;vc;v;t00 �
X

t006t�1

LSvc;v;t00 8h;v ; t ð15Þ
Fig. 2. Description of transportation time constraints.
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To incorporate shelf-life issues in the model, a new variable
Lvc;v ;t;t0 is introduced, which defines the quantity of vials of vaccines
v used in vaccination centre vc in time period t’ that have been
transferred to the vaccination centre in time period t. Constraints
(16) state that the vials transferred to a vaccination centre in time
period t are either used in the vaccination plan of the next time
periods within the shelf-life of the specific vaccine (ksl) or are
spoiled WEvc;t . In case the time periods after t exceed the consid-
ered horizon, constraints (17) are activated to ensure that the vials
used do not surpass the vials transferred. Another continuous vari-
able is included to model the quantity of vials that existed in the
initial inventory and were used in the vaccination plan of time per-
iod t (SUvc;v ;t). The next constraints connect the total quantity of
vials used in the vaccination plan of period t (VUvc;v ;t), with the
newly introduced variables. Finally, constraints (20) calculate the
number of vials that belong in the initial inventory and are spoiled
(WEI

vc;t).

Xtþksl

t0Ptþ1

Lvc;v;t;t0 þWEvc;t ¼
X

h2HVC
Xh;vc;v;t 8vc;v 2 SL; t

6 ð Tj j � kslÞ ð16Þ

X

t0Ptþ1

Lvc;v;t;t0 6
X

h2HVC
Xh;vc;v;t 8vc;v 2 SL; t > ð Tj j � kslÞ ð17Þ

VUvc;sl;t0 ¼ SUvc;sl;t0 þ
X

t6t0�1

Lvc;sl;t;t0 8vc; sl; t0 6 ksl ð18Þ

VUvc;sl;t0 ¼
Xt0�1

tPt0�ksl

Lvc;sl;t;t0 8vc; sl; t0 > ksl ð19Þ

X

t6ksl

SUvc;sl;t þWEI
vc ¼ avc;sl 8vc; sl ð20Þ

The daily vaccination appointments in vaccination centre vc and
period t (DAvc;t) are calculated as the summation of the doses of all
vaccines v used in the respective vaccination centre (DUvc;v ;t), as
shown in constraints (21). Constraints (22) define the number of
vaccine doses as the product of the vials used and the number of
doses in each vial. Attaining the vaccination target within the plan-
ning horizon is ensured by constraints (23).
X

v
DUvc;v;t ¼ DAvc;t 8vc; t ð21Þ

VUvc;v;t � dv ¼ DUvc;v ;t 8vc;v ; t ð22Þ
X

t

DAvc;t ¼ fvc 8vc ð23Þ

Constraints (24) and (25) define the requirements in healthcare
personnel for the vaccination plan. The number of daily appoint-
ments in a vaccination centre is dependent on the number of active
vaccination lines in the centre (HWvc;t). Based on the Greek COVID-
19 vaccination program, it is assumed that each vaccination line
consists of two health workers, that can complete g vaccinations
per period. For each vaccination appointment a total of 15 min of
registration and monitoring time is necessary, while each vaccina-
tion line is active for 6 h. Thus, parameter g takes the value 24
(6 h*4 appointments/h) in this study. However, the capacity of
the vaccination centre is not limited by this value, since each vac-
cination centre comprises of multiple vaccination lines. More
specifically, every vaccination centre has a base number of vaccina-
tion lines available (ivc) and an additional number of vaccination
lines (AHvc;t) can be activated to ensure the feasibility of the opti-
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mal vaccination plan. The fleet size required for distributing the
vaccines from the hubs to the vaccination centres (NT) is calculated
by constraints (26).

DAvc;t 6 g � HWvc;t 8vc; t ð24Þ

AHvc;t P HWvc;t � ivc 8vc; t ð25Þ
X

h

X

vc2HVC
Yh;vc;t 6 NT 8vc; t ð26Þ

The vaccine doses wasted due to open vials that are not com-
pletely used within a period are included in the model using con-
straints (28). An integer variable is introduced to calculate the
actual number of vials of vaccine v opened in vaccination centre
vc and time period t (VUI

vc;v ;t), as shown in constraints (27). Finally,
the doses available in the opened vials are subtracted by the actual
doses used in the vaccination plan to calculate the number of
wasted doses (WDvc;v ;t).

VUI
vc;v ;t P VUvc;v ;t 8vc;v ; t ð27Þ

WDvc;v;t ¼ ðVUI
vc;v;t � VUvc;v;tÞ � dv 8vc;v ; t ð28Þ

An economic objective that minimizes the total cost of the VSC,
consisting of i) the storage costs, ii) the distribution costs (fuel con-
sumption and drivers’ wages), iii) the compensation for any addi-
tional healthcare personnel, iv) the wasted doses and v) the
rental cost of the fleet, is considered (29).

min
P

h

P
v
P

c2csvc;v

P
tSh;v ;t � jc þ

P
vc
P

v
P

tSvc;v ;t � jrefrigerator

þP
h

P
vc2HVC

P
t2 � lh;vc � ðj�u100Þ � Yh;vc;t þ

P
h

P
vc2HVC

P
t2 � lh;vc

s � o � Yh;vc;t

þP
vc
P

v
P

tWDvc;v ;t � nv þ
P

vcWEI
sl � dsl � nsl þ

P
vc
P

tWEsl;t � dsl � nsl
þr �Pvc

P
tAHvc;t þ m � NT

ð29Þ
3.2. MILP-based solution strategy

For the solution of large problems, an MILP-based strategy,
based on a decomposition algorithm is employed. Let us assume
a relatively small problem with one manufacturing plant, two hubs
and 20 vaccination centres. The problem is decomposed employing
the following rationale. First, the problem is divided into two sub-
problems, one for each hub, where the vaccination centres are pre-
allocated to the closest hub. This assumption is motivated by the
observation that in large problems, the vaccination centres will
never be supplied by the hubs that are far away from them. So, this
approach does not strongly affect the quality of the solution, how-
ever, it reduces immensely the combinatorial complexity of the
problem, since many binary variables (connections between hubs
and vaccination centres) are predefined. Next, the vaccination cen-
tres are grouped into clusters based on existing political bound-
aries. As shown in Fig. 3, four clusters are generated, two for
each subproblem. Then, the two subproblems are solved using
the cluster entities, instead of the vaccination centres. To generate
the models, all related parameters of the vaccination centres, e.g.
vaccination targets, storage capacities etc. are aggregated to
extract the parameters for each cluster. Through this aggregated
approach, small problems that can be quickly solved are generated.
The solution of these models proposes optimal decisions consider-
ing the clusters as the last echelon of the VSC. To disaggregate
these decisions an additional step is introduced. Here, all binary
variables are fixed, and the previous solution is used as a start
point for the solver, meaning that in case hub h is supplying vacci-
nes to cluster cl in time period t (Yh;cl;t ¼ 1), then at this time period
the hub will supply all vaccination centres of this cluster. Since, no



Fig. 3. Decomposition approach.
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binary variables are optimized, the model is reduced to an LP
model, so it can be solved very fast.

Conclusively, the proposed solution strategy consists of two
steps. In the first step, small subproblems are generated, first
through a divide-and-conquer approach that creates MILP-
subproblems for each hub, and then by an aggregation technique
that reduces the number of involved entities, by grouping the vac-
cination centres into clusters. At this point the reduced MILP-
subproblems are solved to provide optimal solutions for the clus-
ters. In the second step of the algorithm, the binary decisions are
fixed, and an LP-model is now solved for all vaccination centres.
Sequentially, the MILP-subproblems for each hub are solved and
finally the optimal plan for the entirety of the supply chain is
created.

3.3. MILP-based replanning algorithm

Often citizens do not arrive to the planned appointment or
reschedule their appointment at the last minute. This is a known
issue in COVID-19 VSCs that must be considered, otherwise the
variations between the planned and the actual vaccinations, may
result to suboptimal or even infeasible solutions. Possible conse-
quences could be the spoilage of numerous doses, the failure of
achieving the vaccination targets, the violation of inventory limita-
tions or the miscalculation of the needs in healthcare personnel.
Therefore, a reactive approach is employed, utilizing the MILP-
based solution strategy in the context of a rolling horizon algo-
rithm to ensure that the supply chain is properly replanned.

The introduction of four new subsets Tp, Tr , Tf and Tc is required
for the implementation of the algorithm. Tp defines the prediction
horizon, which includes all time periods considered by the opti-
mization model at each iteration. In this study a bi-weekly predic-
tion horizon is considered ( Tp

�� �� ¼ 14). Fully reoptimizing the plan
will provide the best possible solutions in terms of the underlying
economic objective; however, it may require a significant number
of changes, leading to nervousness, that could not be implemented
in practice. Therefore, the prediction horizon subset is further
divided into two subsets Tr and Tf . The first corresponds to the ini-
tial part of the prediction horizon, in which the decisions related to
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the binary variables (Yi,j,t) and the daily number of vaccines used
(VUvc,v,t) remain fixed and equal to the previous solution. The sec-
ond horizon is more flexible since the previous solution for the
variables related to the connections between locations of the sup-
ply chain and the vaccines used is applied as a lower bound. This
ensures that the scheduled appointments will not be rescheduled,
however more appointments or additional connections are possi-
ble to improve the quality of the plan. The length of these horizons
can be freely chosen by the decision-makers based on their specific
goals. In this study, equally length horizons are used
( Trj j ¼ Tf

�� �� ¼ 7), which achieve a good trade-off between nervous-
ness and solution quality. The rest of the variables, e.g. inventory
profiles, transferred quantities etc., are fully relaxed throughout
the prediction horizon. Finally, Tc corresponds to the control hori-
zon, that includes all time periods for which the optimized deci-
sions are applied. Usually the control horizon is set to a minimal
of one time period, which allows the re-optimization of the plan
after every time period ( Tcj j ¼ 1). The initial state of the supply
chain in a given prediction horizon Tp;h equals to the final state
of the previous control horizon Tc;h�1. At the end of each period
the model receives the new information regarding the actual vac-
cination appointments and the new inventory levels at the vacci-
nation centres.

Let us assume an illustrative example with the following hori-
zon lengths, Tp

�� �� ¼ 14, Trj j ¼ Tf

�� �� ¼ 7 and Tcj j ¼ 1, with initial time
periods ft1; :::; t14g, ft1; :::; t7g, ft8; :::; t14g and ft1g accordingly.
Initially the solution strategy computes the optimal plan for Tp

�� ��.
At this point the size of fleet is decided, which is the only decision
variable that remains fixed. The plan will be implemented only for
period t1. The information for the actual vaccinations done and the
true levels of inventory in the vaccination centres becomes avail-
able at the end of the period. Then the horizon rolls and the subsets
are updated so that Tp ¼ ft2; :::; t15g Tr ¼ ft2; :::; t8g and
Tf ¼ ft9; :::; t15g. Using the new information and the previous solu-
tion, the proposed optimization-based solution strategy is
employed. This procedure continues iteratively until the finaliza-
tion of the vaccination program. Fig. 4 illustrates the defined hori-
zons for four consecutive iterations of the rolling horizon
algorithm.



Fig. 4. Replanning via a rolling horizon approach.
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The implementation of this algorithm incorporates uncertain-
ties of the COVID-19 supply chain related to the differences
between the planned and the actual appointments in the mod-
elling approach. Thus, the decision-makers can deal with such
uncertainties and constantly improve the extracted plans using
the current state of the supply chain. Decisions related to trans-
ferred quantities, employed healthcare personnel and inventories
can be promptly adjusted to include any new information, ensur-
ing the success of the vaccination program, while minimizing the
total operational costs.

4. Results

In this section the developed optimization-based framework is
tested. First, an illustrative example is used to test in detail the effi-
ciency of the proposed MILP-model. Then, a large-scale problem
that simulates the Greek COVID-19 VSC is studied and near-
optimal planning decisions are generated by employing the pro-
posed MILP-based solution strategy. Finally, the applicability of
the replanning algorithm is illustrated even for extreme distur-
bances in the vaccination plan. All models and solution algorithms
were developed using the GAMS 30.1 interface and all instances
were solved in an Intel Core i7 @3.4Gz with 16 GB RAM using
the commercial solver CPLEX [34].

4.1. Illustrative example

Let us assume a COVID-19 supply chain consisting of one hub
and five vaccination centres. Two vaccine types (P andM) are avail-
able, supplied by two manufacturing plants. Each plant is exclu-
sively producing and supplying to the hubs only one vaccine
type. All related data e.g. storage capacities, vaccination goals, dis-
tances etc. are provided in the supplementary material (Tables S1–
S5). The Pfizer-type vaccine can be stored for up to 5 days in the
vaccination centres, while perishability constraints are not
enforced on the Moderna-type vaccine, whose shelf-life in refriger-
ated conditions (30 days) greatly exceeds the bi-weekly planning
horizon.

The developed MILP model is employed to minimize the total
cost for the distribution of the vaccines and the planning of the
vaccination program in the vaccination centres. Within 30 CPU sec-
onds, an optimal solution with a minimum cost of 22,059 RMUs1 is
generated. The most significant costs are associated with the opera-
tion of the storage technologies, especially the freezers and deep
freezers in the hubs. In particular, 59.8% of the total costs originate
1 Relative Monetary Units
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from storing the vaccines in the hubs and 19.1% are due to storage
costs in the refrigerators of the vaccination centres. Thus, inventory
costs comprise the 78.9% of the total cost, emphasizing the impor-
tance of generating decisions that optimize the inventory profiles
of the supply chain. Fuel costs, drivers’ wages, and rental of the
trucks, cover 3.8%, 9.3% and 6.1% of the total cost accordingly. Only
26 doses are lost translating to 1.8% of the total costs. No additional
healthcare personnel are required; therefore, the associated cost
term is zero. Table 1 reports the number of vaccine vials stored in
the hub and the vaccination centres throughout the considered hori-
zon (Si;v;t). Further detailed results on the vials transferred (Xi;j;v;t),

the vials opened (VUI
i;v;t), the doses used (DUi;v;t), the daily appoint-

ments (DAi;t), the solution statistics and the cost distribution can
be found in Tables S6–S11 of the supplementary material.
4.2. Large-scale study case: The Greek COVID-19 VSC

To evaluate the developed MILP-based framework for realisti-
cally sized COVID-19 VSCs, the problem of the panhellenic vaccina-
tion program is simulated. The Greek state is using five hubs in
total, whose exact locations are unknown due to security reasons.
However, it is known that two are in the region of Attica, one in
Thessaloniki, one in Karditsa and one in Crete. Based on this knowl-
edge the locations of the hubs are approximately chosen. The hos-
pitals and health centres of Greece as provided by the Hellenic
Ministry of Health are used as vaccination centres. Except for Crete,
which has its own hub, Greek islands are not considered in the
study. As a result, a total of 351 vaccination centres are considered.
Four vaccine types are available (P, M, A, J) each one produced and
supplied exclusively by a single manufacturing plant. To create the
required data, the population data of Greece from the Population
and Housing Census conducted by the Hellenic Statistical Author-
ity are used [35]. The population is divided based on the regional
unit and the vaccination centres are allocated to their respective
regional unit. To generate the vaccination targets for the consid-
ered horizon of 14 days, it is assumed that the vaccination program
for the entirety of the populationmust be realized within 6months.
So, the total demand for each vaccination centre is divided by 12 to
get the bi-weekly vaccination targets. To ensure the feasibility of
the problem, the initial inventory in the hubs and the vaccination
centres is enough to satisfy at least the vaccination demand of
the first two time periods. Vaccine inventories in the manufactur-
ing plants are not considered as they are irrelevant for the problem
under consideration.

The problem above is solved by employing the proposed MILP-
based solution strategy. Each vaccination centre is allocated to a
single hub based on the geographical criteria. For the aggregation
step of the solution algorithm, the 351 vaccination centres are
grouped into 54 clusters based on their regional unit. Detailed data
of the considered problem instance e.g. maximum vaccine supply,
distance matrix, hub to vaccination centres connectivity and vacci-
nation centres to clusters allocation, are provided in Tables S12–
S17 of the supplementary material. To generate near-optimal solu-
tions for the entirety of the supply chain, five individual subprob-
lems, one for each hub are solved. First the clusters are considered,
and aggregate solutions are proposed and then the detailed solu-
tions for all vaccination centres of the subproblems are generated.
The solver terminates either when the computational time limit of
one hour (3600 s) is exceeded, or when an optimality gap of 5% is
achieved. Table 2 portrays the solution statistics for all iterations of
the individual subproblems. It is shown that the computational
time limit is reached for the more complicated cases (H1, H2 and
H3) in the first step of the solution strategy. However, the optimal-
ity gaps achieved are very close to the desired target of 5%. This tar-
get has been chosen, since a solution with a proven optimality gap



Table 1
Stored vials in the hub and in the vaccination centres (Si,j,t).

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

H P 3 3 975 21 21 3 2 977 240 240 240
H M 735 1234 269 242 242 242 242 242
C1 P 5 2 1 332 184 42 7 4 289 289 289
C1 M 177 89 254 166 77 6 6 3 333 264 175 87 87 87
C2 P 98 2 2 1 1 1 276 138 7 2 1 213 213 213
C2 M 105 80 244 161 79 320 238 155 74 74 74
C3 P 88 1 176 87 3 138 138 138
C3 M 51 50 157 103 50 207 154 100 47 47 47
C4 P 56 12 9 5 4 95 50 9 5 1 68 68 68
C4 M 23 22 72 47 20 99 73 48 23 23 23
C5 P 15 67 46 26 12 31 31 31
C5 M 56 53 40 27 15 3 3 3 2 25 20 8 8 8

Table 2
Solution statistics for the Greek Study Case.

First step (Aggregate solution)

CPU Variables Binary Variables Equations Solution Gap

H1 3600 18,993 986 12,269 283,808 7%
H2 3600 15,073 986 10,309 189,815 8%
H3 3600 13,421 738 8845 171,274 8%
H4 25 13,323 614 8477 384,564 <5%
H5 1365 4846 304 3441 65194.23 <5%

Second step (Detailed solution)
CPU Variables Binary Variables Equations Solution Gap

H1 158 47,391 5088 41,731 291,435 <1%
H2 71 32,446 3408 28,431 192,462 <1%
H3 25 32,425 3456 28,587 176,151 <1%
H4 13 35,190 3792 31,135 387,297 <1%
H5 1.6 10,718 1104 9575 66,164 <1%

Fig. 5. Cost distribution.
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of 5% can be considered as optimal. It must be noticed that for
these cases relatively good optimality gaps (15–20%) were
achieved in very low CPU times, of around 15 min, displaying the
model’s capability of quickly proposing good solutions for complex
problems. On the contrary, subproblems H4 and H5 are promptly
solved to optimality. The time required for the second step is very
low in comparison. Even the most difficult subproblem (H1) is
resolved within three minutes. Comparing the problem sizes of
the first and second step it is observed that the aggregated
approach significantly reduces the number of variables and equa-
tions, which makes feasible the consideration of large and complex
problem instances. The computational time required in total is
close to 3.5 h, however the utilization of parallel computing tech-
niques reduces it to around 1 h. Optimal solutions are generated
for the smaller subproblems, while larger, more difficult subprob-
lems may not be solved to optimality, but the reported integrality
gaps (<8%), signify a solution close to the optimal one (5%).

Fig. 5 displays the distribution of the various cost terms for the
study case of Greece. Similar conclusions to the ones for the illus-
trative example can be drown. Storage costs in the hubs and the
vaccination centres are the most significant terms, comprising
together the 78% of the total costs. Next come the transportation
costs, more specifically the wage of the drivers (9%), the cost of
renting the trucks (8.4%) and the cost of fuel (3.8%). Finally, very
few doses are lost (0.7%), while extra healthcare workers are rarely
required (0.3%). The precise cost distribution for each of the five
subproblems solved are provided in Table S18 of the supplemen-
tary material. Fig. 6 illustrates the inventory profiles in each of
the hubs and aggregated for all vaccination centres. It is noticed
that the stored amounts are sustained relatively low to reduce as
much as possible the storage costs. This is especially evident for
the Pfizer-type and Moderna-type vaccines, which consistently
do not remain in storage, rather they are used as fast as possible.
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This is expected since the mRNA vaccines are stored using special
technologies that impose high operational costs. The stored
amounts are increased in the end of the horizon to satisfy safety
stock requirements. Low quantities of Pfizer-type vaccine are
observed in the inventory profiles of the vaccination centres which
ensure that the vaccines are not spoiled due to perishability issues.
Moreover, the inventories of the vaccination centres at the end of
Saturdays (time periods 6 and 13) are practically zero since it is
assumed that no vaccinations are done on Sundays.

In the presented example the vaccination centres have been
grouped based on political boundaries. However, different cluster-
ing methods could be applied in other VSC problems. To address
the impact the number of clusters employed have in the quality
of the solutions generated, the following sensitivity analysis is
included. Employing the proposed solution strategy, a large-sized
problem of 106 vaccination centres is considered. A total of six
instances are solved, considering alternative grouping of the vacci-



Fig. 6. Inventory profiles in hubs and vaccination centres.
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nation centres into clusters. More specifically, 10–15 clusters are
used in the studied instances. Table 3 summarizes the results of
this analysis. As expected, using less clusters results to smaller
MILP models in the first step. Therefore, the aggregated solution
extracted is closer to the theoretically optimal, since smaller inte-
grality gaps are achieved. However, aggregating the vaccination
centres into fewer clusters, leads to worse solutions, when dealing
with the real VSC problem. In particular, the generated LP model in
the second step leads to worse detailed solutions for the vaccina-
tion centres. Interestingly, using 10 or 11 clusters in the studied
example results to infeasibly solutions. Therefore, extremely
aggregating the vaccination centres into very few clusters should
Table 3
Impact of number of clusters employed on solution performance.

Clusters N. Eq. N. Var N. BVar

15 12,269 18,993 986
14 11,889 18,552 924
13 11,509 18,111 862
12 11,129 17,670 800
11 10,749 17,229 738
10 10,369 16,788 676
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be strongly avoided. Conclusively, the maximum number of clus-
ters, that respects the comptutational time limitations, should be
selected.

4.3. Replanning the COVID-19 VSC

In this subsection the problem of replanning the COVID-19 VSC
in case of disturbances due to citizens not arriving to scheduled
appointments is studied. The case study used replicates the sub-
problem of hub H1 from the Greek nationwide problem presented
in the previous section. First, the model is solved for the initial 14-
day horizon. At the end of the first period, the decision makers
CPU (s) GAP (%) Agg. Sol Det. Sol

3600 9.6 186,425 188,686
3600 9.3 172,208 191,740
3600 9.2 173,220 193,130
3600 9.2 171,605 195,472
3600 8.8 153,935 NA
3600 8.5 143,221 NA



Table 4
Cost distribution for every iteration of the rolling horizon algorithm.

Iter Storage Hubs Storage Centres Fuel Drivers Wasted Doses Healthcare Personnel Fleet Rental Total

1 27,202 47,520 7548 18,580 846 954 21,330 123,981
2 22,703 44,329 6280 15,457 1337 1080 21,330 112,517
3 24,401 37,839 5442 13,395 803 1018 21,330 104,228
4 24,202 37,367 5676 13,971 791 1022 21,330 104,359
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gather the following information. All scheduled appointments
were completed in only 26 vaccination centres. In 15 of them 5%
of the appointments were not realized, while 10% and 15% of the
citizens did not arrive in the appointments in 44 and 21 vaccina-
tion centres accordingly. Similarly, in the second period, the per-
centage of unrealized appointments was 2% in 45, 8% in 11 and
12% in 30 vaccination centres, while on the third period these were
4% in 30, 10% in 40 and 25% in 6 vaccination centres. Those distur-
bances call for the immediate replanning of the supply chain since
the actual inventory profiles are significantly different to the
planned ones. Therefore, when the new information becomes
available, the proposed solution strategy is employed to reactively
replan the supply chain. The cost distribution after every iteration
of the solution algorithm is shown in Table 4. It is observed that
despite the significant disturbances, the costs remain low. Interest-
ingly, very few doses are wasted, while storage costs are not
increased, showing the flexibility of the proposed solutions in case
of unexpected disturbances, as well as the efficiency of the reactive
strategy. An interesting observation can be made regarding the
wasted doses, the large majority of which are Astrazeneca-type
vaccines. Very few Pfizer-type and Johnson & Johnson-type vacci-
nes are spoiled, while nearly no Moderna-type vaccines are
wasted. The model correctly prioritizes the use of the costly mRNA
vaccines, although very few Pfizer-type vaccines are lost due to
their limited shelf-life and choses to waste the least expensive
alternative (Astrazeneca-type vaccines). Detailed information on
the wasted doses per iteration are given in Table S19 of the supple-
mentary material.
5. Conclusions

In this work, the optimal planning of the COVID-19 VSC is con-
sidered. Specific problem characteristics, such as special cold stor-
age requirements, extremely limited shelf-life of some vaccine
types in refrigerated conditions and the unprecedented time pres-
sure for the realization of the vaccination program, differentiates it
from other similar supply chain problems. To the best of our
knowledge, this is the first work to address the planning problem
of the COVID-19 vaccine distribution chain. In addition, we extend
this study by integrating decisions on optimally planning the daily
vaccination program in every vaccination centre. A novel MILP
model is developed to tackle this integrated problem. The model’s
efficiency is first shown in an illustrative example. Optimal deci-
sions leading to the minimization of cost are generated in very
low CPU times. Furthermore, a decomposition strategy extends
the applicability of the model on realistically sized problems. A
simulated instance of the Greek COVID-19 VSC is used to illustrate
the capabilities of the proposed framework. Decisions on trans-
ferred quantities, inventory profiles, transportation, and staff
requirements, as well as, daily vaccination plans, for a nationwide
problem, are optimally taken in low CPU times. Finally, a reactive
approach that utilizes a rolling horizon algorithm is proposed to
handle uncertainties related to unexpected disturbances in the
daily vaccination plan of the vaccination centres. Possible future
research directions could be the consideration of more sophisti-
cated clustering methods and the inclusion of vehicle routing deci-
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sions, through a metaheuristic, e.g. Variable Neighbourhood
Search, approach.
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