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Abstract
The cellular origin of lung adenocarcinoma remains a focus of intense research efforts. The marked
cellular heterogeneity and plasticity of the lungs, as well as the vast variety of molecular subtypes of lung
adenocarcinomas perplex the field and account for the extensive variability of experimental results. While
most experts would agree on the cellular origins of other types of thoracic tumours, great controversy exists
on the tumour-initiating cells of lung adenocarcinoma, since this histologic subtype of lung cancer arises in
the distal pulmonary regions where airways and alveoli converge, occurs in smokers as well as
nonsmokers, is likely caused by various environmental agents, and is marked by vast molecular and
pathologic heterogeneity. Alveolar type II, club, and their variant cells have all been implicated in lung
adenocarcinoma progeny and the lineage hierarchies in the distal lung remain disputed. Here we review the
relevant literature in this rapidly expanding field, including results from mouse models and human studies.
In addition, we present a case for club cells as cells of origin of lung adenocarcinomas that arise in
smokers.

Introduction
Lung cancer is the most lethal cancer worldwide causing more than 1.7 million deaths in 2018 [1]. Lung
adenocarcinoma (LUAD) is the most prevalent histologic subtype of lung cancer and accounts for almost
half of all lung cancer deaths because of its indolent clinical presentation and its peripheral location in the
lung parenchyma [2, 3]. As most lung cancers, and especially LUAD, are diagnosed when they have
already become locally advanced or metastatic, the 5-year survival rate amounts to only 15% [4]. Despite
rapid improvements in lung cancer prevention through smoking cessation and screening programmes, as
well as targeted and multi-modality therapies in the last few decades, lung cancer remains a dreadful
disease [5, 6]. While the incidence and mortality of many other types of lung cancer such as squamous
cell lung carcinoma and small cell lung carcinoma are continuously dropping in more developed countries
where smoking incidence is declining, LUAD incidence and mortality are constantly rising, a phenomenon
ascribed to the changing face of manufactured cigarettes and the increasing occurrence of LUAD in
nonsmokers [7–12].

Cancers are defined by both their genetic alterations and their cells and tissues of origin [13]. These
precancerous cells and tissues of origin define which cells can potentially lead to cancer, and are likely
distinct from stem cells in established tumours, which constitute the subset of cancer cells that possesses
stem cell characteristics and can drive tumour progression, therapy resistance, relapse and metastasis [13].
It has been demonstrated that self-renewal pathways such as Wnt, Hedgehog, and Notch that are
upregulated in embryonic stem cells are also commonly reactivated in tumour-initiating and cancer stem
cells as well as in mature lung cancers, driving proliferation, resistance to apoptosis, epithelial-to-mesenchymal
transition, metastasis, acquisition of new blood vessels and further genomic permutation [14]. Such lung
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cancer initiating and stem cells possess self-renewal properties and are able to execute programmes of
repair and normal tissue replacement during precarcinogenesis and established carcinogenesis [15].

Several cell types of the lungs hold tumour-initiating and stem cell properties and are thus potential cells
of origin of lung cancer. To this end, p63(+)Krt5(+) distal airway stem cells likely relevant to airway basal
cells have been shown to maintain and repopulate the airway and alveolar epithelium following viral
injury, while club cell secretory protein (CCSP)-expressing club cells have also been shown to be capable
of maintaining and repairing smaller bronchioles and alveolar structures [16–20]. Similarly, surfactant
protein C (SFTPC)-producing alveolar type II (ATII) cells are responsible for maintenance of the alveolar
epithelium [21, 22]. However, CCSP+SFTPC+ double positive bronchioalveolar stem cells (BASC) that
reside in the terminal and respiratory bronchioles and alveolar ducts and can differentiate into club cells as
well as alveolar cells were also shown to possess strong regenerative potential of both airway and alveolar
epithelium [23]. An often underestimated and disputed pool of lung stem cells are of mesenchymal origin,
located in all human tissues and organs and shown to migrate and differentiate into non-mesodermal cell
types [24–26]. Additional cells that are lineage negative have been shown to reside in the lungs and to
possess strong regenerative potential, while mesothelial cells were also shown to repopulate mesenchymal
cells of the lungs and other internal organs [27, 28]. While lung stem cells and their functions are
authoritatively reviewed elsewhere [29–33], the present review will summarise the current knowledge on
the cells of origin of lung cancer with a special focus on club cells and their potential role as cancer stem
cells of LUAD.

Methods
In addition to articles already known to the authors, PubMed (https://pubmed.ncbi.nlm.nih.gov/) was
queried on 17 May 2021 using theterms: (‘lung cancer’[Title/Abstract] OR ‘lung adenocarcinoma’[Title/
Abstract] OR ‘squamous cell lung carcinoma’[Title/Abstract] OR ‘squamous cell lung cancer’[Title/
Abstract] OR ‘small cell lung cancer’[Title/Abstract] OR ‘small cell lung carcinoma’[Title/Abstract]) AND
(‘stem cell’[Title/Abstract] OR ‘cell of origin’[Title/Abstract]), retrieving 1385 results. Titles and journal
names were manually curated to yield 416 articles whose abstracts were screened to yield the articles that
built the knowledgebase and reference list of the present review.

Results
The causes of cancer translated to lung adenocarcinoma
Heredity causes multiple forms of cancer that can be clinically manifest in childhood, but also in adult life,
and can be spontaneous or co-precipitated by germline mutations and environmental factors such as
smoking [34, 35]. Heredity can also indirectly cause cancer by influencing our interactions with the
environment, as is the case with a single nucleotide polymorphism in the habenular nicotinergic
acetylcholine receptor which renders individuals susceptible to nicotine addiction and thereby to COPD,
lung cancer and peripheral arterial disease [36]. Environmental carcinogens are thought to be even more
important than heredity in precipitating chest tumours in humans. The relationship between tobacco
smoking and lung cancer is one of the best documented epidemiologic relationships, while the same goes
for asbestos exposure and mesothelioma [37–44]. Radiation has also been tightly linked with lung cancer
development based on a number of different data sources, including atom bomb survivors, nuclear plant
workers, uranium miners, radiotherapy patients, and participants of lung cancer screening programmes
[45–54]. Finally, an increasingly stronger case is in the making for the connection between urban air
pollution and lung cancer [55–58]. While the list of environmental carcinogens that impact the lungs and
pleura is getting longer every day, and are comprehensively reviewed elsewhere [38], a fascinating new
hypothesis saw the light of day in recent years: the bad luck hypothesis by TOMASETTI and VOGELSTEIN

examines the possibility of a significant proportion of human cancers resulting from stem cell divisions
gone awry [59–62]. This ground-breaking work was based on measurements of cell division rates in the
various organs using proliferating cell nuclear antigen (PCNA) and marker of proliferation Ki-67 staining
of proliferating cells and extrapolation of the data by organ size and cell number. Indeed, PCNA+ cells in
the resting lung are very sparse, and increase tremendously in lung cancers [59–62].

Hence, several different environmental and endogenous causes can precipitate lung cancer originating from
the same and/or different lung lineages, and this heterogeneity is most evident with LUAD. It is highly
likely that different molecular subtypes of LUAD exist, which emanate from different cells of origin that
were tumour-initiated by different triggers, and such patient subgroups are evident in molecular and
epidemiologic datasets. For example, we identified two subgroups of patients with LUAD in atom bomb
survivors from Hiroshima and Nagasaki included in the Life Span Study that can be explained by
exposures to smoking and to irradiation, and validated their existence in the TCGA cohort from the US [48].
In addition, molecular subsets of KRAS-mutant LUAD were identified within the TCGA cohort via elegant
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genomic analyses [63]. This interpatient heterogeneity of LUAD needs to be addressed by future studies
on the cell of origin of lung tumours, which should ascertain the tumour subtype under study.

Evidence from genetic mouse models of LUAD
Studies on the origins of LUAD have been boosted tremendously by the use of genetically engineered
mouse models, which are valuable tools for tumour induction and lineage tracing. Model organisms have
been genetically manipulated to conditionally express oncogenic or tumour suppressive alleles, in
conjunction with CRE recombinase expressed under the control of a promoter active specifically in one of
the different respiratory cell lineages, and are therefore ideal for the tracing of a specific cell population
carrying specific mutations in time and space. Prominent focus has been given to the development of
mouse models harbouring KRAS proto-oncogene GTPase (encoded by the human KRAS and the murine
Kras genes) and tumour protein 53 (encoded by the human TP53 and the murine Trp53 genes) mutations,
as oncogenic mutations of the KRAS and TP53 genes are found in 34% and 54% of human LUAD [64, 65].
As a result, several mutant Kras/KRAS knock-in and Trp53 knockout mouse models have been generated,
with the most widely used among them being the Lox-Stop-Lox-KRASG12D model, which develops LUAD
within 4 months post intranasal administration of adenoviral CRE, and the Lox-Trp53-Lox model, in which
Trp53 can be deleted in specific lineages and can cause more aggressive LUAD when combined with the
Lox-Stop-Lox-KRASG12D model, as well as other transgenic mouse models that cannot be all mentioned
here [64–68]. Pulmonary lineage tracing studies in the respiratory epithelium of these genetically modified
mice following forced expression of the KrasG12D mutation in club airway epithelial cells expressing
CCSP, or in ATII alveolar epithelial cells expressing SFTPC, or in bronchoalveolar epithelial cells
expressing both markers, resulted interchangeably in LUAD formation, leading to inconclusive data as to
the progenitors of LUAD in adult mice [22, 23, 69–71]. This is partly attributable to the fact that some of
the above-referenced lineage tracing mouse models feature incomplete and/or promiscuous lung cell
labelling, to the heterogeneity among ATII cells regarding their proliferative and to tumour-initiating cell
properties [22], but also to the viral-induced injury itself, since it was also shown that adenoviral infection
alone contributed to the transformation of lung cells towards LUAD [71]. Similar genetically engineered
mouse models reproducing other LUAD driver mutations such as EGFR mutations and EML4-ALK fusions
have also been established and have proven the oncogenicity of the respective molecular changes when
forcefully expressed in alveolar cells, implying that ATII cells are the cellular origins of multiple
oncogene-driven LUAD tumours [72–74].

Evidence from environmental LUAD induction in mice
Although the above-referenced genetic mouse models have enhanced our mechanistic understanding of
LUAD development, oncogene function and cell of origin, they do not fully capture the mutation diversity
and burden of human LUAD, which is caused by environmental carcinogens rather than single oncogenes
[74, 75]. To better recapitulate the mutational acquisition pattern and dissect the complex pathobiology of
human LUAD, alternative strategies can be employed that combine conditional respiratory lineage tracing
with carcinogenic insults. This approach is advantageous in recapitulating pathophysiologic endogenous
carcinogenic events and in unravelling key events taking place during early tumour initiation, knowledge
which can prove valuable for the development of LUAD early detection of chemoprevention strategies.
Along these lines, we recently showed that as early as two weeks following treatment of lineage-marked
mice with urethane (ethyl carbamate, a chemical carcinogen contained in tobacco smoke) [76], KrasQ61R

driver mutations accumulate specifically in club and not in ATII cells [20], in line with evidence from
human airway epithelial cells found to be sensitised by tobacco smoke to a single-hit KRAS mutation [77]
and from a massive parallel sequencing approach [78]. These results are also in accord with earlier studies
that dictate that only club cells possess the cytochrome CYP2E1 [79, 80] that is required to convert the
tobacco pre-carcinogen urethane (ethyl carbamate) to carcinogenic derivatives vinyl carbamate and its
epoxide [81, 82], which in turn have a half-life of a few femtoseconds and can thus only injure the DNA
of the same cell that metabolically activates them [83, 84]. Thus, club cells are likely to be the cellular
source of LUAD triggered by the tobacco carcinogen urethane as opposed to ATII cells as cells of origin
of transgenic lung tumours in mice [20, 85].

Indeed, environmental-induced LUAD in susceptible inbred mouse strains is a versatile research tool. To
this end, single-hit LUAD emerge in sensitive FVB and A/J mice 6–9 months post-treatment with
intraperitoneal urethane (ethyl carbamate), N-nitrosodiethylamine (DEN), 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK), Nʹ-nitrosonornicotine (NNN), and N-methyl-N-nitrosourea (MNU), and
uniquely recapitulate the mutational landscape of human LUAD [20, 75, 86–93]. Such models have been
successfully used to study oncogene function in the genomic context and to reproduce human-relevant
LUAD mutanomes in mice [75, 93]. Although chemical models of LUAD do not necessarily rely on
human-relevant Kras mutations, they rather generate a human-relevant mutation spectrum in terms of
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single nucleotide variants in the mono- and tri-nucleotide, as well as the gene contexts [75, 87]. For
example, urethane-induced LUAD in mice feature the KrasQ61R mutation, which is very rare in human
LUAD, but at the same time they harbour multiple mutations in critical LUAD genes such as Alk and
Crebbp that are highly relevant to human LUAD [75]. Combining such tools with lineage tracing allows
spatiotemporal exploration of whole adverse outcome pathways leading from a specific carcinogen to
lineage-restricted molecular initiating events, key progression events and clinicopathologic and molecular
signatures that indicate the initiating agent and cell type. Using such an approach, club cells were shown to
contribute to lung maintenance, repair and carcinogenesis, to possess stem cell features and to sustain
chemical-induced KRAS mutations as LUAD cells of origin would [20, 85].

Evidence from human LUAD
Human LUAD patient cohorts have also been interrogated for cell of origin signatures, since abundant
evidence supports that cell of origin is imprinted and deductible from molecular data [94, 95]. These
studies have been sparse but imperative, since there are marked differences between mouse and human
lung epithelial cell biology, rendering translation of mouse lineage tracing data to the human setting
uncertain. Such studies are marked by inherent uncertainty, since lineage plasticity in the lungs is
tremendous and even malignant lung tumours can switch histology and molecular profiles upon acquisition
of new genomic alterations [96, 97]. To this end, one study exploited the finding of co-mutations of KRAS
and KEAP1 in 5% of LUAD [63] to ascribe different cells of origin (airway versus alveolar), as well as
immunometabolic profiles to KRAS-mutant LUAD with or without KEAP1 alterations [98]. In another
effort to determine genomic imprints of cell fate, squamous and adenomatous lung tumours appeared
highly similar, suggesting a common ancestor [99]. In our view, tumours of smokers and nonsmokers may
very well have different cellular origins, and hence studies should focus on molecular hallmarks of
smoking when examining lineage of origin, since such markers have been described, including KRAS and
TP53 mutations, as well as the C>A transversions described elsewhere [100–102]. These data show the
need for genetic lineage tracing models in the search for cells of origin of lung tumours, and for
biomarkers of environmental and endogenous lung cancer causative agents. Furthermore, they illustrate the
marked heterogeneity of LUAD, which needs to be taken into account in such lineage tracing studies.

Conclusions
The contribution of cells with stemness properties to tissue homeostasis, regeneration and tumour
progression is undeniable, and this trait renders them attractive therapeutic targets. In heterogeneous
tumours, stem cells will sustain tumour growth and possibly tumour recurrence. Chemical carcinogenesis
mouse models faithfully recapitulate human LUAD, and have highlighted club cells as a central respiratory
cell population with a key role in early initiation events leading to LUAD. Future perspectives should
therefore be targeted to better characterise this cell type and to increase our comprehension of the
mechanisms regulating cell biology, biomarker expression, mutational acquisition spatiotemporal patterns,
molecular dynamics of tumour evolution and tumour architecture. Novel technologies, such as organoids,
3D whole organ imaging with single cell resolution, and single cell sequencing, have been developed to
compliment the knowledge gained from transgenic mouse models and better understand the underlying
tumour pathobiology. The new knowledge should be tested on human-relevant experimental pre-clinical
models, so that effective therapies can be developed.
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