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Abstract
Skeletal muscle exercise regulates several important metabolic genes in humans. We know

little about the effects of environmental stress (heat) and mechanical stress (vibration) on

skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combi-

nation with many active exercise programs. We designed a method to deliver a vibration

stress and systemic heat stress to compare the effects with active skeletal muscle contrac-

tion. Purpose: The purpose of this study is to examine whether active mechanical stress

(muscle contraction), passive mechanical stress (vibration), or systemic whole body heat

stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atro-

phy, and inflammation/repair.Methods: Eleven subjects, six able-bodied and five with

chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in

a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-

segment vibration or a dose of repetitive electrically induced muscle contractions. Three

hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or

soleus) to analyze mRNA gene expression.Results:We discovered repetitive active muscle

contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46

fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-

1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05).

Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a

lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat

stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05).Conclusion:
These findings support a distinct gene regulation in response to heat stress, vibration, and

muscle contractions. Understanding these responses may assist in developing regenerative

rehabilitation interventions to improve muscle cell development, growth, and repair.
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Introduction
Skeletal muscle is an important regulator of overall systemic health and well-being. Genes for
physical activity have been highly conserved, as mobility, function, and human performance
have been key components of survival. With the emergence of automated transportation meth-
ods (car, plane, train), and lifestyle altering technologies (television, computers, and cell
phones), the primary regulator of human skeletal muscle, physical activity, has declined. The
impact of this decline on healthy people, with less than optimal lifestyle choices, is profound
and contributes to an obesity epidemic[1].

Often overlooked is the impact of reduced physical stress on people who are disabled [2].
People with a central nervous system (CNS) injury, who are unable to activate their muscles
completely, suffer from a host of systemic co-morbidities with a known link to reduced skele-
tal muscle activity, including diabetes and osteoporosis [3–6]. In this report, we explore via-
ble rehabilitative interventions to understand the external factors that influence skeletal
muscle. Specifically, we compare three forms of stress including actively induced muscle con-
traction, passive mechanical vibration, and whole body heat stress on skeletal muscle gene
regulation.

Active mechanical stress, through muscle contraction, is a powerful stimulus to skeletal
muscle, however, this form of stress also has important influences on systemic metabolic flexi-
bility. Skeletal muscle is capable of regulating up to 75% of the body’s metabolism of glucose
[7]. Regular muscle activation triggers cellular mitochondrial biogenesis and regulates key
molecular pathways associated with muscle cell metabolism, muscle cell hypertrophy, and
muscle cell regeneration [8, 9]. The high incidence of diabetes in people with paralysis under-
scores that skeletal muscle activity is important to the systemic health of people with a spinal
cord injury [10–12]. Inducing “active”mechanical stress through neuromuscular electrical
stimulation may offer an alternative for people with paralysis to improve their systemic meta-
bolic health through regular muscle activity [9, 13–18].

Another form of mechanical stress is vibration. Applying specific frequencies of vibration
(20–50 Hz) at a given gravitational force (g force; 0.3 to 0.6) regulates musculoskeletal plasticity
in animal models [19, 20] and spinal cord excitability in humans [21, 22]. Recent reports sug-
gest that “cross-talk” between skeletal muscle and the underlying bone raises the possibility
that skeletal muscle and bone communicate through common pathways [23]. If mechanical
inputs (vibration) also regulate muscle metabolic/hypertrophic signaling pathways, then vibra-
tion may be complementary to active contractions; notably a potential influences on people
who have limited capacity to activate their own muscles because of a compromised central ner-
vous system (CNS).

A third form of stress is whole body heat stress [24]. Increasing core body temperature is a
natural consequence of whole body exercise and likely coordinates signaling among all tissues
(brain, heart, muscle, liver, skin). The ability to lose body heat through sweating is a unique
and well-conserved function that is essential in sustaining repetitive skeletal muscle activity
[25]. The close association between increased core body temperature and skeletal muscle activ-
ity suggests that these systems share common signaling pathways[26]. From previous studies,
we know that passive whole-body heat stress does not increase skeletal muscle temperature,
but does increase systemic sympathetic drive as well as several blood biomarkers; catechol-
amines, heat shock proteins, and serotonergic-dopaminergic precursors [27]. The increased
extracellular biomarkers from passive heat stress may regulate several systemic responses,
including glucose tolerance [28–31]. The impact of whole body heat stress on skeletal muscle
signaling, therefore, has important translational implications for people who lose the ability to
exercise and sweat through CNS injury (i.e. people with quadriplegia).

mRNA after Muscle Contractions, Vibration, and Heat

PLOS ONE | DOI:10.1371/journal.pone.0160594 August 3, 2016 2 / 19

Competing Interests: The authors have declared
that no competing interests exist.



The comparative role of three distinct forms of stress (active contraction, passive vibration,
and systemic heat stress) on skeletal muscle signaling remains unknown. The methodologies
developed for this study test two novel stresses: vibration and whole body heat stress on skeletal
muscle as compared to a dose of electrically induced active muscle contraction.

Our purpose is to examine whether active mechanical stress (muscle contraction), passive
mechanical stress (vibration), or systemic whole body environmental stress (heat) modulates
key genetic signatures associated with skeletal muscle metabolism, oxidative pathways, mito-
chondrial biogenesis, and hypertrophy in human skeletal muscle. Secondarily, we examine the
most regulated genes to determine the extent of shared signaling. We expect that active muscle
stress will be most effective at regulating skeletal muscle metabolic gene signatures, but that
other forms of stress will play key regulatory roles. In addition, we expect to discover overlap
among genes that are most regulated in response to each distinct stress condition.

Methods

Subjects
Eleven subjects, six able-bodied and five with chronic spinal cord injuries (SCI), participated in
the study (Table 1). Five subjects with a SCI received a single dose of limb-segment vibration 3
hours before a percutaneous soleus muscle biopsy (SCI 1–5). Three SCI subjects also received a
single session of muscle activity using neuromuscular electrical stimulation of the soleus 3
hours before a percutaneous soleus muscle biopsy (SCI 2, 4, and 5). There was at least a three-
month gap between the vibration and neuromuscular electrical stimulation interventions. Six
able-bodied subjects sat in a whole-body heat stress chamber for 30 minutes prior to a vastus
lateralis muscle biopsy. We opted to use able-bodied subjects for the whole-body heat stress
because people with SCI cannot sweat. We focused on the VL muscle, because the VL shows a
phenotype that is similar to the chronically paralyzed soleus muscle [32, 33]. Pilot studies in
our lab support that gene regulation of the healthy VL was highly correlated (0.91) to that of
the paralyzed soleus muscle during an identical electrical stimulation protocol. Importantly,
the contractile speeds between the VL and paralyzed soleus muscle are similar (~70–80 ms
time to peak) as compared to the healthy soleus (~150 ms time to peak).

Our sample size of five for vibration, three for electrical stimulation, and six for heat stress
provided us with over 80% power to detect a 50% change in metabolic gene regulation. We
normalized all gene regulation values to the opposite limb, which reduced variation from

Table 1. Subject Demographics.

Subject Sex Age (Yrs.) Injury Level Time Post Injury (Yrs.) Height (in) Weight (lbs) Body Mass Index Body Fat (%)

AB1 Male 38 - - 68.5 161.2 24.2 14.9

AB2 Male 38 - - 76 201 24.5 19.5

AB3 Male 40 - - 69 202.4 29.9 28.8

AB4 Male 27 - - 70.5 167.8 23.7 17.2

AB5 Male 27 - - 73 234.8 31 30.8

AB6 Male 26 - - 73 133.4 17.6 6.5

SCI1 Male 32 T9 10 72 130 17.6 -

SCI2 Male 39 T10 2 72 230 31.2 -

SCI3 Male 24 T8 4 76 155 17.9 -

SCI4 Male 30 T10 4 73 170 22.4 -

SCI5 Male 28 T10 2 69 251 37.1 -

SCI and AB indicate those subjects with or without a spinal cord injury, respectively.

doi:10.1371/journal.pone.0160594.t001
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different diets, age, weight, and socioeconomic differences. Because of our within subject
design we had excellent power with few subjects. As such, we normalized all genes to the identi-
cal genetics of a limb that did not see the muscle contraction, vibration, or whole-body heat
stress condition. Prior to enrollment, all subjects provided written consent approved by the
University of Iowa Institutional Review Board in accordance with the Helsinki Declaration.

Active Mechanical Stress: Muscle contraction
We delivered a dose of active mechanical stress using electrical muscle stimulation to elicit uni-
lateral soleus muscle contractions. Subjects sat in a wheelchair with one leg placed in a testing
apparatus to elicit isometric contractions of the plantar flexors using a previously reported pro-
tocol [9, 34]. The ankle and knee were flexed to 90°and secured to the apparatus with soft straps
above the knee. Self-adhesive carbon electrodes were placed over the plantar flexors and stimu-
lation was provided by a computer-controlled constant current electrical stimulator with a 0 to
400—milliamp range at 400 volts (Digitimer Model DS7A, Digitimer Ltd., Welwyn Garden
City, and Hertfordshire, England). Single pulses were given at increasing intensity until maxi-
mal twitch torque was observed via an oscilloscope. Stimulation intensity was increased an
additional 50% and remained at this level for the remainder of the experiment to obtain supra
maximal activation. Subjects received five warm-up contractions (10 Hz, 7 pulses per contrac-
tion) to potentiate the plantar flexor muscles and minimize the risk of muscle strain. After a
warm-up bout, subjects received seven stimulus pulses using a 10 Hz stimulation train. We
delivered 120 isometric contractions using a one on two off work-rest ratio. After a 5-minute
recovery period, subjects received a second bout of 120 contractions at the same intensity and
frequency. Three hours after the completion of the bout of muscle activity, the experimental
and control limbs underwent a percutaneous muscle biopsy (Fig 1).

Fig 1. Study Timeline. The muscle contraction stressor was unilaterally delivered in two ~4-minute bouts
with a 5-minute rest period between bout 1 and bout 2. The vibration stressor was unilaterally delivered in a
single 30-minute bout at a oscillation frequency of 30Hz and an amplitude of 0.6g. The whole-body heat
stressor was delivered in a single 30-minute bout. Three hours after the completion of each stressor a
percuatneous muscle biopsy was performed. Muscle biopsies were performed bilaterally on the experimental
and control limb for the muscle contractions and vibration stressors. A unilateral muscle biopsy was
performed before the heat stressor on the control limb and after the heat stressor on the opposite limb due to
the systemic effects of whole-body heat stress.

doi:10.1371/journal.pone.0160594.g001
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Passive Mechanical Stress: Limb-segment Vibration
We delivered a dose of passive mechanical stress unilaterally using a custom vibration appara-
tus applied to the distal leg [21, 22, 35]. The custom apparatus secured the distal leg to a servo-
controlled vibration generator (Ling Dynamic Systems, Royston, Herts, and England). Subjects
were positioned so the distal leg was secured to the vibration platform with the heel centered
on the vibration platform and the hip, knee, and ankle flexed to 90°. Waist and chest straps
were secured to the mounted seat for support. In this position, the vibratory stress was deliv-
ered to the lower limb with limited transmissibility to the opposite limb, trunk, and head[35].
A computer controlled vibration platform delivered an oscillation frequency of 30Hz at an
acceleration of 0.6g for 30 minutes. Three hours after the completion of the bout of vibration,
the experimental and control limbs underwent a percutaneous muscle biopsy (Fig 1).

Systemic Environmental Stress: Whole-Body Heat Stress
We delivered a dose of systemic environmental stress using a specially instrumented, custom
designed low humidity (20%) heat stress chamber set at a temperature of ~73°C [27]. Subjects
sat upright in the heat stress chamber for 30 minutes. Subjects sat passively, with minimal
movement of the lower extremities (Fig 1). We monitored heart rate, temperature, and thermal
comfort for each subject. After 30-minutes of passive sitting, we re-weighed, rehydrated with
water, and kept the subject supine at room temperature. Three hours after exiting the heat
stress chamber, we performed a unilateral muscle percutaneous muscle biopsy. We performed
a control muscle biopsy on the opposite limb prior to the heat stress intervention.

Muscle Biopsy Protocol
Subjects underwent percutaneous muscle biopsies 3 hours after the interventions. The active
and passive mechanical stress subjects underwent bilateral soleus muscle biopsies because only
one limb received the intervention. The systemic environmental stress subjects underwent uni-
lateral muscle biopsies from one leg 3 prior to the heat stress, and then 3 hours after the whole-
body heat stress intervention. Our muscle biopsy procedure has been previously described [8,
9, 17]. Briefly, we took percutaneous muscle biopsies from both the intervention and control
limb of each subject using a 14-gauge Temno biopsy needle (T1420, Cardinal Health) under
ultrasound guidance within a sterile field. This smaller needle improved our capacity to sample
the atrophied soleus muscle. Four passes of the needle were made to assure a wide sampling
range within the muscle. Each pass of the needle was through the same incision site, but we
altered the needle angle to sample a different part of the muscle. Each pass obtained approxi-
mately 20 mg of muscle tissue. Following harvest, muscle samples were placed in RNA Later
(Ambion) and stored at -80°C until further use.

RNA Extraction and Analysis
Our RNA extraction and analysis procedure has been previously described [18]. Briefly, RNA
was extracted using the RNAeasy Fibrous Tissue Kit (Qiagen) with DNAse to remove genomic
DNA from final samples. Microarray hybridizations were performed at the University of Iowa
DNA Facility as previously reported[8, 18]. Briefly, 50 ng total RNA was converted to SPIA
amplified cDNA using theWT-Ovation Pico RNA Amplification System, v1 (NuGEN Technolo-
gies, San Carlos, CA, Cat.#3300) according to the manufacturer’s recommended protocol. The
amplified SPIA cDNA product was purified through a QIAGENMinElute Reaction Cleanup col-
umn (QIAGEN Cat #28204) according to modifications from NuGEN. Four μg of SPIA ampli-
fied DNA were used to generate ST-cDNA using theWT-Ovation ExonModule v1 (NuGEN
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Technologies, Cat #2000) and again cleaned up with the Qiagen column as above. 5μg of this
product were fragmented (average fragment size = 85 bases) and biotin labeled using the NuGEN
FL-Ovation cDNA Biotin Module, v2 (NuGEN Technologies, Cat. #4200) as per the manufactur-
er’s recommended protocol. The resulting biotin-labeled cDNA was mixed with Affymetrix
eukaryotic hybridization buffer (Affymetrix, Inc., Santa Clara, CA), placed onto Human Exon 1.0
ST arrays (Part No. 900650), and incubated at 45°C for 18 h with 60 RPM rotation in an Affyme-
trix Model 640 Genechip Hybridization Oven. Following hybridization, the arrays were washed,
stained with streptavidin-phycoerythrin (Molecular Probes, Inc., Eugene, OR), signal amplified
with anti-streptavidin antibody (Vector Laboratories, Inc., Burlingame, CA) using the Affymetrix
Model 450 Fluidics Station. We scanned arrays with the Affymetrix Model 3000 scanner with 7G
upgrade and we collected the data using the GeneChip operating software (GCOS) v1.4. We sub-
mitted all to the Gene Expression Omnibus (GSE82323) and are MIAME compliant.

The Affymetrix Human Exon 1.0 ST hybridized arrays were normalized using a Robust
Multi-array Average (RMA) and transformed into a log2 hybridization signal using Partek
Genomic Suites (v6.6 2013 Partek Inc., St. Louis, MO, USA). All mRNA transcripts with log2
hybridization signals less than 2 standard deviations below the mean signal intensity for all
subjects were discarded from the analysis, restricting the analysis to only those mRNA tran-
scripts with high signal relative to background.

We calculated the fold change by taking the ratio of the hybridization signal of the experi-
mental limb relative to the control, non-stressed limb. A within group paired sample t-test was
used to determine the expression change between the experimental and control limbs. We only
accepted transcripts that had a significant p-value less than 0.05 and a fold change greater than
1.5 or less than 0.667. We report the group (muscle contraction, vibration, and whole-body
heat stress) mean ±standard error for a subset of genes previously identified to be associated
with oxidative metabolism, muscle hypertrophy, and mitochondrial biogenesis.

Results

Physiological Effects of Muscle Contraction, Vibration, and Heat Stress
The mean peak toque during bout 1 was 75.9±31.0 Nm while the mean peak torque for bout 2
was 50.8±17.5 Nm (p = 0.013). The mean final torque during bout 1 decreased to 40.4±11.5
Nm while the mean final torque in bout 2 decreased to 32.5±9.6 Nm. The magnitude of fatigue
supported that we induced a significant physiological challenge to the soleus muscle tissue dur-
ing active muscle contraction. We illustrate the torque-time curves for two bouts of exercise for
three subjects (Fig 2A and 2B).

The vibration stress was purely mechanical as there was no evidence of concurrent soleus
muscle activity (EMG activity) during the protocol. Previous investigations in our laboratory
support that this vibration intervention inhibits motor neuron pool excitability [22] confirming
that the intervention is purely a passive mechanical stress. We present a single subject’s record-
ing showing minimal EMG activity during the vibration protocol (Fig 2C).

The physiological responses to thirty minutes of whole body heat stress at 82 degrees centi-
grade were robust. The mean heart rate increased from 65.3±12.6 to 132.3±23 (p<0.001), the
mean tympanic temperature increased from 97.8±0.7 to 102.1±0.9 (p<0.001), and the mean
self-reported thermal scale rating increased from 6.3±0.8 to 11.3±1.0 (p<0.001) (Fig 2D–2F).

Taken together, we were successful in: 1) challenging skeletal muscle through the active con-
traction protocol as evident from the change in muscle force; 2) delivering a primarily mechan-
ical vibration to the muscle at the prescribed frequency and gravitational force [35] without
contamination via active muscle contractions (EMG); and 3) inducing a systemic stress on the
cardiovascular system from passive heat stress.
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Fig 2. Physiological Effects after Muscle Contraction, Vibration, and Heat. (A and B) The torque curve from the soleus
muscle during bout 1 and bout 2 during the muscle contraction stressor with decreased torque production by the end and
between the bout 1 and bout 2. Representative example of the level of EMGmuscle activity compared to the maximumM-
wave during the bout of unilateral muscle vibration. (D, E, F) The temperature, self-reported comfort, and heart rate during the
passive, whole-body heat stressor.

doi:10.1371/journal.pone.0160594.g002
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Skeletal Muscle Signaling Analysis
Of the>15,000 genes analyzed, 1,928, 560, and 2,266 genes had a p-value less than 0.05 for the
muscle contraction, vibration, and heat stress groups, respectively, supporting that the inter-
vention changed the regulation of these genes. When we restricted the analysis to only those
genes that also had at least a 1.5 fold change, the muscle contraction protocol caused an
increase in 240 genes (>1.5 fold change) and a decrease of 17 genes (<0.667 fold change is
equivalent to a<-1.5 fold change). Vibration triggered an increase of 13 genes (>1.5 fold
change) and a decrease of eight genes (<0.667). Heat stress triggered an increase of 64 genes
(>1.5 fold change) and a decrease of 30 genes (<0.667).

We selected the 10 genes with the highest and lowest fold-changes for each group, to com-
pare the expression signature of those genes across all groups (Fig 3). Muscle contractions con-
sistently increased the expression of transcription factors: peroxisome proliferator-activated
receptor gamma, coactivator 1 alpha(PGC-1α), nuclear receptor subfamily 4 group A member
3(NR4A3), interferon-related developmental regulator 1(IFRD1), actin binding Rho activating
protein(ABRA), early growth response 1(EGR1), and myostatin (MSTN). These genes are
linked to regulating oxidative metabolism (PGC-1α and NR4A3), mitochondrial dynamics
(IFRD1), and muscle hypertrophy (ABRA and EGR1), while suppressing a potent regulator of
muscle atrophy (MSTN).

Passive vibration and whole-body heat stress resulted in smaller fold-changes compared to
the gene expression changes observed after muscle contractions. Forkhead box K2 (FOXK2)
was increased after vibration. FOXK2 is a potent regulator for Wnt signaling proteins. Three
hours after whole-body heat stress ankyrin repeat domain 1(ANKRD1) expression was
decreased compared to an increased expression after muscle contractions. Most of the other
genes with altered expression after whole-body heat stress have poorly defined roles in human
skeletal muscle.

Metabolic Gene Profile
We further examined a subset of 12 genes: mitochondrial pyruvate carrier 2(BRP44), mito-
chondrial pyruvate carrier 1(BRP44L), mitofusin 1(MFN1), mitofusin 2(MFN2), pyruvate
dehydrogenase kinase, isozyme 4(PDK4), pyruvate dehydrogenase alpha 1(PDHA1), pyruvate
dehydrogenase beta(PDHB), pyruvate dehydrogenase complex component X(PDHX), PGC-
1α, NR4A3, ABRA, and MSTN. These genes have important regulatory and enzymatic roles in
skeletal muscle mitochondrial function (PCG-1α, BRP44, BRP44L, MFN1, MFN2), glucose
metabolism (NR4A3, PDK4, PDHA1, PDHB, PDHX), and muscle hypertrophy (ABRA,
MSTN). Muscle contractions up regulated the expression of the potent transcription factors
PGC-1α, NR4A3, and ABRA, and down regulated MSTN (Fig 4; p< 0.05). Vibration down
regulated PGC-1α and MSTN, with a limited change in the expression of NR4A3 and ABRA
(Fig 4; p< 0.05). Heat down regulated the expression of PGC-1α, NR4A3, and ABRA, but did
not change MSTN expression (Fig 4: p< 0.05).

Heat Stress induced a significant down regulation of genes important for mitochondrial
function (BRP44, BRP44L, MFN1, MFN2; p< 0.05), but neither vibration nor muscle contrac-
tions altered their expression (Fig 5). Additionally, heat down regulated genes used during glu-
cose metabolism (PDHA1, PDHB, and PDHX; p< 0.05), whereas muscle contractions
increased the expression of PDK4 (Fig 6; p< 0.05). Vibration did not consistently alter the sig-
naling of genes related to glucose metabolism (Fig 6).

We used RT-qPCR to verify that ABRA, ANKRD, and NR4A3 responded similar under the
heat and active contraction stresses. Specifically, ABRA was 0.96 ± 0.26 and 11.75 ± 2.03 after
heat and active contractions, respectively, which was even more robust than the array findings.
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Fig 3. Comparative Gene Stress Responses following Muscle Contractions, Vibration, and Heat.We
compared the expression levels of the top 10 up and down regulated genes after each stressor to the other
stressors. Of particular note is the order of magnitude change of the top 10 genes increased after muscle
contractions compared to the other stressors. Additionally, the increased expression of FOXK2 (2.36±0.56) only
after vibration, and the difference in ANKRD1 expression after heat (downregulated, 0.51±0.07) and muscle
contractions (upregulated, 2.19±0.08).

doi:10.1371/journal.pone.0160594.g003
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Fig 4. Expression of Transcription Factors following Muscle Contractions, Vibration, and Heat. (A)
PGC-1α expression increased after muscle contractions (5.46±0.64, p<0.001) and decreased after vibration
and heat(0.78±0.04, p<0.008; 0.74±0.04, p<0.003). (B) NR4A3 expression increased after muscle
contractions (12.45±2.36, p<0.001), unchanged after vibration (0.88±0.07, p<0.15), and slightly increased
after heat (1.16±0.08, p = 0.09). (C) ABRA expression increased after muscle contractions (5.98±0.40,
p<0.001), unchanged after vibration (0.91±0.21, p<0.44), and slightly decreased after heat (0.72±0.11,
p<0.07). (D) MSTN expression decreased after muscle contractions (0.56±0.06, p = 0.002), slightly
decreased after vibration (0.74±0.08, p = 0.06), and unchanged after heat (1.0±0.17, p = 0.66). † indicates a
p-value < 0.05 for a within group paired t-test. ‡ indicates a p-value < 0.10 for a within group paired t-test.

doi:10.1371/journal.pone.0160594.g004
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Fig 5. Expression of Mitochondrial Genes following Muscle Contractions, Vibration, and Heat. (A)
BRP44 expression was unchanged after muscle contractions and vibration (1.14±0.10, p = 0.25; 0.93±0.09,
p = 0.42) and decreased in most participants after heat (0.77±0.12, p = 0.12). (B) BRP44L expression was
unchanged after muscle contractions and vibration (1.02±0.09, p = 0.97; 0.88±0.10, p = 0.27) and decreased
after heat (0.82±0.06, p = 0.03). (C) MFN1 expression was unchanged after muscle contractions and
vibration (1.18±0.16, p = 0.42; 0.98±0.07, p = 0.67), and slightly decreased after heat (0.87±0.06, p = 0.07).
(D) MFN2 expression was unchanged after muscle contractions and vibration (0.97±0.06, p = 0.54; 1.13
±0.11, p = 0.44) and slightly decreased after heat (0.79±0.07, p = 0.05). † indicates a p-value < 0.05 for a
within group paired t-test. ‡ indicates a p-value < 0.10 for a within group paired t-test.

doi:10.1371/journal.pone.0160594.g005
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Fig 6. Expression of GlucoseMetabolismGenes following Muscle Contractions, Vibration, and Heat.
(A) PDK4 expression was increased after muscle contractions (3.37±0.83, p<0.008) and unchagned after
vibration and heat (0.86±0.18, p = 0.36; 1.19±0.19, p = 0.67). (B) PDHA1 expression was unchanged after
muscle contractions and vibration (1.05±0.05, p = 0.46; 1.03±0.08, p = 0.90) and decreased after heat (0.80
±0.08, p = 0.06). (C) PDHB expression was slightly increased after muscle contractions(1.11±0.09, p = 0.35),
unchanged after vibration (0.92±0.08, p = 0.36), and decreased after heat (0.76±0.08, p = 0.04). (D) PDHX
expression was unchanged after muscle contractions and vibration (1.09±0.12, p = 0.59; 1.0±0.07, p = 0.88)
and decreased after heat (0.74±0.07, p = 0.02). † indicates a p-value < 0.05 for a within group paired t-test. ‡
indicates a p-value < 0.10 for a within group paired t-test.

doi:10.1371/journal.pone.0160594.g006
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The ANKRD1 gene was 0.70 ± 0.38 and 12.56 ± 4.27 after heat and active contractions, respec-
tively, which again corroborated our array findings. Lastly, the NR4A3 was 3.35 ± 4.99 and
217.71 ± 132.03 after heat and active contractions, respectively, verifying some of the main
findings of the gene array.

Discussion
A defined dose of active stress (muscle contractions), passive mechanical stress (vibration), and
systemic heat stress induced: 1) significant muscle fatigue, 2) a purely mechanical stress inde-
pendent of muscle activation, and 3) activated a significant systemic sympathetic response,
respectively. Accordingly, this study created a novel opportunity to compare the effects of each
stressor on skeletal muscle gene regulation.

Skeletal muscle contractions increased genes associated with the regulation of oxidative
metabolism, mitochondrial function, and muscle hypertrophy and repressed muscle atrophy
genes, consistent with previous reports [8, 9, 17, 36–40]. However, our new findings support
that vibration regulated a unique "load sensing” pathway (Wnt) and a well-known muscle
hypertrophy pathway (MSTN); while whole-body heat stress exclusively regulated a major
“muscle remodeling” transcription factor (ANKRD1). These findings demonstrate, for the first
time, that each stressor regulates a unique gene expression signature in skeletal muscle. These
findings raise the possibility that a “blend” of stressors may be a novel strategy and futuristic
approach to optimize skeletal muscle tissue health; in particular in people with disability who
cannot always voluntarily drive their own skeletal muscle.

Skeletal Muscle Response to Vibration
By designing a method to transmit a purely mechanical load (vibration), we were able to ascer-
tain the influence of mechanical signaling, without muscle activity, on skeletal muscle path-
ways. Overall, the dose of vibration used in this study regulated fewer genes as compared to
active skeletal muscle contraction. However, there was overlap in genes regulated by both
vibration and muscle activation. Specifically, a single dose of vibration suppressed MSTN, a
well-established muscle atrophy regulator (fostering hypertrophy). Using a 30 Hz frequency
for vibration, investigators showed a similar down regulation of MSTN in the mouse using
both an in vivo and in vitro (muscle cell culture) analysis [19]. However, Ceccarelli and col-
leagues did not compare the magnitude of the regulation induced by vibration to active muscle
exercise. In our study, active muscle exercise repressed MSTN to a greater degree than that of
vibration. Based on the findings from this study, regulating the MSTN gene would be most
effective if the stress was induced through active muscle exercise rather than using a vibration
plate. However, if the individual is unable to activate their skeletal muscle (CNS injury) or they
are restricted from activating the muscle (fracture, surgery, ligament repair), vibration may
provide an alternative method to regulate MSTN and potentially attenuate skeletal muscle
atrophy.

Vibration up regulated a major transcription factor gene (FOXK2). Interestingly, active
muscle exercise and heat stress did not up regulate FOXK2. FOXK2 modulates the Wnt path-
way, which is known to be associated with myogenesis, muscle fiber type differentiation, and
satellite cell recruitment after injury [41–43]. The FOXK2 gene supports the nuclear transloca-
tion of the disheveled (DVL) protein that then regulates the transcription of Wnt signaling
receptors [43]. Increased FOXK2 expression after passive vibration may indicate a potential
downstream increase of DVL andWnt signaling receptor activity, particularly with repeat
exposures to the vibration stress. To our knowledge, no previous reports have examined the
Wnt pathway in response to localized skeletal muscle vibration in humans. The finding that
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the FOXK2 gene is regulated exclusively by vibration underscores the need for futures studies
designed to examine the downstream effects of FOXK2 on skeletal muscle function.

Indeed, passive vibration may offer a unique mechanical stimulus to influence the skeletal
muscle phenotype. In order to compare vibration to active muscle contraction, it is important
to de-couple the mechanical event from the active contraction of the skeletal muscle, as we
have done in this study [35]. Previous studies with whole body vibration induce active muscle
contraction via the vestibular system in response to the oscillatory mechanical frequencies
sensed at the level of the head [44–46]. By de-coupling these mechanical signals, we were able
to contrast, for the first time, the effects of pure vibration with active muscle contraction on
gene regulation in humans.

Skeletal Muscle Response to Heat Stress
The dose of whole body heat stress used in this study increased heart rate and core body tem-
perature [27], indicative of a passive systemic stress to the sympathetic nervous system. An
intriguing finding was that whole-body heat stress suppressed the expression of PGC-1α, the
exact opposite of the over 5-fold increase observed with active muscle contraction. PGC-1α is a
well-known regulator of mitochondrial biogenesis in healthy skeletal muscle [47]. PGC-1α is
down regulated in skeletal muscle in people with long-standing diabetes [48] and correlated
with a shift from an oxidative muscle to a glycolytic muscle [49, 50]. The short-term suppres-
sion of PGC-1α because of heat stress may indicate a shift in substrate utilization at the skeletal
muscle level. In support of this view, skeletal muscle blood flow decreases and shunts the blood
to the skin capillary beds to attenuate core body temperature [51, 52]. The skeletal muscle is
not performing work during heat stress and the increased sympathetic drive and catechol-
amines support enhanced gluconeogenesis in the liver. The increased blood glucose availability
combined with the decrease skeletal muscle work demand may explain the acute down regula-
tion of PGC-1α.

Recent work in our lab and others [53] support that blood glucose increases after passive
whole body heat stress. Thus, whole body heat stress may trigger the exact opposite of what
typically occurs with long duration exercise. That is, during exercise, an increase in PGC-1α
regulation inhibits glucose oxidation to favor fatty acid oxidation and glycogen synthesis [37].
Conversely, during heat stress, there is a decreased need for ATP in the skeletal muscle that
may trigger a less efficient energy utilization strategy. This may explain the acute suppression
of PGC-1α, the suppression of the mitochondrial protein carrier (BRP44L), and the suppres-
sion of pyruvate dehydrogenase genes (PDHA1, PDHB, and PDHX) that we observed after
heat. We speculate that a shift in substrate utilization may trigger a more suitable environment
for muscle repair after muscle damage from exercise or disease processes. Skeletal muscle
repair, including proliferation of satellite cells, may depend on the online energy utilization
state of the skeletal muscle [54–56]. The duration and intensity of heat stress (dose) on skeletal
muscle recovery after injury are important areas for continued examination.

Whole body heat stress significantly repressed the ANKRD1 gene in direct opposition to
the findings that active muscle exercise induces the ANKRD1 gene [57, 58]. ANKRD1 is a tran-
scriptional mediator of cellular pathways involved in muscle cell homeostasis [57]. ANKRD1 is
elevated following exercise, during muscle regeneration, tissue injury, and several congenital
myopathies and muscular dystrophies [57]. ANKRD1 acts as a negative feedback regulator of
TNFα induced inflammation by inhibiting NFκB transcription [59], which can also stimulate
skeletal muscle disuse atrophy [60]. To our knowledge, no study has previously identified a
whole body stressor that acutely suppresses ANKRD1 in skeletal muscle. The potential down-
stream effects of ANKRD1 suppression are unknown in skeletal muscle. However, ANKRD1
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gene suppression may increase a critical acute inflammatory response that could affect muscle
regeneration by increased satellite cell recruitment. The relationship between energy substrate
use (glycolysis), PGC-1α, and muscle regeneration via satellite cells [54–56], is an important
area of continued investigation.

Methodological and Clinical Considerations
In this study, we isolated a dose of stress to a human leg segment and analyzed the gene regula-
tion. It is important to note that we did not examine whole body aerobic exercise in this study.
It may be that whole body exercise involves a natural combination of skeletal muscle signaling
associated with heat stress (increased sympathetic drive), active muscle contraction, and vibra-
tion. Accordingly, the “net gain” in gene regulation during whole body exercise may represent
a combination of all three of the stressors examined in this study. The novelty of this study is
that we were able to de-couple each form of stress in an effort to understand the specific signal-
ing to skeletal muscle.

While this study discovered several new findings, it is not without several important meth-
odological considerations. First, we based our dose of stress on previous basic science investiga-
tions while also weighing the importance of feasibility for human subjects. Second, we have a
limited number of participants with each stressor in this study, however, our within subject
control provided offered excellent power. Finally, we studied muscle with fast contractile
speeds from both paralyzed and non-paralyzed subjects, but from two different muscles (soleus
and VL). For safety reasons, people with SCI could not tolerate heat, thus, we evaluated the VL
in healthy humans. We chose the VL in healthy subjects because, based on our pilot studies,
the VL most closely resembled the gene expression of the paralyzed soleus muscle (please see
pilot data in methods). Taken together, the findings from this study are informative and robust,
but must be interpreted carefully given the methodological considerations.

Summary and Conclusions
This study showed that active muscle contractions induced gene expression associated with
metabolism, including a large up regulation of PGC-1α and down regulation of MSTN. Vibra-
tion similarly caused a down regulation of MSTN, but to a lesser extent than the change
observed with active muscle contraction. Vibration exclusively up regulated FOXK2, a gene
associated with the Wnt pathway. Heat stress down regulated PGC-1α and ANKRD1 genes.
These findings suggest a different substrate use from that of exercise and a potential up regula-
tion of muscle regeneration through satellite cell activation. Overall, this study provides novel
findings regarding the responsiveness of human skeletal muscle signaling to mechanical, physi-
ological, and environmental stress. Understanding optimal methods to support skeletal muscle
health, using non-pharmacologic interventions, will be instrumental in identifying new regen-
erative medicine rehabilitation protocols in the future.
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