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Abstract: Since the emergence of high-throughput proteomic techniques and advances in clinical tech-
nologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and
predictive biomarkers being identified and translated into clinical use. The characterisation of bioflu-
ids has become a core objective for many proteomic researchers in order to detect disease-associated
protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum,
saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depend-
ing on the physiological and/or pathophysiological context. Improvements in mass-spectrometric
technologies have facilitated the in-depth characterisation of biofluid proteomes which are now
considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made
in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based
biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as
part of the clinical assessment of haematological malignancies. However, novel, minimally invasive
proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response
and minimal residual disease. This review focuses on biofluids as a promising source of proteomic
biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and
disease-monitoring applications.

Keywords: biofluids; haematological malignancies; proteomics; biomarkers; leukaemia; lymphoma;
multiple myeloma

1. Introduction

Advances in proteomic technologies, protocols, and bioinformatic pipelines in recent
decades have led to substantial progress in understanding the molecular phenotype of or-
ganisms by providing mechanistic insights into a wide range of cellular processes. Clinical
proteomics aims to translate these discoveries to the clinic for the improvement of patient
care. A major goal for many researchers in the biomedical community is the discovery
of highly sensitive biomarkers to aid diagnosis, prognosis, and the monitoring of disease
progression. Analysing changes in the proteome of physiologically or pathologically dis-
tinct samples (differential proteomics) enables researchers to identify proteins that are
associated with different disease states [1]. Furthermore, the use of quantitative proteomic
protocols, such as mass spectrometry-based techniques for discovery and targeted analyses,
facilitates the quantitation of these proteins to identify candidate biomarkers with altered
abundances for potential clinical applications [2]. Detecting and quantifying these protein
markers in patient samples can contribute to an earlier diagnosis, a more accurate prog-
nosis, and/or identifying therapeutic regimens that are more likely to benefit individual
patients. Biofluids, such as serum, plasma, saliva, cerebrospinal fluid (CSF), urine, and
bone marrow-conditioned media, are often considered reflections of a tumours’ molec-
ular make-up, possessing genomic, transcriptomic, and proteomic indicators of disease
(Figure 1). They represent a less invasive, less expensive, and more reproducible means
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of detecting disease-associated biomarkers when compared to invasive tissue biopsies
(Table 1) [3].

Figure 1. Biofluids are easily accessible and suitable for proteomic analysis in a clinical setting.
Red font indicates promising protein biomarkers in haematological malignancies identified in the
corresponding biofluid. CXCL13, C-X-C motif chemokine ligand 13; IL-10, interleukin 10; S100A8/A9,
S100 calcium-binding protein A8/A9; FABP5, fatty acid binding protein 5; 2-HG, 2-hydroxyglutarate;
NGAL, neutrophil gelatinase-associated lipocalin; BDNF, brain-derived neurotrophic factor. Created
using BioRender.

Table 1. Advantages and disadvantages of tissue and biofluid-based proteomics for the detection of blood cancer-
associated biomarkers.

Tissue-Based Proteomics Biofluid-Based Proteomics

Advantages Disadvantages Advantages Disadvantages

Direct analysis of proteins
from site of disease Invasive procedure Non-invasive Not in direct proximity to the

site of disease
Facilitates the study of the

bone marrow
microenvironment

Localised sampling bias due
to heterogeneity of the bone
marrow microenvironment

Ease of longitudinal sampling High abundance proteins can
hamper detection

Gold standard for diagnostic
and prognostic applications

High cost Low cost
Bone marrow biopsies can be

painful procedures Reflective of disease state
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Haematological malignancies are characterised as cancers that develop in the bone
marrow, lymph nodes, and/or the blood from cells of the haematopoietic lineage. These
malignancies include leukemias such as acute myeloid and chronic myeloid leukaemia,
lymphomas such as Hodgkin’s lymphoma, and multiple myeloma (MM). The discouraging
five-year survival rate, high rate of relapse, and incurability of certain blood cancer subtypes
emphasises the need to identify novel therapeutic targets and biomarkers for the early
detection of relapse and to assess disease progression following treatment.

2. Blood

Serum and plasma are often spoken about synonymously as they only differ from one
another by the presence or absence of clotting agents [4]. Serum is retrieved following blood
coagulation and centrifugation to remove fibrin clots, blood cells, and platelets. Plasma is
prevented from clotting by adding an anti-coagulant, such as ethylenediaminetetraacetic
acid (EDTA) or heparin, prior to extraction [5]. Despite the minor differences in composition,
several studies have suggested that use of the incorrect sample source can lead to an
improper diagnosis, hence why often either serum or plasma are preferred for certain
assays [6–8]. Due to alterations in glucose levels between serum and plasma, serum is
not recommended as a medium for the diagnosis of diabetes [9]. In addition, serum is
the preferred sample source for quantitation of complement activation as EDTA-treated
plasma must be transferred to veronal-buffered saline containing Ca2+ and Mg2+ to enable
complement activation, and lepirudin as an EDTA replacement, prior to analysis [10].

2.1. Complexity of the Serum/Plasma Proteome

The high potential of serum/plasma as sources for protein biomarker discovery lies
in their close proximity to all tissues, making their proteomic profiles reflective of the
overall state of the organism [4,11]. An advantage of using serum or plasma for proteomic
analysis is the minimally invasive, low-risk method of sample collection, which also
facilitates sequential testing during the course of a disease. Despite the benefit of a high
protein content, characterising the serum/plasma proteome can be challenging due to
the nine-fold dynamic protein concentration range with just over 20 proteins including
albumin, transferrin’s, immunoglobulins, and apolipoproteins, making up ≈99% of the
serum/plasma proteome. The remaining 1% contains many low-abundant circulatory
and secreted proteins that are often of more interest in research and as potential disease-
associated biomarkers [12–14].

2.2. Methods for Analysing the Serum/Plasma Proteome

Several techniques have been employed to counteract the challenges of analysing
such a dynamic and complex proteome. In order low abundance proteins to be effectively
analysed, high-abundance protein (HAP) depletion, enrichment of specific low abundance
proteins (LAPs), or fractionation to reduce sample complexity are often performed [15]
(Figure 2). The removal of high-abundance proteins is necessary as they typically dominate
the detection signals of analytical techniques, leaving low abundance proteins less likely to
be detected and quantified [4,16]. Albumin is the most abundant protein (≈60% of total
protein content) in plasma, making it a prime target for removal. Methods for albumin
extraction include electrophoresis [17], dye-ligand chromatography [18], peptide affinity
chromatography [19], and precipitation in organic solvents [20], as well as a recently devel-
oped molecularly imprinted polymeric hydrogel membrane (PHM) technique [21]. Another
commonly used albumin depletion technique uses human serum albumin (HSA)-specific
monoclonal antibodies to form an immunoaffinity resin, which successfully binds and
removes HSA from the serum [22]. Nowadays, for the analysis of LAPs in serum/plasma,
albumin is depleted in combination with other highly abundant proteins such as IgG,
antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, alpha2-macroglobulin, alpha1-acid
glycoprotein, and apolipoprotein AI [15]. One of the most popular immunoaffinity kits,
Multiple Affinity Removal Column Human 14 (MARS14), removes the 14 most abundant
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proteins from human plasma and has also been used for HAP depletion of other biological
fluids [23]. Furthermore, combining ammonium sulfate precipitation and protein A affinity
chromatography was found to be an affordable and effective method of plasma HAP
removal [24]. A recent comparison of chemi-proteomic affinity-based probes against the
popular MARS14 and ProteoMiner techniques revealed the affinity capture enrichment as
an effective alternative to current methods with several advantages associated with the use
of these probes [25]. Unfortunately, the discovery of biomarkers in serum/plasma can be
obstructed during HAP depletion as protein–protein interactions between LAPs, such as
cytokines, and off-target effects, can risk the concomitant removal of less abundant proteins
that are of potential interest [26,27]. An investigation carried out by Chan et al. relied on a
multi-dimensional peptide fractionation–tandem mass spectrometry method, instead of
common HAP depletion methods to successfully identify low abundance proteins without
their potential removal during the depletion process [11].

Figure 2. Schematic illustrating the steps involved in the detection of protein biomarkers in biofluids and their applications
in a clinical setting. HAP, high-abundance protein; LAP, low-abundance protein; CTC, circulating tumour cell; ELISA,
enzyme-linked immunosorbent assay; EpCAM, epithelial cell adhesion molecule; CK, cytokeratin. * Dynamic range of
corresponding biofluid. Created using BioRender.

2.3. Detecting Biomarkers in Serum and Plasma

In addition to proteins, plasma, and serum are home to a diverse range of cells
and other macromolecules including circulating tumour cells (CTCs), circulating tumour
nucleic acids (ctNAs), and tumour-derived extracellular vesicles, namely, exosomes, which
have been shed from tumours and their metastatic sites [28–30]. Detection of abnormal
concentrations of these macromolecules in plasma/serum may lead to cancers being
diagnosed at an earlier stage, facilitating a more accurate prognosis and improved chance
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of patient survival [3]. Other reviews on liquid biopsies have focused on the evaluation of
circulating free nucleic acids in haematological malignancies [31].

CTCs are tumour cells that have been shed from the primary tumour site into the
bloodstream, allowing malignant cells to travel to other parts of the body where they have
the potential to metastasise [32]. Similar to circulating proteins, CTCs are generally rare
in abundance in comparison to other cells in the blood with a ratio of about 1 CTC to
approximately 109 blood cells. In addition, their complexity and physiological variability
can present complications for detection and analysis. As the number of CTCs present in
the blood has been linked to cancer progression, response to therapy, and patient survival,
many analytical techniques have focused on the enumeration of CTCs; however, the
phenotypic characterisation of CTCs has lagged [3,33].

Techniques often used for the enrichment of CTCs from biofluids include density
gradient centrifugation, microfluidic technologies, size-based separation, and immunoaffin-
ity enrichment [34,35]. Immunoaffinity approaches of detecting CTCs in liquid biopsies
include positive and negative selection in addition to immunomagnetic approaches in-
volving substrate antibody immobilisation [3]. The immunoaffinity technique, CellSearch,
is the only CTC detection and enumeration technique approved by the U.S. Food and
Drug Administration (FDA) for use in the clinic. It detects CTCs of epithelial origin via
the use of antibodies targeting epithelial cell adhesion molecule (EpCAM), cytokeratins,
and CD45 (negative selection) in whole blood. Despite the ability of this technique to aid
the prognosis of patient subgroups with solid cancers such as breast and colorectal cancer,
drawbacks include the inability to detect mesenchymal-like CTCs and no possibility of
further downstream analysis, which limits the molecular characterisation of the cells [29,34].
A recently described multifunctional platform mitigates the destructive nature of induc-
tively coupled plasma mass spectrometry (ICP-MS) for CTC enumeration by incorporating
aptamer-bound magnetic beads which facilitate CTC enumeration and the release of CTCs
detected for further analysis. This combination of CTC enumeration and downstream
molecular profiling represents a powerful technique for monitoring cancer progression and
the personalisation of cancer treatments [36]. Inertial focusing using microfluidic devices
is another label-free alternative that combats these issues via the size- and deformability-
based separation of CTCs from whole blood [37]. Another promising in vivo method for
CTC capture, the GILUPI CellCollector®, facilitates the screening of large volumes of blood
using a medical wire coated with antibodies against EpCAM that is placed intravenously
to capture CTCs that flow by [38]. Several studies have found CellCollector® detects a
larger number of CTCs than the CellSearch system; however, this technology has not yet
been analysed for use in haematological malignancies [39,40]. Studies focusing on the
proteomic analysis of the intracellular proteome of CTC cells are limited. A targeted single
cell proteomics approach combining microfluidics-based enrichment of CTCs and Western
blotting determined the biological expression levels of a panel of surface and intracellular
proteins from single CTCs isolated from patients with estrogen receptor-positive (ER+)
breast cancer [33]. Zhu et al. described a protocol for the proteomic profiling of CTCs
comprising of immunodensity gradient enrichment of CTCs, laser capture microdissection,
and finally ultrasensitive nano LC–MS/MS for protein identification and quantitation [41].
Additional separation technologies may be applied to isolate specific cellular populations
in the serum or plasma for further proteomic analysis. For example, a Ficoll gradient is
often used to isolate peripheral blood mononuclear cells which may contain the population
of interest [42]. Microbeads conjugated to CD-antigens such as CD19 and CD34 are also
used to obtain pure populations of target cells for further proteomic analysis [43].

Exosomes are lipid bilayer enclosed extracellular vesicles, approximately 30–100 nm in
diameter, that are found in almost all biofluids including urine, saliva, blood, amniotic fluid,
CSF, and conditioned media of cells [44]. Exosomes possess a range of macromolecules
including lipids, nucleic acids, and proteins, which have been reported to reflect the molec-
ular makeup of the cells from which they are derived [45]. They are considered mediators
of intercellular communication via the transportation of cargo capable of inducing phys-
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iological or pathological changes from host to recipient cells [46]. The natural ability of
exosomes to be released and taken up by cells, their molecular similarities with the host
cell, and presence in biofluids has attracted attention in cancer therapeutics and diagnostics,
with researchers exploring their application in diagnostics, drug delivery, and tumour
immunotherapy [47–49].

The analysis of tumour-derived exosomes has led to the identification of novel
biomarkers to aid diagnosis, prognosis, and therapeutic decision making in various cancers,
with many clinically relevant biomarkers currently being evaluated in clinical trials [50,51].
Despite challenges associated with their small size and low density, methods successfully
applied in exosome isolation include ultracentifugation, size exclusion chromatography,
microfluidic technologies, immunoaffinity capture-based techniques, and microchip-based
techniques such as the exosome total isolation chip (ExoTIC) [52–56]. However, these
techniques are not 100% efficient, with the co-isolation of other extracellular vesicles, such
as microvesicles and ectosomes, often occurring during exosomal preparation [57]. Fur-
thermore, “exosomal isolates” from human plasma samples have been reported to be
contaminated with high-abundance plasma proteins such as albumin, which can hinder
downstream proteomic applications such as mass spectrometry-based analysis via the
suppression of peptide ion signals derived from exosomal proteins, thus complicating the
proteomic profiling of exosomes [58,59]. In order to translate exosome-based biomedical
research into widespread clinically available diagnostic and drug delivery techniques, we
require improvements and optimisation of isolation techniques to guarantee the purity of
the sample.

2.4. Serum/Plasma Biomarkers in Haematological Malignancies

Human serum and plasma are widely used biofluid sources for proteomic analysis
of haematological malignancies. The derivation of blood cancers from cells of the haema-
tological system indicates serum and plasma as rich sources of blood cancer-associated
biomarkers. Many blood-based protein biomarkers, such as lactate dehydrogenase and
β2-microglobulin, have been identified in haematological malignancies (Table 2). How-
ever, they often serve as complementary markers of disease meaning invasive procedures
such as bone marrow biopsies are required in addition to blood-based tests to confirm
diagnosis, response to treatment, and relapse. Furthermore, with the approval of more
targeted therapies for the treatment of blood cancers, such as venetoclax (BCL2 inhibitor),
detecting specific molecular signatures to personalise therapeutic regimens is becoming
increasingly important.

Table 2. Current clinically used protein biomarkers in haematological malignancies.

Biofluid Protein Type of Blood Cancer Technology Clinical Purpose References

Serum

Monoclonal
immunoglobulin

(M-protein)
Multiple myeloma

Serum protein
electrophoresis
immunofixation
electrophoresis

Diagnostic and
monitoring disease [60]

Free light chains
(Bence Jones

proteins)
Multiple myeloma

Immunoturbi-
dimetric and

immunonephe-
lometric assays

Diagnostic and
monitoring of
patients with

light-chain disease.

[61]

Beta
2-microglobulin

Multiple myeloma

Nephelometry
immunoturbidimetry

Prognostic [62–69]
Acute leukaemia

Chronic leukaemia
Hodgkin’s lymphoma

Non-Hodgkin’s lymphoma
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Table 2. Cont.

Biofluid Protein Type of Blood Cancer Technology Clinical Purpose References

Lactate
dehydrogenase

Multiple myeloma

Enzyme kinetics assay Prognostic [70–74]
Acute leukaemia

Chronic leukaemia
Hodgkin’s lymphoma

Non-Hodgkin’s lymphoma

Uric acid Acute myeloid leukaemia Colorimetric
enzyme assay Prognostic [75]

Urine
Monoclonal

immunoglobulin
(M-protein)

Multiple myeloma
Protein electrophoresis

Immunofixation
electrophoresis

Diagnostic and
monitoring of

disease
[76]

Free light chains
(Bence Jones

proteins)
Multiple myeloma

Immunofixation
electrophoresis

Immunoturbidimetry

Monitor disease
progression and

response to
therapy

[76]

Cerebrospinal
fluid

Beta
2-microglobulin

Lymphoma
Nephelometry

Indicative of
central nervous
system (CNS)
involvement

[77]

Leukaemia

Many proteins have been found to be differentially expressed in the serum of patients
with haematological malignancies compared to healthy controls. Recently, a study carried
out by Chanukuppa et al. used a combination mass spectrometry, gel electrophoresis,
and enzyme-linked immunosorbent assays (ELISAs) to identify and validate a panel of
five serum proteins: haptoglobin; kininogen 1; transferrin; apolipoprotein A1; and the
well-known MM marker, albumin, as potential diagnostic and prognostic biomarkers in
MM [78]. Interestingly, a recent peptidomics study incorporating supervised neural net-
work analyses identified a serum-based diagnostic MM model consisting of four peptides
capable of distinguishing between MM disease states including healthy controls, newly
diagnosed MM, and patients in complete remission, illustrating the potential of this model
as a minimally invasive means of monitoring disease progression and treatment efficacy.
The four peptides were found to be derived from dihydropyrimidinase-like 2, platelet
factor 4, alpha-fetoprotein, and fibrinogen alpha [79]. A number of malignancies have
been found to be associated with mutations in the gene encoding isocitrate dehydrogenase
1 (IDH1) and IDH2, including acute myeloid leukemia (AML) and myeloproliferative
neoplasms [80–82]. The enzymes derived from these mutated genes have altered activity,
producing 2-hydroxyglutarate (2-HG), an oncometabolite found to be increased in the
serum of AML patients with IDH mutations and reduced following response to treatment.
Monitoring serum 2-HG levels using liquid chromatography tandem mass spectrometry
(LC–MS/MS) has been incorporated in various clinical trials to determine the efficacy of
novel treatments in AML with IDH mutations [83]. The use of this technique has been re-
ported to result in variable reference cut-off values due to the presence of two enantiomers.
A recent study by Bories et al. used a chromatographic separation technique developed
by Poinsignon et al. in order to establish individual reference values for each enantiomer
to facilitate routine clinical use of serum 2-HG as a biomarker for disease monitoring in
AML [84,85]. In acute lymphoblastic leukemia (ALL), various serum proteins have been
identified in recent years as candidate biomarkers including S100A8, coagulation factor XIII
subunit A, and a panel of 9 serum-derived glycoproteins [86–88]. Studies incorporating
larger cohorts and clinically relevant workflows are required to bring “potential” and
“candidate” serum biomarkers from benchtop to clinical use, a difficult task in certain cases
due to low reproducibility, a lack of method standardisation, and difficulties translating
the test used during discovery to a clinical-grade technology [89]. Studies focusing on the
proteomic cargo of serum/plasma-derived extracellular vesicles in haematological malig-
nancies have revealed interesting results, identifying proteins associated with drug resis-
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tance [90], survival, proliferation [91], and myelosuppression [92]. Blast-derived exosomes
isolated from the sera of AML patients were found to contribute to immune suppression, in
part by the inhibition of natural killer (NK) cell functions. Exosome-derived transforming
growth factor-β1 contributes to NK cell suppression via a signalling cascade resulting
in the downregulation of natural killer group 2 member D (NKG2D), a transmembrane
receptor essential for the cytotoxicity of NK cells [93]. Incubation of neutralising antibodies
targeting TGF-β with TGF-β+ AML exosomes followed by co-incubation with the NK
cell line, NK-92, restored the cytotoxic activity of NK cells, illustrating exosome-derived
TGF-β as a potential therapeutic target for the restoration of immune cell cytotoxicity in
AML [94]. Efforts are being made by several research groups to improve current methods
of CTC isolation and detection in MM. High numbers of circulating malignant plasma
cells in the peripheral blood of the pre-malignant conditions, monoclonal gammopathy
of un-determined significance (MGUS), and smouldering MM (SMM), as well as active
MM, are associated with an increased likelihood of disease progression and a poor prog-
nosis [95,96]. In addition to CTC enumeration, genomic and proteomic analysis of CTCs
represents a unique opportunity for the molecular characterisation of these cells to guide
personalised medicine by identifying biomarkers and therapeutic targets in a non-invasive,
longitudinal manner [97].

Cancer relapse is of foremost concern due to the high rate of recurrence among
patients with haematological malignancies. Monitoring minimal/measurable residual
disease (MRD) with high sensitivity is essential for the early detection of relapse in patients.
Improving the sensitivity of blood-based MRD testing has been the central goal for many
researchers in recent years to facilitate longitudinal sampling without subjecting the patient
to numerous invasive procedures. Currently, clonoSEQ is the only FDA-approved next-
generation sequencing (NGS)-based assay to detect MRD in bone marrow samples from
acute lymphoblastic leukaemia (ALL) and MM patients and in bone marrow samples
and peripheral blood from patients with chronic lymphocytic leukaemia [98–100]. Several
studies have used mass spectrometry-based methods to assess MRD by detecting clonotypic
tryptic peptides derived from monoclonal immunoglobulins in the serum of MM patients,
demonstrating a high sensitivity and the ability to detect clonal Igs in the serum of MM
patients deemed to be MRD-negative by multiparameter flow cytometry (MFC) [101,102].
The increase in the use of MS-based techniques in the evaluation of M-proteins in plasma
cell disorders (PCDs) led the international myeloma working group (IMWG) to provide
recommendations on the use of MS in PCDs, encouraging further research on MS-based
techniques as a means of testing MRD in the peripheral blood of MM patients [103].

3. Saliva

Saliva has previously been referred to as “the mirror of the body” due to the presence
of a pool of biological markers that provide insight into the internal pathological state of an
individual [104]. Whole saliva is composed of fluids secreted from the major and minor sali-
vary glands that are derived from both local and systemic sources, demonstrating saliva as
a promising medium for diagnosis of both oral and systemic conditions [105]. The potential
for saliva as a diagnostic biomarker has accelerated because of the fast, inexpensive, and
non-invasive method of collection as well as the vast abundance of proteins and genetic
molecules it hosts. The major and minor salivary glands secrete an abundance of proteins
belonging to classes such as the proline-rich proteins, α-amylases, defensins, mucins, sali-
vary cystatins, and histatins [106,107]. Thousands of salivary proteins have been identified
and quantified in a variety of diseases including oral cancer, head and neck squamous cell
carcinoma, and Sjögren’s syndrome using mass spectrometry techniques [108–112]. It has
been suggested that saliva contains approximately 40% of the potential protein biomarkers
found in cancer, stroke, and cardiovascular disease [106].
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3.1. Exploring the Saliva Proteome

The challenges involved in characterising this proteome are similar to those faced
when characterising the serum/plasma proteome, the predominant challenge being the
presence of HAPs such as albumin and amylase, which contribute to at least 60% of the
human salivary proteome [113]. Major advancements in HAP depletion and fractionation
techniques have facilitated advanced characterisation of the salivary proteome. In 2010,
Bandhakavi et al. identified 2340 human salivary components with the aid of hexapeptide li-
braries (ProteoMiner) and 3D-fractionation of tryptic peptides using sequential preparative
isoelectric focusing; strong cation-exchange chromatography; and capillary-reversed-phase
HPLC prior to mass spectrometric analysis [114]. With improvements in proteomic tech-
niques, a more recent study carried out by Grassl et al. identified a total of 5500 salivary
proteins by combining fractionation and LC–MS/MS techniques [108]. In addition, dif-
ferent physiological conditions including time of day, age, and diet account for enhanced
variability in the saliva proteome [115,116].

3.2. Proteomic Analysis of Human Saliva

Analysing the human saliva proteome to discover disease-associated biomarkers has
become a desirable goal in the world of clinical research. In order to translate saliva into
a clinically reliable medium for disease diagnosis, prognosis and monitoring, standardis-
ation of protocols, and sample collection and analytical protocols, in addition to clinical
validation of potential biomarkers, is required must be established [104,117,118].

From 2002, the National Institute of Dental and Craniofacial Research (NIDCR) offered
funding to progress saliva-based biomarker discovery and develop reliable technologies
such as microelectrochemical systems (MEMS) for saliva diagnostics, resulting in the
publication of the salivary proteome in 2008 [119,120]. This database was developed to
help decode disease pathogenesis and to observe the effects of medication on the structure,
composition, and secretion of all salivary secretory proteins [120]. On the basis of this
model of the salivary proteome, a panel of highly discriminatory salivary proteomic
biomarkers for oral cancer detection have been identified with sensitivities and specificities
at 89% [121].

The non-invasive nature of saliva makes it an ideal medium for point-of-care (PoC)
testing, reducing the need for specialist sample collection protocols [122]. To establish a
saliva-based test, simplified workflows incorporating pre-analytical sample processing
steps must be developed. A recent study by Johannsen et al. aimed to reduce the complex-
ity of saliva posed by its high viscosity and non-Newtonian nature using a fully automated,
PoC test-compatible, magnet-beating device which significantly reduced the viscosity of
saliva [123]. Another research group developed a new on-chip immunoassay based on
microfluidic capillary flow assay (MCFA) for the highly sensitive detection and quantitation
of salivary cortisol, a well-known diagnostic biomarker in various mental disorders [124].
Interestingly, a recent study illustrated the potential of conductive polymer spray ionisation
mass spectrometry (CPSI-MS) and machine learning as a PoC test to detect dysregulated
metabolites indicative of oral squamous cell carcinoma (OSCC) in saliva [125]. The devel-
opment of these reliable, highly sensitive PoC tests holds promise for future saliva-based
diagnostic, prognostic, and/or predictive tests for haematological malignancies.

3.3. Saliva Biomarkers in Haematological Malignancies

Despite biomarker discovery being largely focused on serum/plasma sources, sali-
vaomics has grown as a field of study for the detection of novel biomarkers in recent
years. Chen et al. evaluated 30 common leukaemia-associated fusion gene transcripts in
leukemic and healthy saliva samples. The RNA fusion transcripts detected in the saliva of
leukemic patients correlated with bone marrow analysis and remained stable when stored
at room temperature, indicating a new, accurate, and non-invasive method for detecting
leukemic cancer, especially in children [126]. It has also been noted that patients suffering
from acute leukaemia present with oral symptoms such as pallor, gingivitis, and gingi-
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val enlargement. A study Månsson-Rahemtulla et al. assessed whole saliva stimulated
by paraffin chewing to increase flow rate, from patients with AML and ALL who were
undergoing chemotherapy, with the results showing that patients with leukaemia had
significantly higher peroxidase and amylase activity as well as an increased abundance of
salivary proteins in comparison to healthy control subjects [127]. Streckfus et al. observed
pre-, peri-, and post-chemotherapy variations in the salivary protein profile of a patient
with mantle cell lymphoma (MCL), suggesting the use of saliva for monitoring disease
progression and treatment efficacy [128]. ELISA analysis of salivary immunoglobulins
IgA, IgG, and IgM revealed significantly decreased levels in paediatric ALL patients which
may result in the development and potentiation of oral lesions during chemotherapeutic
treatment [129]. Sjogrens syndrome (SS) is an autoimmune disease that affects the exocrine
glands of the body, including the salivary glands, and is associated with a significantly
higher risk of developing lymphoma [130]. A recent study revealed that the levels of the
pro-inflammatory heterodimer, S100A8/A9, in saliva could discriminate between healthy,
SS, and mucosa-associated lymphoid tissue lymphoma (MALT-L), illustrating its potential
as a salivary biomarker for the monitoring of SS progression [131]. Katz et al. identified
potential biomarkers of MM-associated bone disease in the saliva of MM patients. Elevated
levels of compounds that elicit oxidative stress known as advanced glycation end products
(AGEs), were found in the saliva of MM patients with bone lesions [132]. Furthermore,
Tierney and colleagues performed an MS-based analysis to identify changes in the salivary
proteome of patients with the pre-malignant condition, monoclonal gammopathy of unde-
termined significance (MGUS), and patients with active MM. Increased levels of fatty acid
binding protein 5 (FABP5) were found to correlate with disease progression, indicating its
potential as a salivary biomarker for monitoring MGUS transformation to MM [133]. As
is often the case, validation studies incorporating targeted approaches such as multiple
reaction monitoring (MRM) and ELISAs, as well as a large cohort of patients, are lacking.
Targeted clinical validation is needed to isolate salivary biomarkers with authentic clinical
relevance from the large number of potential biomarkers identified during large-scale
proteomic studies [134]. This is required to advance biomarkers through the process of
biomarker development and validation for genuine consideration as protein biomarkers
with clinical applications in haematological malignancies.

4. Bone Marrow Conditioned Media

Bone marrow-derived cells include hematopoietic stem cells, mesenchymal stromal
cells, and endothelial progenitor cells that secrete combinations of growth factors, cy-
tokines, exosomes, and microvesicles to become what is known as the secretome or the
conditioned media [135]. Conditioned media (CM) contains surface proteins that have been
shed from the cell membrane, as well as intracellular proteins released through secretory
pathways or extracellular vesicles. Secreted proteins (secretome) are said to be encoded
by approximately 10% of the human genome and have been found to be principal com-
ponents of biological processes such as cell growth, differentiation, and angiogenesis by
regulating cell-to-cell and cell-to-extracellular matrix interactions [136]. Altered secretome
expression associated with malignant transformation is an ongoing area of investigation
for the discovery of novel cancer biomarkers.

In vitro cell culture-based studies are commonly used for secretome analysis. Secretory
proteins are released from the cultured cells into the conditioned media which is collected
and analysed using proteomic techniques such as mass spectrometry and antibody arrays.
With the availability of a wide range of blood cancer cell lines and co-culture models of bone
marrow stromal cells and hematopoietic cells, bone marrow CM represents a promising
non-invasive alternative to direct clinical specimen analysis for identifying novel candidate
biomarkers for further validation. In addition, unlike the serum/plasma proteome, issues
associated with high-abundance proteins can be avoided by using serum-free media during
cell culture. However, a potential drawback of conditioned media as a source of biomarker
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discovery is that the in vitro cell culturing methods do not completely reflect the in vivo
tumour environment [109].

Mesenchymal stem cells (MSCs), which are an important element of the bone marrow
microenvironment, can be described as self-renewing, multipotent cells that have the
capacity to differentiate into various cell types such as osteocytes, chondrocytes, and
adipocytes. The MSC secretome has been found to be central to the interactions of MSCs
with cells in their local environment [137]. A study evaluating the effects of the MSC
secretome on the K562 leukemic cell line found that the MSC secretome alone had an
anti-proliferative effect and had an additive cytotoxic effect on leukaemia cells when
combined with doxorubicin [138]. Another study found prostaglandins (PGs), which are
key components of the MSC secretome, to be progressively elevated in MSCs derived from
Fanconi anaemia (FA) patients with myelodysplastic syndrome and AML. The increased
PGs resulted in the upregulation of NR4A-WNT/β-catenin signalling in co-cultured CD34+
cells which attenuates anti-leukemic immunity [139]. In AML, MSC-derived secretory
factors, including stanniocalcin 1, were found to contribute significantly to the suppression
of haematopoietic stem and progenitor cells (HSPCs) [140]. The analysis of MSC-derived
extracellular vesicles revealed their role in normal and malignant haematopoiesis, which
has recently been reviewed by Batsali et al. [141]. Exosomes containing gene regulatory
proteins released by apoptosis-resistant AML cells have been implicated in conferring
apoptotic resistance to neighbouring cells including AML blasts with a low anti-apoptosis
index [142]. Extracellular vesicles derived from Hodgkin’s lymphoma were found to alter
the secretome of fibroblasts, resulting in a cancer-associated fibroblast phenotype [143]. In
primary effusion lymphoma (PEL), proteomic analysis of PEL cell secretome identified a
number of proteins associated with growth and the immune response, which may represent
potential biomarker candidates [144]. In B chronic lymphocytic leukemia (B-CLL), a nurse-
like cell secretory protein, brain-derived neurotrophic factor (BDNF), was found to support
the survival of B-CLL cells [145]. These studies demonstrate the myriad of secretory factors
from malignant blood cells and neighbouring cells which influence the pathobiology of
haematological malignancies, illustrating cancer tissue–proximal fluids and conditioned
media as potential sources of biomarker discovery and therapeutic target detection.

5. Urine

Urine is produced through the filtration of blood in the kidneys to remove unwanted
waste and excess fluids. Urine contains a wide variety of proteins which, in part, reflect the
plasma proteome as well as the kidney proteome, suggesting a promising source for the
detection and quantitation of disease-associated biomarkers [146]. The analysis of urine
presents several advantages, the main advantage being the ability to collect large volumes
in a non-invasive manner. In addition, urinary proteins are less susceptible to proteolysis,
and the complexity of urine proteome is considerably lower than the plasma proteome,
which simplifies the detection of changes in protein abundance between samples. However,
the dynamic protein concentration range spans a magnitude of 106, signifying the need
to remove high-abundance proteins such as albumin in order to detect low-abundance
proteins [147]. HAP depletion/enrichment techniques, such as MARS, have been applied
for urinary protein analysis [148]. Furthermore, the composition of the urine proteome is
impacted by physiological conditions such as diet, medications, and exercise [149]. Mass
spectrometry and antibody-based protein arrays are often used for the analysis of urine.
A study Zhao et al. incorporating different separation strategies, including one- and two-
dimensional LC–MS/MS, as well as gel-eluted liquid fraction entrapment electrophoresis
followed by two dimensional LC–MS/MS, identified 6085 urinary proteins which make up
the Human Urinary Proteome Database [147]. Capillary electrophoresis coupled with mass
spectrometry (CE–MS) is worth mentioning as a promising technique for the detection of
biofluid-based biomarkers, especially urinary biomarkers, in haematological malignancies.
CE–MS is orthogonal to liquid chromatography (LC)–MS, whereby analytes are separated
based on their electromigratory properties [150]. A recent study using CE–MS identified a
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panel of 19 significant peptides to distinguish between patients with clinically significant
and non-significant prostate cancer to aid therapeutic decision making [151]. Capillary
zone electrophoresis (CZE) is often used to detect M-protein when screening for myeloma
and other monoclonal gammopathies [152].

In haematological malignancies, the urinary proteome has been probed to detect
diagnostic and prognostic biomarkers as well as markers of nephrotoxicity [99,153,154]. A
well-establish method of assessment of MM or other plasma cell dyscrasias is the detection
of paraproteins in serum or urine by protein electrophoresis or immunofixation [99]. Efforts
have been made in recent years to develop novel methods of paraprotein detection in urine
due to the limitations associated with conventional methods, including low sensitivity and
highly laborious protocols [155]. Nanomaterials have become increasingly popular with a
wide range of applications in the biomedical field. Long et al. recently developed a highly
sensitive and specific novel method of paraprotein detection in MM using macroporous or-
dered silica foams (MOSF) for Bence Jones protein enrichment coupled with matrix-assisted
laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) [155]. The
association of paraproteinemia with other haematological malignancies such as primary
cutaneous marginal zone lymphoma [156] indicates the potential clinical use of urinary
paraprotein detection. In addition to serum, 2-HG was found to be elevated in the urine
of IDH1/2-mutated AML patients compared to wild-type controls. An optimal threshold
to predict the presence of IDH1/2 mutations was established to be above 16,650 ng/mL
in urine. Although the sensitivity of measuring urinary 2-HG levels to predict IDH1/2
mutations was lower than serum (0.5600 and 0.8039, respectively), urinary 2-HG remains
a promising non-invasive biomarker that warrants further investigation [157]. The treat-
ment of paediatric acute lymphoblastic leukaemia (ALL) using cytostatics and irradiation
are associated with nephrotoxicity and an increased risk of kidney damage. A recent
study identified higher levels of two markers of tubular injury, urinary kidney injury
molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), in the urine of
ALL survivors compared to healthy controls [153]. Urinary NGAL was also found to be
elevated in MM patients with renal impairment compared to MM patients without renal
impairment [158]. In addition, urinary activin A was reported to be significantly increased
in newly diagnosed MM patients compared to patients with pre-malignancy plasma cell
dyscrasia and healthy donors. Urinary activin A levels correlated with tubular injury in
MM, indicating its potential as a biomarker of renal impairment [159]. As with saliva, urine
represents an ideal medium for point-of-care testing. Microfluidic devices have been devel-
oped for urinary biomarker marker analysis which can be adapted to create a diagnostic
platform for a variety of diseases [160]. These developments, as well as recent studies
identifying candidate urinary protein biomarkers in gastric and prostate cancer, present
urine as a promising medium for further proteomic analysis in blood cancers [161,162].

6. Cerebrospinal Fluid

Cerebrospinal fluid (CSF) refers to the liquid that surrounds the brain and spinal cord.
A lumbar puncture, or spinal tap, is used to collect CSF from individuals for subsequent
analysis. Although the collection of this biofluid is more invasive than the other biofluids
discussed in this review, the gold standard for diagnosis of central nervous system (CNS)
infiltration due to haematological malignancies remains the cytological analysis of CSF in
order to identify neoplastic cells [163]. CNS invasion is a severe complication of haemato-
logical malignancies resulting in significant morbidity and mortality. The incidence of CNS
involvement is relatively rare but differs depending on the blood cancer subtype. Around
1% of myeloma patients and between 3 and 5% of childhood leukaemia patients have CNS
involvement [164,165]. Cytological assessment of CSF to detect CNS involvement suffers
from low sensitivity due to contamination with peripheral blood cells and the presence of
disease at undetectable levels [166]. Therefore, efforts have been made in recent years to
identify novel biomarkers of haematologic malignancy in CSF.
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Mikhael et al. recently evaluated a multiplexed panel of protein biomarkers in the
serum and CSF for the assessment of CNS involvement in acute lymphoblastic leukaemia
(ALL) patients. Alterations were seen in matrix metalloproteinase 9 (MMP-9), inducible
protein 10 (IP-10), vascular cell adhesion molecule-1 (VCAM-1), and interferon-γ levels,
although these changes were not statistically significant. However, a study incorporating
a larger cohort and longitudinal sampling may reveal significant proteomic changes in
the CSF of ALL patients analysed before and during CNS infiltration [167]. CSF-based
biomarkers in childhood leukaemias have recently been reviewed [164]. A recent study
revealed soluble interleukin-2 receptor (IL-2R) levels in CSF as a useful diagnostic indicators
of CNS infiltration in haematological malignancies, with the combined analysis of soluble
IL-2R and autotaxin improving detection sensitivity in patients with lymphoma [163]. In
B-lineage cell ALL, high expression levels of cortactin were found to be associated with
increased transendothelial migration and bone marrow relapse. Interestingly, 100% of
CNS infiltrated leukemic cells isolated from CSF samples from B-ALL patients expressed
cortactin, indicating a potential role of this protein in CNS infiltration. Further studies
correlating cortactin expression levels in haematological malignancies with CNS infiltration
may provide insight into the molecular mechanisms associated with CNS involvement [168].
In a study by Mo et al., CSF was collected from pre- and post-treatment (after achieving
a complete response) B-ALL patients with CNS involvement. Following an MS-based
analysis, 10 significantly altered protein expression profiles were identified between the
two cohorts. One protein found to be decreased following a complete response to therapy
was secreted protein, acidic, cysteine-rich (SPARC), a protein involved in cell adhesion and
migration that has previously been implicated as a poor prognostic factor of AML [169,170].
Despite the relatively small sample size used in this study, SPARC represents a promising
prognostic biomarker of CNS-involved ALL and potential therapeutic target that warrants
furthers investigation.

Primary central nervous system lymphoma (PCNSL) is a rare form of intracranial,
extranodal, non-Hodgkin’s lymphoma for which the gold standard of diagnosis is an
invasive, stereotactic biopsy [171]. A systematic review of diagnostic biomarkers of CNS
lymphoma (CNSL) identified 18 markers including microRNAs, surface proteins, and
intracellular proteins in CSF that are of diagnostic value [172]. This review provided
researchers with a basis for future validation studies of these markers in order to translate
these candidate markers into clinically relevant diagnostic biomarkers. CXCL13 and
IL-10 were found to be excellent diagnostic markers of CNSL and PCNSL, respectively,
demonstrating high sensitivities and specificities and their relevance for assessment for
clinical use [173,174]. Another prospective study identified a proliferation inducing ligand
(APRIL) alone, or in combination with B cell activation factor (BAFF) as reliable diagnostic
biomarkers. In addition, APRIL levels were found to correlate with methotrexate (MTX)-
based polychemotherapy and disease relapse, illustrating its potential as a marker of
therapeutic response [171]. Belimumab, an anti-BAFF monoclonal antibody, recently
FDA-approved for the treatment of lupus nephritis, has been reported to enhance the
effectiveness of small molecule inhibitors, such as idelalisib and venetoclax, in the treatment
of CLL. Belimumab, in combination with established chemotherapies, may represent a
promising therapeutic regimen for the treatment of CNS-involved leukaemia [175].

As described, progress has been made in recent years to identify novel CSF-based
biomarkers in CNS infiltrated haematological malignancies, especially leukaemias and
lymphomas. However, more research is required to translate these findings into clinically
relevant technologies such as multiplexed ELISAs; protein arrays; or the targeted MS-
based approach, multiple-reaction monitoring mass spectrometry (MRM–MS). Finally,
standardised CSF pre-analytical protocols must be developed to ensure external factors,
such as sample collection or storage, do not alter the levels of biomarkers detected during
testing. For example, several studies have aimed to establish standardised pre-analytical
procedures for measuring CSF-based biomarkers of Alzheimer’s disease [176,177].
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7. Conclusions

Despite the difficulties that proteomic analysis of biofluids present, the field has im-
proved considerably in terms of sample collection, analytical techniques, and bioinformatic
analysis. Researchers have confronted challenges, such as the presence of HAPs, by devel-
oping various workflows to maximise protein detection and quantitation in biofluids to
identify large numbers of promising biomarkers. However, the detection of highly sensitive
biomarkers with sequential validation in a large cohort using technologies applicable in
the clinic is urgently required for the non-invasive diagnosis of disease and prediction
of treatment response. Clear standards for data acquisition as well as reliable methods
for data comparison must be developed to simplify and expedite the translation of can-
didate biomarkers into those used in clinical settings. Overcoming these limitations will
undoubtedly lead to the application of biofluid-based proteomic biomarkers to improve
the diagnostic, prognostic, and predictive power of current methods used in the clinical
assessment of haematological malignancies.
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