
sensors

Article

Estimation of Flat Object Deformation Using RGB-D Sensor for
Robot Reproduction

Xin He * and Takafumi Matsumaru

����������
�������

Citation: He, X.; Matsumaru, T.

Estimationof Flat Object Deformation

Using RGB-D Sensor for Robot

Reproduction. Sensors 2021, 21, 105.

https://dx.doi.org/10.3390/s21010105

Received: 26 November 2020

Accepted: 24 December 2020

Published: 26 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: c© 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Graduate School of Information, Production and Systems (IPS), Waseda University, Kitakyushu 808-0135, Japan;
matsumaru@waseda.jp
* Correspondence: hexin@akane.waseda.jp

Abstract: This paper introduces a system that can estimate the deformation process of a deformed
flat object (folded plane) and generate the input data for a robot with human-like dexterous hands
and fingers to reproduce the same deformation of another similar object. The system is based on
processing RGB data and depth data with three core techniques: a weighted graph clustering method
for non-rigid point matching and clustering; a refined region growing method for plane detection on
depth data based on an offset error defined by ourselves; and a novel sliding checking model to check
the bending line and adjacent relationship between each pair of planes. Through some evaluation
experiments, we show the improvement of the core techniques to conventional studies. By applying
our approach to different deformed papers, the performance of the entire system is confirmed to have
around 1.59 degrees of average angular error, which is similar to the smallest angular discrimination
of human eyes. As a result, for the deformation of the flat object caused by folding, if our system can
get at least one feature point cluster on each plane, it can get spatial information of each bending
line and each plane with acceptable accuracy. The subject of this paper is a folded plane, but we will
develop it into a robotic reproduction of general object deformation.

Keywords: deformation understanding; depth camera; bending line and folding angle; SIFT descriptor;
weighted graph clustering; non-rigid point matching; plane detection; region growing; overgrowing
avoiding; sliding checking model; deformation reproducing

1. Introduction

This paper introduces a system that can estimate the deformation process of a de-
formed flat object (folded plane) and generate the input data for a robot with human-like
dexterous hands and fingers to reproduce the same deformation of another similar object.
The surface deformation in our system is caused by folding, which means each segmental
element of the deformed surface can be regarded as an approximate plane. This paper
proposes three core techniques and verifies their effectiveness. By applying these three
core techniques to RGB data and depth data, our system can estimate the equations of each
bending line, the equations of each plane, and the range of each plane with acceptable
accuracy in the camera coordinate system. Based on the spatial relations between the esti-
mated planes derived from the correspondence between two RGB images (an image before
transformation and an image after deformation), our system can provide the stepwise
deformation process from the initial state to the deformed state. Therefore, our system
can generate the input data for a robot with human-like dexterous hands and fingers to
perform the same deformation in the future.

Techniques proposed in this paper are improved from conventional studies, and those
will contribute as follows:

(1) The first proposal is based on a weighted graph for non-rigid point matching and
clustering to find potential planes and establish the correspondence between each pair
of planes on two RGB images. Compared to previous methods, it can preserve the
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neighborhood structure and has better robustness under changing conditions, where
an object is deformed with various folding angles or in a complex environment such
as with occlusions.

(2) The second proposal uses a refined region growing method for the plane detection
which is based on an offset error defined by ourselves. Compared to previous methods,
it can detect a 3D plane from depth data and avoid overgrowing without increasing
the computational load, thereby improving accuracy.

(3) The third proposal is the development of a novel sliding checking model which
consists of four three-dimensional (3D) points and three line segments. The checking
model can confirm the adjacent relationship between each pair of planes. Therefore, it
is possible to estimate the deformation process based on the obtained information and
reproduce the same deformation.

This paper’s remainder is organized as follows: Section 2 introduces the related
works and previous studies about dealing with the deformed object, which include the
deformable surface 3D reconstruction, non-rigid point matching, and plane detection on
depth data. Section 3 explains details of the proposed methods, including the weighted
graph clustering method, the refined region growing plane detection method, and the
sliding checking model. Section 4 presents several experiments to confirm the effectiveness
of proposed techniques and implement the entire system on different deformed papers
to check overall performance. Then, we discuss the effective conditions and introduce a
way to generate input data for a robot to reproduce the same deformation in the future.
Section 5 summarizes the paper and discusses the future works.

2. Previous Works and Related Studies
2.1. Deformable Surface 3D Reconstruction

About dealing with the deformable surface or object, one of the most popular research
works is the 3D reconstruction of the deformable surface with a single camera. According
to the different data source, the related studies can be mainly divided into two types:
(1) RGB image only; (2) Data from RGB-D cameras.

2.1.1. RGB Image Only

The main challenge of reconstruction of a deformable surface from monocular RGB
images is the ambiguity that some different shapes can have a very similar 2D projection
on RGB images. For solving the problem, there are two main solutions: (1) Rely on the
priori knowledge of the deformable surface, (2) Non-rigid structure-from-motion (NRSFM)
techniques.

(1) The priori knowledge can be a model or a reference image with point correspon-
dence. The earliest models are physics-based models, Cohen et al. [1] proposed a 3D
generalization of a balloon model as a 3D deformable surface to get greater stability and
faster convergence. Metaxas et al. [2] developed a physics-based dynamic model that
can incorporate the mechanical principles of rigid and non-rigid bodies into conventional
geometric primitives.

Because the physics-based models sometimes are necessary to design very complex
objective functions and require the knowledge of material properties of the target surfaces,
some deformation models from training data are raised in [3–5]. However, the disadvantage
of the models from training data are that we need a lot of data for training, and, for different
objects, we need different data to train a specific model, so this approach is inefficient for
various shapes or different objects. In other directions, Malti et al. [6] proposed the first
pixel-based method for 3D reconstruction of a deformable surface from one single view.

(2) The methods that don’t require much priori knowledge are the non-rigid structure-
from-motion (NRSFM) methods [7–9], and they rely on tracking points over image se-
quences to recover the deformation shapes as a linear combination of basis shapes. How-
ever, linear models can’t reconstruct strongly deforming surfaces composed of multiple
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local deformations. For solving the limitation of linear models, Gotardo et al. [10] use the
kernel trick to model deformable 3D shapes as the output of nonlinear mapping.

Another way to solve the modeling problem of highly deformable surfaces is based
on a piecewise model that divides the points to be reconstructed into overlapping areas,
and each area is modeled independently [11,12]. This approach can effectively reconstruct
highly deformable surfaces if they can be divided into a set of overlapping patches prop-
erly. To divide the surface more effectively, Russell et al. [13] proposed a novel energy
minimization framework that fits overlapping models.

In order to remove the influence of unwarranted smoothness constraints,
Salzmann et al. [14] formulated the reconstruction problem as a Second Order Cone Pro-
gramming feasibility problem, which can reconstruct highly deformed surfaces.
Wang et al. [15] formulated the reconstruction problem as a sequence of Linear Program-
ming (LP) problems and achieved a good performance.

With the huge development of deep learning technology, Tsoli and Argyros [16]
proposed a deep learning method for reconstructing a textureless deformable 3D surface
from a single RGB image; Bednarik et al. [17] introduced a general framework to learn to
reconstruct texture-less deformable surfaces.

As seen in the above descriptions, some techniques can provide acceptable results.
However, in most cases, the result is a continuous global surface in a virtual 3D coordinate,
which is hard to be operated in the real world.

2.1.2. Data from RGB-D Cameras

Now, RGB-D cameras such as Microsoft Kinect and Intel RealSense are affordable for
most of the users, and these are widely used in the field of non-rigid reconstruction or
tracking. The approaches of non-rigid reconstruction by data from RGB-D camera can be
classified mainly into two types: (1) Template-based approach; (2) Templateless approach.

(1) Most of the template-based approaches rely on a pre-defined template such as
skeleton [18,19], thin plate splines [20] and patch [21]. However, fixed templates can’t solve
the case that the topology of the object is dynamically changing, such as fracture, tearing,
or cutting. To solve this challenge, Tsoli and Argyros [22] proposed a dynamic topology
template to track deformable objects that undergo topological changes; Paulus et al. [23]
tried to combine a non-rigid augmented reality method with templates to deal with the
topological changing. Zhang et al. [24] presented an autonomous pipeline that can build
dynamic parametric models.

(2) For many deformable objects that can’t be completely modeled by pre-defined
templates, templateless approaches that incrementally reconstruct the object by tracking
motion simultaneously are proposed [25]. The main challenge of templateless approaches
is the error accumulation during the non-rigid registration. To solve the non-rigid registra-
tion problem, Wang et al. [26] proposed a framework consists of local non-rigid bundle
adjustment and global optimization; Slavcheva et al. [27] tackle the problem by level
set evolution without explicit correspondence search; Yang et al. [28] proposed a global
non-rigid registration method for large non-rigid deformations.

RGB-D data can provide higher accuracy in the reconstruction process. Most of the
research only focuses on using RGB-D data to get a global reconstruction result, such as a
smoothed point cloud. However, this kind of result is hard to be understood by a robot if it
needs to do a task such as folding a paper into a special shape.

The comparative overview Table 1 shows the comparison between the different previ-
ous methods and our approach. The reasons for using RGB-D data are that depth data can
provide higher accuracy while estimating the shape of objects, and RGB data can provide
correspondence information which contributes to analyzing the deformation process. Com-
pared to previous methods, the result of the proposed method is a set of segmental elements
with their relationship in real space, which makes it easy for robots to understand and
operate in the real world with high accuracy. Using our method, a robot with human-like
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dexterous hands and fingers can perform the deformation operation in order to realize the
same deformed status of the paper.

Table 1. Comparative overview.

Item Priori Knowledge
Based (RGB)

NRSFM
(RGB)

Template-Based
(RGB-D)

Templateless
(RGB-D)

Our Approach
(RGB-D)

Input data RGB images RGB images RGB images with
depth data

RGB images with
depth data

RGB images with
depth data

Priori knowledge
Models or reference
point
correspondence

Doesn’t
require

Pre-defined
template Doesn’t require Doesn’t require

Accuracy Acceptable Acceptable Higher than RGB
methods

Higher than RGB
methods

Higher than RGB
methods

Output Global result in
virtual space

Global result
in virtual
space

Global result in
real space

Global result in
real space

Segmental
elements with
their relationship
in real space

For robot
understanding Hard Hard Hard Hard Easy

2.2. Important Technique for Understanding the Deformed Object

We will propose new techniques for the non-rigid point matching and the plane
detection on depth data as the most crucial technique for research about the deformable
object. Therefore, here we introduce the previous works for these critical techniques.

2.2.1. Non-Rigid Point Matching

Non-rigid point matching is to establish reliable point correspondences invoked at
the same physical points under non-rigid deformation. There are three main strategies
of non-rigid point matching: (1) Based on outlier removal by constraints; (2) Based on
iteration between correspondence and transformation estimation; (3) Graph-based.

(1) The strategy based on outlier removal is widely used in many research works [29–31],
and it contains two steps: (a) establish tentative matchings which contain false matchings
based on a similarity constraint of feature points (e.g., SIFT(Scale-Invariant Feature Trans-
form) [32]); (b) remove outliers based on geometric constraints. To deal with the case with a
large number of outliers, Ma et al. [33] proposed a vector field consensus algorithm that is
robust to the case with 90% outliers.

(2) The second strategy is based on a two-step update process, which iteratively alter-
nates between the point correspondence and the transformation estimation. The iterated
closest point (ICP) algorithm [34] is a famous method using this strategy, but it is easy to
be trapped into local minima for the dispersion of point correspondence. The robust point
matching (RPM) algorithm [35] formulated a task as a mixed linear assignment, which is the
least square problem and is optimized by a deterministic annealing framework. However,
RPM can’t work well when there are missing or extraneous structures, so Sofka et al. [36]
proposed a Co-variance Driven Correspondences (CDC) algorithm which can overcome
this problem with effective modeling of uncertainty during the registration process.

(3) Recently, the graph-based method has also become a popular strategy to solve the
non-rigid point matching problem. One type builds a graph in which each node is a feature
point, and it can remove the outliers according to the local neighborhood structures [37,38].
Another type builds the graph in which each node is corresponding and removes the
incorrect correspondences by clustering [39,40]. As the development of the second type,
Tarashima et al. [41] model the problem as mining of visual shared patterns, which can
find the visually similar parts in an image pair, but they use many fixed thresholds in the
spatial constraints which will reduce the robustness.
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Our non-rigid point matching method is compared with other previous methods in
comparative overview Table 2. The graph-based methods can preserve local neighborhood
structures which is necessary for our target. Therefore, the approach proposed by us is
an improved graph-based method sourced from Tarashima team’s work [41]. Rather than
using fixed thresholds in spatial constraints to build an unweighted graph, the spatial
constraints are used to generate the distance between each point on a weighted graph
in our approach. Then, we choose a different clustering algorithm, the Markov Cluster
Algorithm [42], which is effective to deal with the weighted graph. Our method has higher
robustness under changing conditions, where the object is deformed with various folding
angles or in a complex environment such as with occlusions.

Table 2. Comparative overview.

Item Outlier Removal by
Constraints Iteration Based Previous

Graph-Based Our Approach

Robustness Sensitive to outliers Sensitive to outliers Sensitive to changing
conditions

Robust with
changing conditions

Local neighborhood
structures can’t preserve can’t preserve can preserve can preserve

2.2.2. Plane Detection on Depth Data

With the emergence of depth-camera technology, plane detection from the depth data
is widely used in the computer vision and robotics fields. According to the principles,
plane detection methods can be mainly divided into three types: (1) Based on Random
Sample Consensus (RANSAC); (2) Based on Hough Transform (HT); and (3) Based on
Region Growing.

(1) Random Sample Consensus (RANSAC) [43] is an iteratively randomized model
fitting process which can effectively detect large planes but over-simplify some complex
structures. To solve the problem, some methods combine RANSAC with other techniques
such as Normal Coherence Checking (NCC-RANSAC) [44], mean shift [45], and Support
Vector Machine (SVM) [46].

(2) 3D Hough Transform is used for the plane detection from point cloud data [47].
However, the main drawback of Hough Transform is computational complexity, so various
optimized methods have been proposed to speed up the voting process, such as Probabilis-
tic Hough Transform (PHT) [48], Random Hough Transform (RHT) [49], and Kernel-based
Hough Transform (KHT) [50].

(3) The methods based on Region Growing exploit the neighboring relationship
among points to update the plane iteratively.The Early Region Growing method [51] takes
much time to calculate, so some improved methods are proposed, such as the Two-Point-
Seed Growing method [52] and Point-Based Region Growing (PBRG) [53]. The distinction
of the inliers and the outliers of the current growing plane with high accuracy is important
for Region Growing methods. In addition, most of the previous works used different
thresholds to identify outliers [54–56]. For the thresholds-based Region Growing methods,
the overgrowing problem is still a challenge because it is hard to detect the intersection by
thresholds. Therefore, Jin et al. [57] proposed a robust depth-driven plane detection (DPD)
algorithm and used a two-stage refinement to solve the overgrowing problem.

The comparison between our method and previous studies is shown in comparative
overview Table 3. High accuracy and robustness are necessary for our purpose of repro-
ducing the deformation with folding by a robot. However, the time cost also needs to be
considered. Therefore, we propose a refined Region Growing method derived from the
Jin team’s work [57], which can provide high accuracy with a lower computational load.
In the system of [57], a dynamic threshold is used to check whether a pixel of depth image
belongs to a plane, and the overgrowing problem is solved by an additional two-stage
refinement, which takes too much time. We use a unique error in our approach, called the
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offset error, which is defined by ourselves to check whether a pixel of depth image belongs
to the current growing plane. It can avoid the overgrowing during the iterative growing
process without any additional process to reduce a computational load.

Table 3. Comparative overview.

Item RANSAC Hough Transform Previous Region Growing Our Approach

Accuracy High to large
planes High High High

Computational
load High Very high High High

Robustness Weak to complex
planar structures

Robust to noisy
environment Weak to the overgrowing Avoid overgrowing

problem

3. Methodology

The outline of the entire system is shown in Figure 1. Firstly, Microsoft Azure Kinect
acquires the RGB image and Depth image of an object both at the initial state and the
deformed state. For reproducing the same deformation on an object like paper, it is
necessary to find each plane and each bending line on the deformed surface to analyze
the task order. The actual procedure to obtain this necessary information with operational
accuracy can be divided into three main steps:

(a) The blue blocks of Figure 1 use the weighted graph clustering method to find potential
planes and establish the correspondence between each pair of planes on two RGB
images. Here, a weighted graph is built based on the dense feature point matchings
performed by SIFT (Scale-Invariant Feature Transform) [32] and clustered by the
Markov Cluster Algorithm [42] so that the points in each cluster belong to the same
plane. The detailed process will be explained in Section 3.1.

(b) After getting a set of clusters, the yellow blocks in Figure 1 use a refined region
growing method to estimate each plane and calculate possible bending lines and
folding angles between each pair of planes. The details of this part will be explained
in Section 3.2.

(c) The green parts of Figure 1 confirm the adjacent relationship between each pair of
planes by a novel sliding checking model. There are more details of sliding checking
model in Section 3.3. In the red blocks, a projection method is used to check the
performance of the entire system, which will be explained in Section 4.3.1.

3.1. Non-Rigid Point Matching and Clustering Based on the Weighted Graph

This section is in the blue blocks of Figure 1. Compared with the previous methods,
the proposed method can preserve the neighborhood structure and has better robust-
ness under changing conditions. The process of approach can be divided into two parts:
(1) Weighted graph construction in Section 3.1.1; (2) Applying Markov Cluster Algorithm
to graph in Section 3.1.2.
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Figure 1. Outline of the proposed method.

3.1.1. Weighted Graph Construction

The outline of the weighted graph construction, which can generate a weighted graph
based on the feature point matchings between two RGB images, is shown in Figure 2.
The input of this process is two RGB images ImgP and ImgQ. The features of each feature
point we need are the scale σ, the orientation θ, and the position T.

An example of two pairs of feature point matchings between ImgP and ImgQ is shown
in Figure 3, where feature points P and Q constitute a matching va = (P, Q) and feature
points P∗ and Q∗ constitute another matching vb = (P∗, Q∗). The radii of black circles
represent the scales σ of feature points. The blue solid lines represent the orientation θP
and θP∗ , and the red solid lines represent the orientation θQ and θQ∗ . The green solid line
lPP∗ is the connection between P and P∗, and lQQ∗ is the connection between Q and Q∗.

The complete process of weighted graph construction is as follows. We firstly use
the SIFT [32] descriptor to get the feature point sets KP and KQ from two RGB images
ImgP and ImgQ. The reason for choosing the SIFT descriptor to deal with the deformable
surface is that it has stable performance in scaling, translation, and rotation. For each SIFT
feature point p, there are three necessary features that can be easily obtained: the scale
σp ∈ R, the orientation θp ∈ R, and the position Tp ∈ R2. After applying the SIFT feature
point matching method, we can get a dense matching result MPQ, and the quantity of the
matchings is N. Each matching vi = (Pi, Qi) i ∈ (1, N) in the MPQ represents a node in the
weighted graph. After that, the connection relationship and the weight of edge between
each pair of nodes can be determined in a new way based on three constraints defined
by [41].
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Figure 2. Weighted graph building process.

Figure 3. Two pairs of feature point matchings.

For each two feature point matchings va = (P, Q) and vb = (P∗, Q∗) shown in
Figure 3, there are three steps to figure out the connection relationship and the weight of
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edge: (1) Calculate the Scale Coherence; (2) Calculate the Neighborhood Difference and
Orientation Difference; and (3) Weight Generation.

(1) Calculate the Scale Coherence
For each pair of va and vb, the scale of feature points will be consistent with the scale
of the image they belong to, so we use Equation (1) to evaluate the scaling consistency.
According to it, some bad matchings that don’t satisfy the scaling consistency can be
distinguished and removed. Therefore, if a pair of matchings va and vb don’t pass the
scale coherence checking, we will not use an edge to connect these two nodes:

hσ(va, vb) =

[
1
τσ
≤ σP/lPP∗

σQ/lQQ∗
≤ τσ

]
∧
[

1
τσ
≤ σP∗/lPP∗

σQ∗ ′/lQQ∗
≤ τσ

]
(1)

In Figure 3, lPP∗ and lQQ∗ are the spatial distances of two feature points in each image.
With those spatial distances and the scale σ of the feature points in each image, we
estimate an error like σP/lPP∗

σQ/lQQ∗
to check the scaling consistency. τσ is a threshold which

is set to τσ = 1.5. If va and vb satisfy the Equation (1) on the scale coherence, there will
be an edge between the nodes va and vb in the weighted graph.

(2) Calculate the Neighborhood Difference and Orientation Difference
The weight of the edge between each pair of nodes will be calculated based on
the neighborhood difference and the orientation difference. For each pair of nodes,
the more significant the neighborhood difference and orientation difference are,
the less likely that they belong to the same plane. Therefore, those two differences and
the weight of the edge between the two nodes are positively correlated. Firstly, we
need to calculate the neighborhood difference and the orientation difference separately.
The neighborhood difference is calculated by Equation (2):

dneighbor(va, vb) =
(dPP∗ −min(SPP∗))× τN
max(SPP∗)−min(SPP∗)

+
(dQQ∗ −min(SQQ∗))× τN

max(SQQ∗) −min(SQQ∗)
(2)

where dPP∗ represents the number of the feature points which are closer to point P
than point P∗ in the image ImgP, and dQQ∗ represents the number of the feature points
which are closer to point Q than point Q∗ in the image ImgQ. For each pair of P and
P∗, we save the value of dPP∗ in a set SPP∗ ; for each pair of Q and Q∗, the value of
dQQ∗ is saved in another set SQQ∗ .
In Equation (2), to make the dPP∗ and dQQ∗ have the same level of influence, we
map the dPP∗ and dQQ∗ to the same interval (0, τN), where τN is the number of
possible edges. For example, if the quantity of the weighted graph’s nodes is N, then
τN = (N−1)×N

2 .
The orientation difference is calculated by Equation (3):

O(va , vb)
= ‖θP −∠PP∗| − |θQ −∠QQ∗‖+ ‖θP∗ −∠P∗P| − |θQ∗ −∠Q∗Q‖ (3)

In Equation (3), θP, θP∗ , θQ, and θQ∗ are the orientation of the feature points shown
in Figure 3. The ∠PP∗ is the orientation from TP to T∗P , so |θP −∠PP∗| represents the
pink angle around point P in Figure 3, and |θP∗ −∠P∗P| represents the yellow angle
around the point P∗ in Figure 3.
To make the orientation difference have the same level of influence as the neighbor-
hood difference, we also map the orientation difference O(va , vb)

to the interval (0, τN)
by Equation (4):

dorientation(va, vb) =
(O(va , vb)

−min(L(va , vb)
))× τN

max(L(va , vb)
)−min(L(va , vb)

)
(4)

In Equation (4), the O(va , vb)
is calculated by Equation (3). For each pair of va and vb, we

save the value of O(va , vb)
in a set L(va , vb)

, and the τN is the same one in Equation (2).
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(3) Weight Generation.
After getting the neighborhood difference and orientation difference, which are
mapped to the same interval, we will use them to generate the weight of the edge by
Equation (5):

w(va, vb) = dorientation(va, vb) ∗ dneighbor(va, vb) (5)

where we use the product of the neighborhood difference and orientation difference
w(va, vb) to represent the distance between two nodes va and vb. Then, the value
of each w(va, vb) will be saved in a set M(va , vb)

. With the M(va , vb)
, we use Equa-

tion (6) to map the weight to the interval (0, τN), which is same as the one in
Equations (2) and (4):

W(va, vb) =
(w(va, vb)−min(M(va , vb)

))× τN

max(M(va , vb)
−min(M(va , vb)

(6)

By Equation (6), we can get the final weight W(va, vb) of each edge. However,
the clustering algorithm will fail while dealing with a large number of continuous
values with low discrimination. To avoid the failure of clustering, we need to pre-
process the weight W(va, vb) before applying the clustering algorithm. Therefore,
a step is defined in Equation (7) to divide the weight W(va, vb) into several ranks:

Step =
τN
δ

(7)

In Equation (7), τN = (N−1)×N
2 is equal to the maximum value of W(va, vb), and δ

is the quantity of ranks we want to divide. The value of δ can determine the clus-
tering result by affecting the tightness of the connection in the graph: if δ is too big,
a large cluster may be divided into several small clusters; if δ is too small, several
different small clusters may be combined into the same cluster. Obviously, too big δ
will only increase the subsequent calculation load but will not cause errors, but too
small δ can cause worse effects. Through the experiments in different situations
similar to Section 4.2.1, we find the δ in the interval (100, 200) can almost avoid the
situation where the δ is too small. For the case of too large δ, which still may happen,
the secondary clustering in Section 3.2.4 can eliminate its influence. Therefore, this
assumption can handle most general situations.
For example, Figure 4a is the histogram of the W(va, vb) we have gotten. Then, we
use the δ = 7 to divide the set of the W(va, vb) into seven ranks, where the ranks will
be (0, Step), (Step, 2Step), (2Step, 3Step) · · · (6Step, τN). Weight values in each rank
will be set to the same value, only the first rank is set to 1, and the rest of the ranks
are set to the lower limit of the interval. Then, the weight values of 7 ranks are like
(1, 1 · · · ), (Step, Step · · · ) · · · (6Step, 6Step · · · ), which is shown in Figure 4b. How-
ever, in the Markov Cluster Algorithm [42], the weight of an edge is the reciprocal of
distance, so we take the inverse of ranks to be the final weights. The final weight ranks
of the weighted graph are (1, 1 · · · ), ( 1

Step , 1
Step · · · ) · · · (

1
6Step , 1

6Step ). After setting the
weight to each edge, the Markov Cluster Algorithm will be applied to get the clusters
in the next step.
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(a) (b)

Figure 4. Histogram of weight value (a) and Division into seven ranks (b).

3.1.2. Applying Markov Cluster Algorithm to the Graph

After getting a weighted graph from Section 3.1.1, we need an effective clustering
algorithm to find each cluster from the graph. The reason for choosing the Markov Cluster
Algorithm [42] to do the clustering is that it is an effective and efficient method for weighted
graph clustering.

Here, we will introduce the process of the Markov Cluster Algorithm, which is shown
in Figure 5. The Markov Cluster Algorithm is based on doing random walks on the graph.
If we start from a node and travel to another connected node randomly, the possibility of
staying in the current cluster is stronger than moving to another cluster.

The input consists of three parts: (1) A weighted graph from Section 3.1.1; (2) A
power parameter e; (3) An inflation parameter r. Taking the weighted graph in Figure 5 as
an example, we construct a 7× 7 associated matrix Ma (8) in which value Ma[i][j] is the
weight of the edge between node i and node j. For example, the distance between A and
B is 7, so the possibility from A to B is the reciprocal of distance, which is 1

7 . Therefore,
the value of Ma[A][B] is 1

7 , which is the weight of edge AB calculated in Section 3.1.1.

Ma =



A B C D E F G
A 0 1

7 1 1
3 0 0 0

B 1
7 0 0 1

7 0 0 0
C 1 0 0 1

2
1
6 0 0

D 1
3

1
7

1
2 0 0 0 0

E 0 0 1
6 0 0 1

2 1
F 0 0 0 0 1

2 0 1
2

G 0 0 0 0 1 1
2 0


(8)
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Figure 5. Markov cluster algorithm.

Then, we should add a self-loop to each node, which means to make Ma[i][i] = 1 for
each node i. The associated matrix will be like matrix (9).

Ma =



A B C D E F G
A 1 1

7 1 1
3 0 0 0

B 1
7 1 0 1

7 0 0 0
C 1 0 1 1

2
1
6 0 0

D 1
3

1
7

1
2 1 0 0 0

E 0 0 1
6 0 1 1

2 1
F 0 0 0 0 1

2 1 1
2

G 0 0 0 0 1 1
2 1


(9)
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The next step is normalizing the Ma column by column to turn the associated matrix Ma
into a possibility matrix Mp. The Mp is shown like matrix (10), where the sum of each
column is 1, and each column represents the possibility of traveling from the current node
to other nodes. For instance, the column Mp[i][A] saves the possibility from node A to
other nodes i.

Mp =



A B C D E F G
A 0.404 0.111 0.375 0.169 0 0 0
B 0.058 0.778 0 0.072 0 0 0
C 0.404 0 0.375 0.253 0.062 0 0
D 0.135 0.111 0.188 0.506 0 0 0
E 0 0 0.06 0 0.375 0.25 0.4
F 0 0 0 0 0.187 0.5 0.2
G 0 0 0 0 0.375 0.25 0.4


(10)

After getting the possibility matrix, the Expand process is applied to do the random walks.
We take the e-th power of the possibility matrix Mex to replace the former possibility matrix
in Equation (11); here, the value of e is set to e = 2. Each column in Mex represents the
possibility of traveling e steps from the current node to other nodes, such as the column
Mex[i][A] saves the possibility of traveling two steps from node A to other nodes i:

Mex = M2
p =



A B C D E F G
A 0.344 0.15 0.324 0.256 0.023 0 0
B 0.078 0.619 0.035 0.103 0 0 0
C 0.349 0.073 0.343 0.291 0.047 0.016 0.025
D 0.205 0.158 0.216 0.334 0.012 0 0
E 0.025 0 0.047 0.016 0.341 0.319 0.36
F 0 0 0.012 0 0.239 0.347 0.255
G 0 0 0.023 0 0.337 0.319 0.36


(11)

After doing the random walks, the Inflation process is applied to strengthen strong pos-
sibility and weaken weak possibility by re-scaling each column of the matrix Mex with
power r and normalizing the column. Here, the value of r is set to r = 2, so we square each
column and get a new matrix Mr (12):

Mr =



A B C D E F G
A 0.118 0.023 0.105 0.066 0.001 0 0
B 0.006 0.384 0.001 0.011 0 0 0
C 0.122 0.005 0.118 0.085 0.002 0 0.001
D 0.042 0.025 0.047 0.112 0 0 0
E 0.001 0 0.002 0 0.117 0.102 0.13
F 0 0 0 0 0.057 0.12 0.065
G 0 0 0.001 0 0.114 0.102 0.13


(12)

Then, normalize each column of Mr to make the sum of each column equal to 1, the Mr
will be like (13):

Mr =



A B C D E F G
A 0.41 0.052 0.383 0.241 0.002 0 0
B 0.021 0.879 0.005 0.039 0 0 0
C 0.422 0.012 0.431 0.31 0.008 0.001 0.002
D 0.145 0.057 0.17 0.409 0 0 0
E 0.002 0 0.008 0.001 0.401 0.314 0.399
F 0 0 0.001 0 0.197 0.372 0.2
G 0 0 0.002 0 0.392 0.314 0.399


(13)
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Comparing each column of Mr with each column of Mex, it is evident that the strong
neighborhood connection becomes stronger and stronger, and the weak neighborhood
connection becomes weaker and weaker. Then, we make the Mr to be the new possibility
matrix Mp and repeat the Expand and Inflation processes. The matrix Mp will finally
converge to a steady-state matrix Moutput (14) where every non-zero value of a column has
the same value.

Moutput =



A B C D E F G
A 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0
C 1 0 1 1 0 0 0
D 0 0 0 0 0 0 0
E 0 0 0 0 1 1 1
F 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0


(14)

The clustering result can be obtained by interpreting the final matrix Moutput. We need to
loop through each column of Moutput; if Moutput[i][j]! = 0, it means that nodes i and j are in
the same cluster. In this case, we can get (A, C, D), (B), (E, F, G) three clusters.

By applying the Markov Cluster Algorithm to the weighted graph from Section 3.1.1,
we can get several clusters of feature point matchings. Each cluster of feature point
matchings can be divided into two corresponding clusters of feature points that belong to
the same area of the object’s surface between two RGB images. If the object in one RGB
image is in the initial state, we think the corresponding area in another RGB image is also
not deformed. In our case, we only need the cluster of feature points Θc in the deformed
object’s RGB image. Each Θc contains a set of feature points that belongs to the same
approximate plane on the deformed object’s surface.

To confirm our method’s improvement in robustness, we compared our approach to
the unweighted-graph method of [41] in Section 4.2.1.

3.2. Plane Detection on Depth Data

After getting a set of clusters and each cluster, Θc can represent an approximate plane
of the deformed surface in an RGB image. This section, which is in the yellow blocks of
Figure 1, explains a refined region growing plane detection algorithm. Compared with the
previous region growing methods, the proposed method can avoid overgrowing without
increasing the computational load, thereby improving accuracy.

The complete process of detecting the plane from a cluster Θc is shown in Figure 6:
firstly, we should find a 7 ∗ 7 seed patch around the center point of the cluster with the
highest planarity. The size of the seed patch should be appropriate: if the size is too
small, the seed patch will be more susceptible to local slight deformation in the early
growth stage; if the size is too large, the seed patch may be distributed in two planes at
the same time, causing huge errors. In order to identify some small flat regions, the size of
7 ∗ 7 is suitable, but the specific size can be adjusted according to different requirements.
An iterative growth process is then applied to extend the current plane from the seed patch
for estimating the equation and range of the plane.
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Figure 6. Region growing method.

3.2.1. Coordinate Conversion

In order to estimate the plane equation, it is necessary to convert the pixels of the
depth image to 3D points in the camera coordinate system. The 3D coordinates of each pixel
in the camera coordinate system can be obtained with the depth data and the calibration
parameters of the camera. Using the self-calibration function provided by Azure Kinect
SDK, it is easy to obtain four necessary parameters fx, fy, cx, cy. The parameters cx and cy
are the 2D coordinate of the image’s center; fx and fy are the proportional parameter to the
depth value. For each pixel with position (xd, yd) in image with the depth value dp, the 3D
coordinate (xw, yw, zw) can be calculate as Equation (15):

xw = (xd − cx)×
dp
fx

yw = (yd − cy)×
dp
fy

zw = dp

(15)

3.2.2. Find a Seed Patch

Before applying the iterative growing process, it is necessary to find a suitable seed
block as a starting area. The equation of a plane in 3D space can be represented like
ax + by − z + d = 0, where the normal vector ñ = (a, b,−1) and d = d is a constant.
The plane equation can be estimated by applying a Linear Least Squares plane fitting
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method to a set of points on a plane. For any 3D point p = (x, y, z), the fitting error
between a plane and the point p, which is defined in [57], can be evaluated as:

error(p) = |p · ñ + d| (16)

For a seed patch with a point set P, we calculate the root mean square of fitting
error φi by Equation (17) to evaluate the planarity of seed patch Si, and higher planarity
corresponds to smaller φi:

φi =

√
1
|P| ∑
∀p∈P

error2(p) (17)

As the Figure 7 shows, to find a suitable seed patch for the cluster, we take a 9 ∗ 9 block
B, which is centered on the center point of cluster Θc; each pixel in B is a candidate for the
center of seed patch S. The size of B should consider both effectiveness and calculation
cost: if the size is too small, the search area will be too small to find the most suitable seed
patch; if the size is too large, it will generate excessive calculation load and increase time
consumption. In our approach, 9 ∗ 9 is a suitable size to effectively select suitable seeds and
limit the calculation load, but the size also can be adjusted according to different conditions.
In the 9 ∗ 9 case, there are 81 candidates for the seed patch, then the φi of each seed patch
will be calculated, and the one with the smallest value of φi will be a suitable seed patch
for growing.

Figure 7. Find the seed patch with the highest planarity.

3.2.3. Iterative Region Growing Process

After finding a suitable seed patch, we will introduce details of the iterative growth
process, which uses the offset error erroro to check each pixel and avoid overgrowing.
Before starting the iteration process, it is necessary to estimate the seed patch’s initial
equation by the Linear Least Squares plane fitting approach.

Firstly, we will introduce the offset error erroro of a point in the depth image. For any
3D point Pw with coordinate (xw, yw, zw) which is on a depth image imgd, we can use an
inverse process of Equation (15) to calculate the 2D position (x′d, y′d) of Pw on the imgd:
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x′d =
fx × xw

zw
+ cx

y′d =
fy × yw

zw
+ cy

(18)

If Pw on the plane like case (a) in Figure 8, the (x′d, y′d) we calculated is almost equal to
the real 2D position (xd, yd) of Pw and the depth value imgd[int(y′d)][int(x′d)] = imgd[yd][xd].
If we apply Equation (15) with the real 2D position (x′d, y′d) and imgd[int(y′d)][int(x′d)], we
will get a new 3D coordinate (x′w, y′w, z′w), which is very close to the (xw, yw, zw) only with a
tiny rounding error.

If Pw is above the plane in the real world like case (b) of Figure 8, Pw does not exist in
the depth image imgd. Therefore, the calculated 2D position (x′d, y′d) represents a point far
away from Pw in 3D space. If Pw is behind the plane in the real world like Figure 8c, it also
can’t be caught in the depth image imgd, and (x′d, y′d) also represents a far away 3D point.

Both in case (b) and case (c), the 3D point Pw is not a point caught in the depth image,
so the calculated 2D position (x′d, y′d) represents a different point, which is caught in the
depth image. Because of the multiplication operation in Equation (18), the 3D coordinate
(x′w, y′w, z′w) of 2D position (x′d, y′d) will have a big offset to (xw, yw, zw).

Figure 8. Positional relationship between point and plane: (a) on plane; (b) above the surface; (c) behind the surface.

To evaluate the offset, we use Equation (19) to calculate the offset error erroro between
two 3D coordinates (x′w, y′w, z′w) and (xw, yw, zw):

erroro =
√
(x′w − xw)2 + (y′w − yw)2 + (y′w − yw)2 (19)

As it shows in Figure 9, the cross-section of two connected planes plane1 and plane2 can
be only concave or convex for the camera. We use a red point to represent the center of the
seed patch; use a blue point to represent the current point pc; and the green point is the
midpoint between pc and the center point of the seed patch.

In case (a) of Figure 9, the current point pc is still undergrowing on plane1, so the
green midpoint between pc and the center point of seed patch also locates on the plane1.
Therefore, the offset error erroro of the green midpoint calculated by Equation (19) will be
very small.

In case (b) of Figure 9, the cross-section of plane1 and plane2 are convex to the
camera. The current point pc has grown to plane2, and the midpoint is behind the two
planes. In case (c) of Figure 9, the cross-section of plane1 and plane2 are concave to the
camera. The current point pc also has grown to plane2, and the midpoint is above the
two planes. In both cases (b) and case (c), the midpoint does not really exist in the depth
image, so the erroro in those cases will be much bigger than the one in case (a), which is
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not overgrowing. Through this approach, we can distinguish the overgrowing point easily
in the iteration process and avoid overgrowing.

Figure 9. Cross section of overgrowing cases: (a) undergrowing; (b) overgrowing and convex to the camera; (c) overgrowing
and concave to the camera.

The iteration process of region growing is shown in Figure 10, and each iteration will
process the points in a surrounding layer of the current plane, which is marked by the black
border, and Si is the current plane after the i-th iteration. For instance, there are 16 points
around the 3× 3 seed patch that need to be processed in the first iteration of Figure 10.
For each point pc, we calculate the offset error erroro of the midpoint between the current
point and the center point of seed patch by Equation (19). Then, erroro is compared to a
threshold γ, which is set as γ = 3 in our case, if erroro < γ, the current point belongs to the
current plane.

After passing the threshold checking, we do the connecting checking by a connecting
constraint: a point can be added to the current plane only when there is at least one of its
8-connected neighbors on the current growing plane. For example, in the second iteration
in Figure 10, the two light blue points will not be accepted because there is no 8-connected
neighbor of theirs on the current orange plane. If a pixel can pass all the checking, we add
it to the current plane.

Figure 10. Iteration growing process from a 3 × 3 seed patch.

After each iteration, the current plane’s equation should be updated by the Linear
Least Squares plane fitting approach. When the region can’t grow anymore, we can
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output the plane’s final equation, the range of plane on the x-axis (minx, maxx) and the
range of plane on the y-axis (miny, maxy). The (minx, maxx) and the (miny, maxy) can
roughly describe the range of plane. After processing each Θc, we can get enough spatial
information of each plane.

3.2.4. Combine the Clusters on the Same Plane

Since some clusters may belong to the same plane and eventually grow to the same
result, it is necessary to combine those clusters. In this section, a simplified graph clustering
method is used for combining the clusters on the same plane to ensure that each cluster
can represent a different plane.

Firstly, we build a simple unweighted graph, which is similar to the graph in Section 3.1,
but the node is the Θc we have obtained, and all the edges have the same weight 1. Then,
whether there is an edge between two nodes is decided by the similarity ξ between two
planes. For example, there are two Θc with estimated equations a1x + b1y− z + d1 = 0
and a2x + b2y− z + d2 = 0, the center points’ coordinate of two clusters are (x1, y1, z1) and
(x2, y2, z2). The similarity ξ of two planes is calculated by Equation (20):

ξ = |a1 × x2 + b1 × y2 − z2 + d1|+ |a2 × x1 + b2 × y1 − z1 + d2| (20)

The ξ is not equal to zero even two clusters belong to same plane. Because a plane in the
real world is always an approximate plane with slight deformation and there are small
errors between the planes estimated by different seed patches. We calculate the ξ between
each pair of the planes and compare to a threshold ι. The value of threshold ι depends on
how much error between two planes we allow, and the relations between similarity ξ and
error are shown in Table 4. In our system, we allow an error of about 5◦, and the threshold
is set to be ι = 19, which works well around 20. For different requirements, the value of
ι can be modified. If ξ < ι, those two nodes on the graph will be connected by an edge.
After iterating through each pair of clusters, the Markov Cluster Algorithm introduced
in Section 3.1 is applied to the graph. Finally, we can get some new clusters Θset, which
contains several Θc.

To smooth the error, we use the average of all plane equations in the Θset to represent
the plane’s equation of each Θset. In addition, in each Θset, the normal vector ñset is the
average of all the Θc’s normal vector ñ; the constant dset is the average of all the Θc’s
constant d.

Table 4. Relations between ξ and error.

Error between Two Planes Similarity ξ

Around 5◦ Around 20
Around 10◦ Around 30
Around 20◦ Around 50
Around 30◦ Around 80

After the combination, each cluster Θset can represent a different plane from others.
Moreover, to confirm our method’s effectiveness, we compared our region growing method
with the region growing part of [57] in Section 4.2.2.

3.3. Sliding Checking Model

When we get each approximate plane’s equation on the deformed surface, it is neces-
sary to check the adjacent relationship between each pair of planes. This section, which
is in the green blocks of Figure 1, explains a sliding checking model for checking of the
adjacent relationship. Since each plane we obtain in Section 3.2 comes from the local feature
detected by the SIFT descriptor, it is difficult to know the adjacent relationship between
the planes. However, through our novel sliding inspection model, this challenge can be
effectively solved. Given the equations of two planes, the process shown in Figure 11
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can be used to check whether two planes are neighbors, and there is a real bending line
between two planes.

Figure 11. Apply Sliding checking model for bending line checking.

3.3.1. Initializing Sliding Checking Model

Here, we will explain the configuration of the sliding checking model, which is shown
in case (a) of Figure 12. It contains four points (A, B, C, D), where B and C are points
on the calculated bending line with distance β, A is the point on one plane, and C is the
point on another plane. Line segments AB and CD are perpendicular to BC with length
AB = CD = α. To initialize the sliding checking model, in our case, we set α = 5 and
β = 3.

In case (b) of Figure 12, we only need to change the position of point B to slide the
model because the 3D coordinates of points (A, C, D) can be calculated from the coordinate
of point B.

Due to the plane’s infinite ductility, while calculating the 3D coordinate of A and D,
we will get two pairs of symmetry points (A, F) and (D, E). For example, there are three
known conditions to calculate A: (1) The equation of the plane to which A belongs is
given; (2) AB and BC are perpendicular to each other; (3) the length of AB = α. However,
symmetry points A and F both meet three conditions, so we can get two coordinates, one
of which is a point that does not really exist. The case (c) of Figure 12 shows two pairs of
symmetry points (A, F) and (D, E), and F is the symmetry point of A with respect to line
BC, and E is the symmetry point of D with respect to line BC. When we get four candidate
pairs (A, D), (A, E), (F, D), and (F, E), only one pair can satisfy that two points exist, and it
can be distinguished in the process of each sliding step.
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Figure 12. (a) Sliding checking model; (b) slide the model on the bending line; (c) the case of symmetry points.

The reason for choosing four points rather than three to build the model is that three
points are not enough to check the bending line in some special situations shown in
Figure 13: In case (a), two planes only intersect at one point, and there is not a completed
bending line. If we only use three points to check, all three points can pass the checking
on the area around the intersect point. However, there is not a completed bending line
between the planes. For the case (b), two planes do not contact each other, and the intersect
line is on the expansion of the blue plane, so three red points really exist and can pass the
checking with a small offset error erroro. However, the blue point located on the expansion
of the blue plane does not really exist. It won’t pass the checking with a big erroro.

Figure 13. (a) Two planes only intersect at one point; (b) intersect line is on the expansion of one plane.

Therefore, only using the model with four points can ensure that there is a real bending
line between two connected planes when all four points pass the checking with a small
offset error erroro.

3.3.2. Sliding the Model

After initializing the sliding model, the model will slide on the bending line step by
step to check the existence of bending lines.

The start point and end point of the sliding are decided by the range of two planes
obtained in Section 3.2. For each plane, we have obtained the boundary value on the x-axis
(minx, maxx) and y-axis (miny, maxy). If the range of first plane is (minx1, maxx1) and
(miny1, maxy1), the range of another one is (minx2, maxx2) and (miny2, maxy2), and the



Sensors 2021, 21, 105 22 of 36

range of bending line must satisfy Equation (21), while xb is the x-value and yb is the
y-value of point on the bending line:

xb ∈ [min(minx1, minx2), max(maxx1, maxx2)]

yb ∈ [min(miny1, miny2), max(maxy1, maxy2)]
(21)

Then, we can start from the point on the bending line whose x-value is min(minx1, minx2)
and end at the point whose x-value is max(maxx1, maxx2). This range is a little wider than
the real length of the bending line, but only the point on the real bending can pass the
offset checking.

In each sliding step, we first calculate the coordinate of point C and symmetry
points (A, F) and (D, E). For each point with the calculated coordinate (xw, yw, zw),
Equations (18) and (15) are used to get the coordinate (x′w, y′w, z′w). Then, we calculate
the offset error erroro of each point and compare to a threshold λ = 10. If the Pair(B, C)
calculated by Equation (22) is True, then we will calculate the Pair of four candidates
(A, D), (A, E), (F, D) and (F, E) and set a counter Cij for each of them. If one candidate
Pair(i, j) satisfies the threshold λ = 10, we add 1 to the Cij, but, if the candidate Pair(i, j)
doesn’t satisfy λ = 10, the counter will be set to be Cij = 0. After operating the counters,
we slide the model to next step and the size of a step is equal to β:

Pair(p1, p2) = (erroro(p1) < λ) ∧ (erroro(p2) < λ) (22)

Only one of the candidates has two really existing points with low offset errors erroro,
so the counter of it can be accumulated continuously. The bending line is considered true
only when the maximum number of the counter is greater than half of the total number
of steps we need to slide. By this kind of continuous checking, we can easily judge the
existence of the bending line correctly, even though the threshold λ is a little rough.

Now that we know the adjacent relationship between each pair of planes. The perfor-
mance of the entire system will be checked in Section 4.3.1.

4. Experimental Setup and Evaluation Results

We would like to confirm the operation of the proposed method and verify its effec-
tiveness. Firstly, the experimental equipment and developmental environment used in
our implementation are introduced in Section 4.1. Section 4.2 evaluates two techniques
improved for understanding the deformed object based on existing technologies: (a) Clus-
tering(Section 3.1), (b) Region Growing (Section 3.2). Then, we check the complete system’s
performance by implementing our system on deformed papers and discuss the conditions
for effective work in Section 4.3. Finally, a data structure is proposed to save the necessary
information for the robot to reproduce the same deformation in Section 4.4.

4.1. Experimental Setup

In this section, we will introduce the experimental system settings for implementation.
The two main devices of our system are one depth camera and one PC (personal computer).

The depth camera we chose is the Azure Kinect developed by Microsoft, and the
specifications of Microsoft Azure Kinect are shown in Table 5.

Our approach uses the SIFT descriptor, which requires RGB images with high resolu-
tion, and the 4096x3072 RGB resolution of Azure Kinect is good enough to meet our needs.
Regarding the accuracy of depth data, Azure Kinect is one of the best consumer depth
cameras in recent years. It has good accuracy, and the measurable range is up to 5.46 m.
The accuracy is good enough to estimate the deformation process, and the measurable
range is acceptable for most of the robots to operate.



Sensors 2021, 21, 105 23 of 36

Table 5. Specifications of Microsoft Azure Kinect.

Item Specification

Product Microsoft Azure Kinect
Dimensions 103 × 39 × 126 mm

Weight 440 g
Interface USB 2.0/3.0

Max Resolution 1024× 1024(depth)/4096× 3072(RGB)
Depth measurable range 0.25–5.46 m
Typical systematic error <11 mm + 0.1% of distance without multi-path interference

Tandom error ≤17 mm
FPS (Frames-per-second) 0, 5, 15, 30 FPS

Power consumption 5.9 W

SDK system requirements
Windows 10 April 2018 (Version 1803, OS Build 17134) release (×64)
Linux Ubuntu 18.04 (×64), with a GPU driver that uses OpenGLv4.4

In order to run our system successfully, the minimum host PC hardware requirements
are shown in Table 6. Because of the rapid development of computer hardware, most of
the customer PC can meet our system’s hardware requirements.

Table 6. Minimum host PC hardware requirements.

Item Specification

CPU/GPU Seventh Gen Intel R© CoreTM i3 Processor (Dual Core 2.4 GHz with HD620 GPU or faster)
Memory 4 GB Memory
Interface Dedicated USB3 port

Graphics driver Graphics driver support for OpenGL 4.4 or DirectX 11.0

The development environment of our system is shown in Table 7. The environment
can be easily configured on a customer PC using the Linux operating system.

Table 7. Development environment.

Item Specification

Operating system Linux Ubuntu 18.04 (×64)

Programming language Python 3.6 or later version

Libraries and Packages

Azure Kinect sensor SDK
opencv-python, matplotlib
pyk4a, numpy, tkinter

Programming IDE PyCharm

4.2. Evaluation of Improved Techniques
4.2.1. Clustering

In order to evaluate the improvement of our weighted graph clustering method on the
robustness, we compare our approach with the unweighted-graph method of [41] under
different conditions such as different degrees of deformation, different objects, and occlu-
sions. The unweighted graph method uses several fixed values to be the thresholds of
constraints. When the conditions changed, the performance of this method can’t always
be acceptable. However, our weighted graph approach can adapt to different conditions
because each edge’s weight will change with conditions.

We use four different cases in Figure 14. The objects in cases (a–c) are the deformed
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bottles, cases (a, b) are the same bottle, but the deformation degree of (b) is much larger
than (a). In case (c), the deformed bottle is in a complex environment with occlusions.
In case (d), the deformed object is a folded paper, and we can regard it as a combination of
several approximate planes.

Figure 14. Four cases for clustering: (a) a bottle with low degree of deformation; (b) same bottle with case (a) but with a
higher degree of deformation; (c) a deformed bottle in a box filled with different kinds of bottles; (d) a deformed paper with
three bending lines.

For each case, we use our weighted graph approach and the unweighted graph method
of [41] to build two different graphs. Then, the Markov Cluster Algorithm introduced in
Section 3.1 is applied to both graphs to get the clustering result. The result of clusters is
shown in Figure 15 where each color represents a cluster. In cases (b, c), if the deformation
degree is large or the object in a complex environment, we can get less SIFT feature
points than standard cases. The unweighted graph method can’t work well under those
challenging conditions. Some feature point matchings on the very different planes are
divided into only one cluster. Our approach can still divide the feature point matchings
into the right clusters in these extreme cases. In standard cases like (a, d), both methods can
get several clusters on the different planes, but our approach can find more approximate
planes even if the plane’s size is small or the feature is not much.

Therefore, our weighted graph approach has better robustness when the object is
deformed with various folding angles or in a complex environment such as with occlusions.
More potential planes can be detected by our approach under those challenging conditions.
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Figure 15. Result of clustering: (1) the unweighted graph clustering method of [41]; (2) our weighted graph cluster-
ing method; (a) bottle with low deformation; (b) bottle with high deformation; (c) bottle in complex environment; (d)
deformed paper.

4.2.2. Region Growing Comparison

This section compares our new region growing method with the region growing part
of [57] on different depth images to show the progress on solving the overgrowing problem.
We just randomly set a seed patch on the depth image and apply two region growing
processes with the same number of iterations.

There are three cases (a–c) shown in Figure 16, cases (a,b) are on the same depth image
but use different seed patches, case (c) is on the different depth images from (a,b). As we
can see, the method of [57] in column (2), when the growing plane reaches the red bending
line, doesn’t stop and still grows several iterations on the other plane. The overgrown area
will cause a big error while estimating the equation of the plane. However, as it shows
in column (3), our approach based on the offset error erroro can definitely stop on the
bending line.

Therefore, after the same number of iterations, our refined region growing approach
can avoid overgrowing problems without any additional process. It can reduce the time
cost in the calculation and improve the total system’s accuracy and speed.
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Figure 16. Three cases for region growing (The red line marks the bending line): (1) the RGB images of three cases; (2) the
region growing method of [57]; (3) our approach; (a,b) two different planes on a same paper; (c) a plane on another
different paper.

4.3. Evaluation of Total Performance
4.3.1. Total Performance

This section checks the performance of the entire system by testing our system on
different deformed papers, whose process is the red part of Figure 1. The reason for
choosing the paper to be the deformed object is that the paper’s patterns can provide
enough features for the SIFT descriptor, and folding a piece of paper can keep each different
part of the surface to be an approximate plane after the deformation.

We can obtain all the bending lines’ equations in the camera coordinate system by
applying three core processes in Section 3 in order. Since the spatial information of bending
lines is the present target of our system, all the errors during the performance of the whole
process can be presented as the error of the bending lines. However, the ground truth of
each bending line in the 3D coordinate system is hard to measure and get, but the bending
line on the 2D RGB image can be manually labeled. Therefore, we calculate the projection
on the 2D image of the 3D bending line and compare it with the ground truth to check the
performance of our approach.

Our system is tested on six different deformed papers, which are shown in Figure
17a–c and Figure 18a–c. The first row (1) shows the deformed paper’s RGB image, and the
ground truth of the bending lines is manually labeled in the second row (2). In the third
row (3) and fourth row (4), we calculate each bending line’s projection on the 2D image
and draw the line on the RGB image and depth image.

As we can see, in the cases Figure 17a,b and Figure 18a, the bending lines we have
drawn are very close to the ground truth. For the cases Figure 17c and Figure 18b, there
are small offsets between the bending lines we calculated and the ground truth. This kind
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of offset is mainly caused by the slight deformation on some planes of paper. Due to the
soft material properties of paper, these planes are approximate planes, so when we use
plane equations to represent approximate planes, and there must be some errors. In case
Figure 18c, there are three bending lines in the ground truth, but only two bending lines are
detected in our result. The reason for losing one bending line is that there are not enough
SIFT features detected from one of the planes. If some planes don’t have enough patterns
for the SIFT descriptor, it is difficult for them be detected and some bending lines can
be lost.

Figure 17. Three kinds of deformed paper (a–c): (1) RGB image; (2) ground truth of bending line; (3) projection of 3D
bending line on the 2D RGB image; (4) projection of 3D bending line on the 2D depth image.
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Figure 18. Three kinds of deformed paper (a–c): (1) RGB image; (2) ground truth of bending line; (3) projection of 3D
bending line on the 2D RGB image; (4) projection of 3D bending line on 2D depth image.

To obtain a quantitative evaluation, we calculate the angle between the 2D projection
of our result and the 2D manually labeled ground truth as the error. For all six cases,
Table 8 shows the average angular error on each bending line in each case, and the total
mean error is around 1.59◦. About the conditions such as the position relationship between
object and camera, they are similar in cases (e, f ), and they are different in other cases,
but the average angular errors are similar in all those cases, less than 3◦. Therefore, we
think that the angular error is less than 3◦ has a certain degree of generality.

The required accuracy of the reproduction task by a robot depends on the size and
complexity of the target object and the quality of work required. One research work on
the human eyes shows that the smallest angular difference for which correct discrimina-
tions could be made for a reasonable range of stimulus sizes and eccentricities is around
1.29–1.83◦ [58], which is similar to our total mean error 1.59◦. Therefore, we think that a
robot can perform some reproduction operations based on data with this kind of accuracy.
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Table 8. Angular error to the 2D ground truth.

Case Average Angular Error

(a) 1.67◦

(b) 2.00◦

(c) 2.67◦

(d) 1.67◦

(e) 1.00◦

(f) 0.50◦

Average 1.59◦

4.3.2. Discussion of Working Conditions

After checking the entire system’s performance by good or bad cases, we would like
to discuss our system’s limitations and effective work conditions in this section.

(1) Style of deformation: Our approach now can work well with the deformation
caused by folding like (a) in Figure 19 in which each segmental element can be regarded as
an approximate plane. However, for irregular deformation like (b) in Figure 19, the process
of deformation is hard to be described by simple plane equations.

Figure 19. Deformed paper: (a) Only by folding; (b) Irregularly deformed.

Another limitation is whether we can get enough SIFT features on each plane. If we
can’t get a SIFT key points cluster on one plane, this plane will be missed, and the complete
deformation process can’t be obtained. Two factors can affect the feature getting: the
paper’s patterns and the relative position between the camera and the object.

(2) Pattern of surface: The pattern and texture of the surface are important to the
SIFT descriptor, so our system can’t handle the object such as a blank paper or a poorly
colored paper. To verify the influence of the pattern on the surface, cases (e, f ) in Figure 18
use the papers in the same size and deformed into the same shape; only the patterns of each
paper are different. The patterns of case ( f ) are concentrated in the middle area and the
edge area is almost blank, so one segmental element with the little pattern is not detected.
The region growing process is only applied to the plane with a feature point cluster on it.
If there are not enough SIFT features on a plane, we will miss them. Moreover, the missing
plane will make the bending lines around it also be missed, like case ( f ).
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Therefore, there are enough patterns on most of the papers. The relative position be-
tween the camera and the plane also influences the SIFT feature point matching, which can
also be divided into two main factors: the distance from the camera and the plane’s pose.

(3) Distance and angle to object: About the distance, for the high 4096× 3072 RGB
resolution of Azure Kinect. The result of SIFT feature matching is acceptable within a 1-m
distance. Therefore, we mainly consider the influence of the plane pose. As shown in (a) of
Figure 20, the pose of a plane which will influence the feature detection can be divided into
two main factors: the angle between the plane and the centerline of camera κ, the distance
between the center point of plane, and the centerline of camera L.

Figure 20. Distance and angle to object: (a) Schematic diagram. (b) Configuration change of the κ and L.

To show the influence of κ and L, we use a simple configuration shown in Figure 20b,
which can change the κ and L separately. Then, we use a piece of paper to represent a plane.
Every time, we only change κ or L and keep other conditions the same. Moreover, we draw a
circle around each cluster’s center on depth images to show feature detection performance.

In Figure 21, we only change the κ and keep other factors to be the same. The best
condition is when the κ = 90◦, which means that the camera’s centerline is perpendicular
to the plane. When |90◦ − κ| increases, we can see cases (a–c) in Figure 21, and the number
of clusters we can obtain will decrease.

In Figure 22, we change the L and don’t change other conditions. Furthermore,
the best condition is when the L = 0, which means the center of the plane is on the camera’s
centerline. When the L increases, we can see the cases (a, b) in Figure 22, and the features
detected decrease.

Therefore, our method requires that the |90◦ − κ| and L should not be too large for a
plane, or if we are not able to detect enough SIFT feature points from the plane, the plane
will be missed and won’t participate in subsequent processing like region growing process
and sliding checking process. However, if there is at least one cluster generated on each
plane, our system can get an acceptable final result for deformation analysis.
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Figure 21. Change in tilt angle: increasing |90◦ − κ| as (a)→ (b)→ (c).

Figure 22. Displacement from center as increasing L: (a)→ (b).

In summary, the proposed system can have good performance with around 1.59◦

average angular error when two conditions are met: (1) The deformation is only caused by
folding, which means each segmental element of the deformed surface can be regarded
as an approximate plane. (2) Each potential plane can be detected by the non-rigid
point matching method from the RGB image, which means that the surface can provide
enough features for SIFT descriptor and there is at least one cluster Θc generated on
each plane; for example, the object with the following surface texture can’t be supported:
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(a) monochromatic and no pattern, (b) the same pattern is repeated, and (c) the pattern
has little change.

4.4. Data for Reproduction by a Robot

After verifying the accuracy of our proposed system, we would like to generate the
input data for a robot with human-like dexterous hands and fingers to produce the same
deformation in the future. Data must include at least (1) equation (position and orientation)
of the upward bending line and the downward bending lines on the folded paper and the
(2) relationship (whether adjacent or not, and angle) between folded planes.

Our input for the robot is a graph-like data structure Graphr shown in Figure 23b.
In the Graphr, each node represents a plane, and each edge between two nodes represents
a bending line between two planes. Therefore, for each plane we get in Section 3.2, we
will create a node in the graph, which saves the center point of the cluster, the equation,
and the approximate range of the plane. For each real bending line we get in Section 3.3,
we use an edge to connect two nodes to which the bending line belongs, and each edge
saves the equation of the bending line and the folding angle between two planes. All of the
equations are in the camera coordinate system.

For each node, we can find the same corresponding area on another similar object,
which is in the initial state. It is possible to make a robot reproduce the same deformation
of another similar object.

Figure 23. Data for reproduction: (a) Folded paper with four bending lines and five planes; (b) generated Graphr; (c) node-
edge information.

These kinds of data help to understand the deformation process, which is essential for
the robot to complete the folding task step by step. The reproducing deformation process
in the future can be like that: first, we find an edge in the Graphr, and, for the two nodes
connected by this edge, we can find two corresponding areas in another similar paper,
which is in the initial state. Then, a robot can operate those two corresponding areas to
generate a bending line, which is the same as the one saved in the edge.

If the functions of the robot are powerful enough with human-like dexterous hands
and fingers in the future, after dealing with each edge in the Graphr in a certain order, it is
possible to reproduce the same deformation as the one in the given image.

5. Conclusions

This paper has introduced a system that can estimate the deformation process of a
deformed flat object (folded plane) and generate the input data for a robot with human-like
dexterous hands and fingers to reproduce the same deformation of another similar object.
The system is based on processing the RGB data and depth data with three core techniques:
(1) A weighted graph clustering method for non-rigid point matching and clustering. It
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can find the potential planes and establish the correspondence between each pair of planes
on two RGB images. (2) A refined region growing method for plane detection on depth
data based on an offset error defined by ourselves. It can avoid the overgrowing problem
without any additional process to reduce the time cost on calculation. (3) A novel sliding
checking model to check the bending line and adjacent relationship between each pair
of planes. With the information about each segmental element, it would be possible to
estimate the deformation process.

Through several evaluation experiments, we have evaluated the improvement of two
core techniques and the entire system’s performance in Section 4:

(a) The comparison of clustering in Section 4.2.1 shows that our weighted graph approach
has better robustness than the old method of [41] when the object is deformed with
various folding angles or in a complex environment such as with occlusions.

(b) The experiment of region growing in Section 4.2.2 shows that our refined region grow-
ing approach can avoid overgrowing without any additional process. It can reduce
the time cost in calculation and improve the accuracy and speed of the total system.

(c) In Section 4.3.1, we have evaluated the total performance and confirmed that its
performance with around 1.59◦ average angular error is acceptable based on which a
robot would be able to reproduce the same deformation by folding the paper.

(d) Section 4.3.2 has discussed the conditions for the entire system to work effectively.
Our system can have good performance when the following two conditions are met:
(1) Deformation is only caused by folding. (2) Each potential plane can be detected
by the non-rigid point matching method from the RGB image. In addition, the object
with the following surface texture can’t be supported: (a) monochromatic and no
pattern, (b) the same pattern is repeated, and (c) the pattern has little change.

In summary, for the deformation of an object caused by folding, if our system can
get at least one feature point cluster on each plane, it can get the spatial information of
each bending line and flat plane with acceptable accuracy. With this generated information,
it is possible to reproduce the same deformation on another similar object by a robot in
the future.

About the future works, the subject of this paper is a folded plane, but we will
develop it into a robotic reproduction of general object deformation. In order to deal
with the irregular deformation, one possible way is dividing each irregular plane into
a set of meshes with neighborhood relations, and some deep learning technologies may
be helpful to solve the calculation time problem. In order to solve the limitation of SIFT
feature detection, multiple sensors can be used to avoid no blind spots, and deep learning
techniques can improve the performance of finding potential planes.
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