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Controversial views regarding the roles of B cells in tumor immunity have existed

for several decades. However, more recent studies have focused on its positive

properties in antitumor immunity. Many studies have demonstrated a close

association of the higher density of intratumoral B cells with favorable outcomes

in cancer patients. B cells can interact with T cells as well as follicular dendritic cells

within tertiary lymphoid structures, where they undergo a series of biological

events, including clonal expansion, somatic hypermutation, class switching, and

tumor-specific antibody production, which may trigger antitumor humoral

responses. After activation, B cells can function as effector cells via direct

tumor-killing, antigen-presenting activity, and production of tumor-specific

antibodies. At the other extreme, B cells can obtain inhibitory functions by

relevant stimuli, converting to regulatory B cells, which serve as an

immunosuppressive arm to tumor immunity. Here we summarize our current

understanding of the bipolar properties of B cells within the tumor immune

microenvironment and propose potential B cell-based immunotherapeutic

strategies, which may help promote cancer immunotherapy.
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Abbreviations: ICB,1 immune checkpoint blockade; CAR-T, chimeric antigen receptor-T; TIL-Bs, tumor-
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endothelial venules; TLSs, tertiary lymphoid structures; TIL-Ts, tumor-infiltrating T cells; GCs, germinal

centers; fDCs, follicular dendritic cells; DCs, dendritic cells; NSCLC, non-small-cell lung cancer; Treg,

regulatory T cell; Bregs, regulatory B cells; ACT, adoptive cellular therapy; TDLN, tumor-draining lymph

node; ODN, oligodeoxynucleotide; APCs, antigen-presenting cells; Ig, immunoglobulin; PD-1,

programmed cell death-1; HCC, hepatocellular carcinoma; PD-L1, programmed death-ligand 1; TIM,

T-cell immunoglobulin and mucin domain; B10, IL-10-secreting Bregs; CD40-B, CD40-activated B.
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Introduction

The host immune system has proven to be a powerful tool

functioning in cancer progression control (1). Owing to the

direct tumor-killing effect of CD8+ cytotoxic T cells, T cell

responses have become the driving force in the recent

therapeutic advances in cancer management (2, 3). For

example, chimeric antigen receptor-T (CAR-T) cell therapy

has paved a new way in cancer treatment (2). CAR-T cell

immunotherapy has achieved impressive strides in

hematopoietic malignancies while exhibiting limited activity

against solid tumors because of the poor infiltration and

persistence of CAR-T cells and immunosuppressive

microenvironment (2). Immune checkpoint blockade (ICB)

has also been a major new approach to cancer immunotherapy

which has been shown to enhance antitumor T cell immunity as

its major mode of action (3). However, response rates of ICB

remain relatively low, ranging from 15% to 40% based on cancer

types (3). B cells are another major subpopulation of

lymphocytes that mediate the humoral immunity of the

adaptive immune system. However, they are often overlooked

in the field of cancer immunotherapy, likely due to the general

notion that humoral and cellular immunity tend to work in

opposing fashions (4). Actually, B cells occupy a central position

in forming the tumor immune microenvironment (4), and

deserve far more attention to its diverse immune functions,

both positive and negative.

Both antitumor and tumor-promoting functions of B cells

have been reported in tumor immunity and immunotherapy (4).

Evidence accumulating in the late 1990s facilitated a widespread

acceptance of protumor functions mediated by B cells (5).

However, more recent findings have shown that B cells

employ a protective rather than a detrimental property in

malignant diseases (6–13). Despite limited evidence regarding

the negative prognostic value of tumor-infiltrating B

lymphocytes (TIL-Bs), more recent cohort studies indicate the

close association of elevated intratumoral B cells with prolonged

survival of cancer patients (14). In this review, we highlight the

latest findings of B cell biology in the tumor microenvironment

(TME) as well as promising strategies targeting B cells, which

may help promote cancer immunotherapy.
TIL-B recruitment, location, and
subsets

Immune cells are recruited and infiltrate into tumor sites,

forming a tumor immune microenvironment, where B cells

comprise a considerable part of tumor-infiltrating lymphocytes

(TILs). The recruitment of TIL-Bs into tumors is dependent on

high endothelial venules (HEVs) (15), chemokines (16), and

other immune cells (17). HEVs are postcapillary venules
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composed of plump endothelial cells, which allow entry of B

lymphocytes into tertiary lymphoid structures (TLSs) (Figure 1)

(15). In addition to HEVs, chemokines secreted by tumor cells

and other immune components, such as CXCL2, CXCL20, and

CXCL13, promote the influx of B cells into the tumor (16).

Furthermore, CXCL13+CD103+CD8+ tumor-infiltrating T cells

(TIL-Ts) were reported to correlate with B-cell recruitment in six

cohorts of human tumors (17). In short, HEVs provide a channel

for B cells to enter tumor niches, while T cells and multiple

chemokines provide a driving force.

The majority of TIL-Bs exhibit a diffuse pattern in the

peritumoral zone or within tumors (18). However, they also

aggregate as small unorganized clusters or mature TLSs (6–8),

which can be localized in the tumor center and, more frequently,

in tumor margins or stroma (19).

TLSs are ectopic lymphoid tissues within the tumor which

were initially defined as tumor-localized ectopic lymph node-

like structures by Mulé and his colleagues as early as in the 1970s

(20). Mature TLSs contain one or more germinal centers (GCs)

with CD23+ germinal B cells as well as CD21+ follicular dendritic

cells (fDCs) (6, 7). GCs are surrounded by dispersed T cells,

mature dendritic cells (DCs), and plasma cells as well as HEVs

(6). Intriguingly, the presence or absence of presumed TLSs can

be accurately predicted by a 12-chemokine gene expression

signature (21). Tumor TLSs support local adaptive immune

responses via providing interaction between tumor antigen-

specific lymphocytes and antigen-presenting cells (Figure 1).

TLS-resided B cells may undergo a series of biological events,

including clonal expansion, somatic hypermutation, class

switching, and tumor-specific antibody production, thus

triggering antitumor humoral responses (Figure 1) (19). More

recently, Meylan et al. reported that all steps of B cell maturation

occur in TLS until plasma cell formation followed by migration

in the tumor (13). Interactions between B cells and T cells in the

TLSs tend to be essential to improve the T cell-dependent

antitumor immunity (19). Indeed, the presence of TLSs in

TME has been demonstrated to be associated with favorable

outcomes in several kinds of solid tumors (22–32).

Whether B cells drive or impair tumor growth might largely

depend on the complicated and dynamic TME as well as certain B-

cell subsets (Figure 1) (7). CD20+CD38−CD27−IgD+ naïve B cells

enter tumors, usually localizing at the mantle zone. Once entering

the GCs, most of B cells display the proliferation marker Ki67,

activation-induced deaminase (AID) as well as transcription factor

BCL-6 (6–8, 19). CD20+CD27+IgD+ non-switched memory B cells

and CD20+CD27+IgD− switched memory B cells accumulate at the

interface between the mantle zone and the GCs (7). Plasma cells

(CD20−CD38hi/CD138+) distribute in the periphery of follicle,

tumor stromal, and fibrotic areas. Interestingly, Bruno et al.

identified two phenotypes of TIL-Bs in non-small-cell lung cancer

(NSCLC) as CD20+CD69+CD27+CD21+ activated TIL-Bs and

CD20+CD69+CD27-CD21- exhausted TIL-Bs, which were related

to an effector T cell phenotype (CD4+IFNg+) or a regulatory T cell
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(Treg) phenotype (CD4+FoxP3+), respectively (33). Recently, a

distinct TIL-B subset (IgG4+CD49b+CD73+) was reported to

express proangiogenic cytokines in patients with esophageal

cancer and melanoma (34). Another study by Lu et al. described

a novel ICOSL+ B cell subset emerging after chemotherapy with the

capacity of reversing the chemoresistance of breast cancer patients

(9). An overview of B cells in the TME is shown in Figure 1.
Prognostic value of TIL-Bs in cancer
patients

Given the convenience of detecting B-cell density using

immunohistochemistry or flow cytometry, TIL-B and its subsets

have become a practical and popular prognostic factor for solid

tumors. Many cohort studies have uncovered a close association

of TIL-Bs with clinical prognosis in cancer patients (14).

Intriguingly, there exist considerable controversies over the

prognostic impacts of TIL-Bs in different cancer types or

subtypes (14). The high density of TIL-Bs has been identified as

a biomarker indicating either favorable or unfavorable outcomes.
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Growing evidence has revealed that TIL-B is a positive

prognostic indicator in various types of human cancers. For

example, Garaud et al. demonstrated the correlation between

higher TIL-B densities and superior outcomes in HER2+ and

triple-negative breast cancer patients with a 10-year median

follow-up (35). Similarly, B cells in TLSs were detected to have a

strong prognostic value of better outcomes in early and

advanced NSCLC patients (36). In melanoma, tumoral CD20+

B cells were correlated with improved survival (8). Likewise, a

TCGA data analysis implicated prolonged survival in melanoma

patients with B cell-lineage-high tumors (7). A cohort study of

oropharyngeal cancer demonstrated that abundant intratumoral

CD20+ B cells exhibited longer overall survival (37).

Additionally, a high density of TIL-Bs has been reported to be

a favorable prognostic marker for patients of digestive system

cancers, such as esophageal cancer (38), gastric cancer (39),

colorectal cancer (40), pancreatic cancer (18), and hepatocellular

carcinoma (HCC) (41). Furthermore, elevated intratumoral B

cells have been identified as a positive prognostic index for

genitourinary cancers, including ovarian cancer (42) and renal

cell carcinoma (43). Recently, we carried out a meta-analysis and
FIGURE 1

The migration pathways and diverse properties of TLS- and non-TLS-associated B cells in the TME. Naïve B cells are recruited and infiltrate into
the TME via HEVs, mainly locating in the mantle zone of TLSs. After exposure to tumor antigens within the GCs, B cells interact with follicular
helper T cells as well as follicular dendritic cells, and undergo a series of biological events, including clonal expansion, somatic hypermutation,
class switching, and tumor-specific antibody production. Effector B cells or plasma cells elicit antitumor responses via direct tumor killing,
antigen presentation, and antibody-mediated tumor cell lysis. In contrast, Bregs impair antitumor immunity through immunosuppressive
cytokines, which inhibit the activity of T cells as well as NK cells, and induce Tregs, MDSCs, and angiogenesis.
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reported that TIL-B is a favorable prognostic biomarker in breast

cancer (44).

By contrast, a limited number of publications have

implicated that TIL-Bs were associated with a worse prognosis

in certain cancer types. For instance, increased intratumoral B

cells, especially TLS-locating CD20+ B cells, had a positive

association with poor survival in lung adenocarcinoma

patients (45). Additionally, a higher density of TIL-Bs present

in melanoma tumors was correlated with reduced overall

survival (46). Among the low-risk patients of oropharyngeal

and hypopharyngeal cancers, low CD20+ B cell numbers implied

notably better survival (47). Also, the presence of TIL-Bs was

correlated with shorter survival and enhanced tumor

aggressiveness in HCC (48). For ovarian cancer, the median

overall survival was remarkably longer in patients with low B-

cell gene expression than in those with high expression (49).

Moreover, colorectal patients with positive TIL-Bs showed poor

outcomes, which should be taken carefully due to the very few

TIL-B positive cases (50). Sjöberg et al. reported that the B cell-

high subgroup of renal cell carcinoma patients displayed
Frontiers in Immunology 04
markedly shorter survival, which was validated by analyses of

other gene expression datasets (51).

Collectively, the large majority of the existing studies

mainly tested the pan-B-cell marker CD20 in tumor tissues

by immunohistochemical staining. More than half of CD20+

TIL-B-based studies showed a positive prognostic role of

tumoral B cells in cancer patients, whereas less than 10%

indicated a negative value (Figure 2). Additionally, a meta-

analysis of 19 cancer types supported the positive prognostic

significance of TIL-Bs in solid tumors (14). Some studies using

B-cell subset markers exhibited more conflicting prognostic

potential. For example, activated GC-B cells were always a

favorable prognostic factor (36), whereas regulatory B cells

(Bregs) mostly acted as an unfavorable biomarker (52).

Moreover, the prognostic influence of B cells was generally

stronger when T cells (41) or TLSs (6–8) were co-localized with

B cells in tumors. Therefore, it is advisable that more

biomarkers are adopted to distinguish the prognostic value of

different B-cell subpopulations as well as their co-existence

with TLSs or other immune components in the future.
FIGURE 2

Prognostic value of CD20+ TIBs according to cancer type. Bars represent the number of cohorts with positive (green), no effect (white), or
negative (red) prognostic significance for the indicated cancer types. We searched PubMed for peer-reviewed articles reporting on the
prognostic value in human solid tumors due to the obvious confounding issues. The following search terms and logic gates were used for the
PubMed search: “B-cell” AND “cancer” AND “prognosis”.
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Antitumor immunity of B cells

B cells can have bipolar properties, either tumor suppression

or tumor promotion, depending on their subtypes and the

complicated dynamic TME. TIL-Bs have been reported to

exert antitumor functions via a direct tumor-killing effect,

antigen presentation, antibody production, cytokine secretion,

and other activities (Figure 1).
Tumor-killing B cells

Adoptive cellular therapy (ACT) based on T cells has been

extensively studied (53). However, the ideal strategy should

appropriately stimulate both cellular immunity and humoral

immunity. Indeed, activated B cells also have the potential to kill

tumor cells via antibody-dependent and -independent

mechanisms (Figure 1) (54–59), which provides the possibility

for ACT based on B cells. Our laboratory previously reported the

tumor-killing abilities of B cells primed in vivo and activated in

vitro (56–59). These activated B cells were adoptively transferred

into tumor-implanted mice, leading to significant tumor

regression in primary subcutaneous tumors as well as

metastatic pulmonary tumors (56). This phenomenon has

been confirmed in three tumor histologies, including breast

cancer, melanoma, and sarcoma (56–59). In addition to

producing tumor-specific antibodies that killed tumor cells via

complement-dependent cytotoxicity, activated B cells harvested

from tumor-draining lymph nodes (TDLN) were able to induce

tumor-cell lysis in an antibody-independent way (58, 59). Of

note, combined adoptive transfers of activated TDLN B cells and

T cells resulted in stronger antitumor responses than the transfer

of either cell population alone (56, 57).

The potential mechanisms of B cell-mediated direct killing

effect appear to be multiple. Tao et al. found that effector B cells

can directly kill tumor cells via the Fas/FasL pathway, and was

inhibited by IL-10 (58). In that study, IL-10-/- B cells mediated a

stronger antitumor effect compared to wild-type B cells, which

was verified by IL-10 neutralization utilizing antibody (58).

Furthermore, B cell killing of tumor cells was impaired by

anti-FasL antibody in a dose-dependent manner (58). In a

separate study, Xia et al. defined additional mechanisms

involved in cancer ACT based on activated TDLN B cells (59).

In that study, IL-2 significantly amplified the therapeutic activity

of transferred effector B cells (59). Additional in vitro

experiments demonstrated that activated B cells provoked

direct cytotoxic action on tumor cells through CXCR4/

CXCL12 pathways, while without cell contact, B cell-secreted

perforin also led to tumor cell cytotoxicity (59).

Additional publications support the fact that B cells can act

as effector cells with tumor-killing capacity. Kemp et al.

demonstrated that the stimulation of human peripheral blood
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mononuclear cells with CpG-A oligodeoxynucleotide (ODN) led

to high levels of functional B cells, which mediated tumor cell

lysis via inducing expressions of functional TRAIL/Apo-2 ligand

on B cells (60). Penafuerte and colleagues reported that

activation of B cells with a chimeric protein consisting of the

ectodomain of TGF-b receptor II and IL-2 resulted in effector B

cells that induced potent antitumor immunity (61). In addition,

it was found that CD73 inhibition elicited sustained B cell-

mediated tumor regression in melanoma-bearing mice (62).

Together, these studies suggested that with multiple cellular

and molecular events, B effector cells can mediate therapeutic

antitumor function via direct killing of the tumor cells.
The role of B cells as antigen-presenting
cells

B cells may function as antigen-presenting cells (APCs) to

engage with T cells in situ, and thereby trigger anti-cancer

responses (Figure 1). It has been reported that human B cells

can efficiently present peptides to CD4+ T cells after being

activated by CD40 ligand and pulsed with tumor antigen (63).

In agreement with this finding, we have reported that activated B

cells administered in the ACT will confer host T cell immunity

via its antigen-presenting function utilizing a murine congenic

model where donor vs. host cells was tracked (57). Intriguingly,

Colluru and colleagues successfully applied B cells as a tool to

present tumor DNA to CD8+ T cells as a vaccine, which elicited

an antitumor effect in vivo (64). In another report, B cells were

reported to infiltrate into the brain tumor site, where they

promoted T cell-induced tumor killing as APCs (65).

Bruno et al. observed that TIL-Bs isolated from human NSCLC

tumors efficiently presented antigens to CD4+ TILs (33).

Interestingly, two subgroups of TIL-Bs with opposite functions

were described as activated (CD19+CD69+CD27+CD21+) or

exhausted (CD19+CD69+CD27−CD21−) TIL-Bs (33), which

induced Th1 phenotype CD4+IFN-g+ or Treg phenotype

CD4+Foxp3+ cells, respectively (33). In addition, B cells from

doxorubicin-treated cancer patients were found to have enhanced

expression of CD86 with improved APC ability (66).

A recent study reported by Jiang et al. demonstrated that

CD19+ TIL-Bs expressing APC-characteristic markers were

found to be co-localized with activated CD4+ TIL-Ts in

human bladder cancer and was associated with improved

survival (67). Using an antigen-presentation assay in this

study, TIL-Bs markedly promoted proliferation and activation

of CD4+ TIL-Ts, which was completely abrogated by HLA-DR

blockade (67). In breast tumor-bearing mice, ICB-treated

tumors presented a striking elevation in APC B cells (10).

When B cells were depleted by anti-CD20 or anti-CD19

antibodies, the effector memory and central memory subsets of

CD4+ T cells, as well as the effector and effector memory subsets
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of CD8+ T cells, were remarkably decreased (10). More recently,

the abundance and spatial distribution of CD86+ antigen-

presenting B cells have been described in tumor samples of

cancer patients, indicating that they are elevated in TILs,

localized in TLS, and enriched in tumors with increased TLSs

(68). In vitro study further revealed that the specific B cell

subpopulation can trigger T cell-mediated immune responses,

confirming that they are professional APCs in tumor

immunity (68).

Taken together, these findings suggested that TIL-Bs can serve

as APCs to mediate antitumor responses, providing a better chance

of B cells in developing additional immunotherapeutic strategies.
Tumor-specific antibody-producing B
cells

Multiple lines of evidence have demonstrated that B cells act

as an antitumor player via antibody-dependent cytotoxicity to

tumor cells. Reports have established that B cells within tumor-

related TLSs can convert to antibody-producing memory B cells

or plasma cells after exposure to tumor-associated antigens

(Figure 1) (19, 69). Thus, TIL-Bs usually serve as an efficient

source of tumor-related antibodies, which can be tested in the

serum and tumor tissue from cancer patients (69–71).

Importantly, detection of serum autoantibodies has been

proposed as early clues for human malignancies (72).

Additionally, increased tumor-infiltrating plasma cells have

been reported to be correlated with better prognosis in ovarian

cancer (73), breast cancer (74), colorectal cancer (74), NSCLC

(74), and gastric cancer (75), which further support the

antitumor property of tumor-targeting antibodies.

Indeed, tumor-infiltrating plasma cells are able to produce

oligoclonal, somatically mutated antibodies with the capacity to

bind tumoral antigens, provoking the specific cytotoxicity to tumor

cells. Our preclinical studies showed that immunoglobulin G (IgG)

harvested from tumor-bearing mice bound selectively to tumor

cells, triggering tumor cell lysis via complement-dependent

cytotoxicity (CDC) (57–59). More recently, we further

demonstrated that the immunotherapies targeting integrin b4
induced host immunity against cancer stem cells via specific

CDC (76). In a separate study, Carmi et al. revealed that

allogeneic tumor rejection was mediated in the murine model at

the early stage of tumor development by naturally occurring tumor-

specific IgG antibodies, which prompted DCs to internalize tumor

antigens and subsequently activate T cells, initiating a cytotoxic

effect to control tumor growth (77). More recently, Hollern reported

that tumor-associated IgG was essential in mediating the response

to ICBs (10). In that study, ICB-induced B cell activation resulted in

the generation of class-switched plasma cells and increased tumor-

specific serum IgG (10). Both the loss of antibody secretion and

neutralization of FcR during ICB therapy diminished the initial

antitumor response in breast tumor-bearing mice (10). This work
Frontiers in Immunology 06
for the first time identified a crucial role for antibody secretion in

the function of ICB therapy.

Very recent studies have shown that intratumoral B cell-

generated autoantibodies induce tumor cell apoptosis via targeting

proteins on the surface of tumor cells (12, 13). Mazor et al. have

reported that tumor cells derived from patients of high-grade

serous ovarian carcinoma were frequently coated with IgGs

produced by intratumoral antibody-secreting cells (12). These

tumor-reactive antibodies can target MMP14 on the surface of

tumor cells and induce NK cell-mediated antibody-dependent

cellular cytotoxicity (ADCC) (12). Another study has also shown

that high levels of IgG-producing plasma cells and IgG-coated and

apoptotic tumor cells coexist in TLS+ tumors, suggesting

antibody-mediated anti-tumor immunity (13). These findings

provide the direct proof of tumor-killing activity of

autoantibodies generated by B/plasma cells.

Collectively, these findings strengthened the premise that

humoral responses can have potent antitumor activities via

tumor-specific antibody-facilitated tumor cell lysis.
Tumor-promoting effects of Bregs
and antibodies

Intratumoral B cells and antibodies may also act as

immunosuppressive players, thereby driving tumor growth. B

cells with protumor properties are mostly described as Bregs,

which have been identified by cell surface markers and secretion

of cytokines, functioning by suppressing immune responses that

prompt tumor progression (Figure 1). Clinical cohort studies

report that Breg enhancement in the TME is correlated with

Tregs, predicting poorer outcomes in cancer patients (52, 78,

79), which suggests that Bregs might actively participate in

tumor immune escape and cancer progression.
Tumor-promoting functions of Bregs

Bregs, first reported by Morris (80), are special subsets of B

cells with immune-suppressing properties for maintaining

immune tolerance. Recently, a new wave of studies has

emerged on tumor-infiltrating Bregs, which appears to be

disadvantageous to cancer patients’ outcomes. In breast

cancer, the co-localization of Bregs and Tregs was associated

with shorter metastasis-free survival (52). Additionally, high

infiltration of programmed cell death-1 (PD-1)hi Bregs

presenting in advanced-stage HCC, correlated with early

recurrence (78). Similarly, programmed death-ligand 1 (PD-

L1)+ Bregs were found to be enriched in human metastatic

melanoma tumors compared to primary lesions (79).

Within various secondary lymphoid tissues, naïve B cells are

activated once exposed to antigens, and then proliferate and

form GCs, where they receive signals to grow and differentiate
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into memory B cells and plasma cells. As a subpopulation of B

cells, Bregs have been shown to arise at multiple stages during B

cell development (81). Typically, the phenotypes in human

tumors are enriched within the CD38+ transitional (78, 82–85)

and CD27+ memory B cell population (Table 1) (86, 88, 90). In

addition, a novel type of Bregs identified by Shalapour et al.

share the phenotypes with IgA+CD138+ plasma cells (Figure 1)

(91). Meanwhile, the precursors of several Bregs (e.g., adenosine-

producing B cells) remained to be clarified (92). Also, some

Bregs were characterized by functional molecules, such as PD-1

(78), PD-L1 (79, 88), T-cell immunoglobulin and mucin

domain-1 (TIM-1) (83, 93), granzyme B (85), and CD5 (89).

Together, it is thought that all B cell subpopulations can obtain

an inhibitory property with appropriate stimuli (81), making

their descriptions even harder due to multiple subtypes.

Despite the confusing distinct phenotypes, Bregs can be

functionally defined by their capacities for the generation of

immunosuppressive cytokines, including IL-10 (86), IL-35 (82),

and TGF-b (Figure 1) (84). For example, a protumorigenic PD-

1hi Breg subset in human HCC exhibited a unique CD5hiCD24−/

+CD27hi/+CD38dim phenotype, which caused T-cell dysfunction

and fostered tumor progression via IL-10-dependent pathways

(78). In another study, a granzyme B+ Bregs with a

CD19+CD38+CD1d+IgM+CD147+ expression signature was

found in various human solid tumors (85). They can be
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induced by IL-21 and generate high amounts of IL-10

(Figure 1) (85). Similarly in HCC, the intratumoral TIM-1+

Bregs with a CD5hiCD24-CD27-/+CD38+/hi phenotype generated

high levels of IL-10 and exerted robust repressive functions

against CD8+ T cells (83). Another type of IL-10-secreting Bregs

(B10) was characterized by a CD19+CD24hiCD38hi phenotype in

gastric cancer (84). Besides, IL-35-producing CD1dhiCD5+ Bregs

accumulated in pancreatic cancer and supported tumor cell

growth, underlining the potential value of IL-35 as a

therapeutic target (87).

Several studies report that Bregs not only directly fostered

tumor growth, but also acted on other immune compartments in

the TME.Mostly, Bregs negatively regulate the antitumor immune

responses of T cells. Among different types of Bregs, B10 has been

shown to suppress the secretion of proinflammatory cytokines by

CD4+ Th cells and induce CD4+FoxP3+ Tregs (52, 84, 86).

Furthermore, an in vitro study demonstrated that B10 inhibited

the proliferation and activation of T cells (52, 84, 86). IL-35-

producing Bregs induced pSTAT3+CXCR3-CD8+ T cells in

pancreatic cancer (87). Additionally, Bregs promote tumor

progression via interplay with myeloid-derived suppressor cells,

tumor-associated macrophages, and natural killer cells (Figure 1).

However, the immunosuppressive characteristics and

mechanisms of tumor-infiltrating Bregs are still largely

unclear, which remains a central focus of investigation.
TABLE 1 Breg phenotypes in human solid tumor.

Breg subsets Phenotype(s) Immunosuppressive functions or features Cancer types References

IL-10-producing B
cells

CD19+CD24hiCD38hi Suppression of IFN-g and TNF-a by CD4+Th cells, and introduction
of CD4+FoxP3+ Tregs via TGF-b1

Gastric cancer (84)

CD19+ CD27+ CD10- Production of IL-10, alteration of the cytokine production profile by
CD4 and CD8+ T cells

Gastric cancer (86)

CD19+CD25+ Production of IL-10, and correlation to introduction of Tregs Breast cancer (52)

IL-35-producing B
cells

CD19+CD24hiCD38hi Production of IL-35 and IL-10, introduction of pSTAT3+CXCR3-

CD8+ T cells
Pancreatic cancer (82)

CD19+CD1d+CD5+ Production of IL-35, and promotion of tumor growth Pancreatic cancer (87)

TGF-b-producing
B cells

CD19+CD24hiCD38hi Suppression of IFN-g and TNF-a by CD4+Th cells, and introduction
of CD4+FoxP3+ Tregs via TGF-b1

Gastric cancer (84)

PD-1hi B cells CD5+CD24-/+ CD27hi/
+CD38dim

Suppression of tumor-specific T cells and promotion of tumor growth
via IL-10 signals

Hepatocellular carcinoma (78)

PD-L1+ B cells CD20+CD27-

IgMhiIgDhi
Inhibition of IFN-g by CD4+ and CD8+ T cells Melanoma (79)

CD19+CD24+CD38+ Positive correlation with Tregs and negative association with PD-1hi

effector cells
Breast cancer (88)

TIM-1+ B cells CD5hiCD24-CD27-/
+CD38+/hi

Production of IL-10, and suppression of CD8+ T cell activity Hepatocellular carcinoma (83)

CD5+ B cells CD19+CD5+ Induction of angiogenesis and inhibition of IFN-g secretion Prostate cancer, lung cancer (89)

Plasmablasts CD19loCD27hi Production of IL-10 and inhibition of IL-17A expression Colorectal cancer (90)

IgA+ cells IgA+B220-CD138-/+ Expression of PD-L1 and IL-10, and direct suppression of liver
cytotoxic CD8+ T cells

Hepatocellular carcinoma (91)

Granzyme B+ cells CD19+CD38+

CD1d+IgM+CD147+
Production of IL-10 and inhibition of T cell proliferation Breast, ovarian, cervical,

colorectal, and prostate cancer
(85)

Adenosine-
producing B cells

CD19+CD37+ Production of adenosine and inhibition of Bruton’s tyrosine kinase
and Ca2+ influx in B effector cells

Head and neck cancer (92)
fr
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Tumor-promoting effects of antibodies

In addition to Bregs, local or systemic tumor-associated

autoantibodies may also exert a protumoral effect through

initiation and maintenance of inflammation (91), tissue

remodeling (94), and angiogenesis (94). Clinical cohort

studies exhibited a close association of serum p53 antibody

with poor prognosis in breast cancer patients (95). Other

serum antibodies were also reported to correlate with poor

survival in ovarian and pancreatic cancer (96). Generally,

elevated immunoglobulins (97) and high IgG3-1 switches

(98) have been identified as unfavorable prognostic

biomarkers in renal cell carcinoma. These data from a

clinical perspective suggest that some tumor-specific

antibodies might promote tumor processes.

It is important to note that antibody functionality, protumor

or antitumor, may be determined by the antibody isotype.

Remarkably, a study using TCGA RNA-seq data indicated the

association of high fractions of IgA, IgD, or IgE with a poor

prognosis in human melanoma (99). A low proportion of

intratumorally produced IgA was specifically correlated with

improved overall survival for KRAS mutation lung

adenocarcinoma (71). Karagiannis et al. reported that antigen-

specific and nonspecific IgG4 hampered IgG1-induced

antitumor activities through the deactivation of FcgRI, which
explained the inverse correlation between serum IgG4 and

patient survival (100). Additionally, RNA-seq data have shown

that the relative proportions of IgG3, in contrast to IgG1, was

either neutrally or negatively associated with outcome in

melanoma (99).

In summary, existing evidence indicates that some

phenotypes of immunoglobulin are associated with worse

outcomes in cancer patients. Animal studies also illustrate

that tumor-specific antibodies can promote tumor

development by dismantling antitumor immunity. However,

the mechanisms underlying antibody-mediated protumor

properties have not yet been fully investigated. More work

needs to be conducted in this field to elucidate the obstacles to

cancer immunotherapy.

Strategies of cancer
immunotherapies involved with
B cells

Considering the bidirectional roles of B cells in tumor

initiation and development, targeting B cells could be

promising in cancer immunotherapy. In light of both

antitumor and protumor properties of B cells driven by

distinct subpopulations and the complexity of tumor context,

precise therapies targeting specific B cells could lead to more

favorable therapeutic outcomes.
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Therapeutic strategies based on
antitumor responses of B cells

Previous studies in our laboratory and others have

demonstrated that activated B cells can specifically and directly

kill tumor cells (16, 58, 59), supporting the potential of adoptive B

cell therapies. It has been well established that adoptive T cell

therapy, such as CAR-T cell therapy (2), is capable of inducing high

clinical response rates in hematological malignant disorders (53),

whereas attempts to treat patients with solid tumors using CAR-T

cells are still in their infancy. Preclinical studies have shown that the

co-transfer of activated T cells and B cells led to a greater extent of

tumor regression than either cell population alone (56, 57),

suggesting effector B cells can function as a valuable adjunct in T

cell-based immunotherapy. Moreover, adoptive transfers of other

types of B cells, like TIM-4+ B cells (101), GIFT4-programmed B

cells (102), and CpG-ODN activated B cells (103), also have

capacities to elicit tumor regression. These studies offer novel

cancer immunotherapeutic approaches based on B cells.

Resting B cells with a poor capacity of antigen presentation

can be activated by diverse stimuli to obtain immunostimulatory

ability. CD40 signals are the strongest inducer of antigen-

presenting B cells to trigger potent T-cell immunity (104).

CD40-activated B (CD40-B) cells are thought to be an

encouraging alternative to DCs as skilled APCs for antigen-

specific cancer immunotherapy (105). In contrast to DCs, a

greater number of B cells can be easily harvested from human

peripheral blood after in vitro expansion in the presence of

CD40L, without the loss of APC functionality (106). CD40 signal

activation markedly enhances the antigen-presenting ability of B

cells, powerfully inducing vigorous expansion of antigen-specific

T cells and homing to the secondary lymphoid organs (55, 105).

Importantly, tumor-implanted mice were preventively

immunized by tumor antigen-primed CD40-B cells, resulting

in a protective antitumor response against melanoma and

lymphoma (105). In summary, CD40-B cells emerge as an

attractive tool to develop additional immunotherapeutic

agents. The design of clinical trials using CD40-B cells to

confirm this potential antitumor function seems worthy.

Effector B cells also can be induced or activated by cytokines or

chemotherapy drugs, which can be utilized to enhance B-cell-

mediated antitumor responses. Li and colleagues found that IL-2

augmented the antitumor responses of adoptively transferred

TDLN B cells (59). A separate study reported that IL-17A

improved the tumor-killing activity of B cells in esophageal

squamous cancer (16). In addition, Lu et al. demonstrated that

chemotherapy in breast cancer patients induced a novel ICOSL+ B

cell subset with antitumor capacity by enhancing the effector T cells

to Tregs ratio (9). Similarly, doxorubicin can induce CD86

expression on the surface of B cells to elevate their antigen-

presenting capacity in urinary bladder cancer patients (66). Thus,

conventional drugs, as well as cytokines, could be a favorable option
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utilized to induce effector B cells and improve the antitumor efficacy

of immunotherapy involved with B cells.

Therapeutic strategies targeting
protumor functions of B cells

Since several lines of evidence indicate that some

subpopulations of B cells possess tumor-promoting activities, the

anti-CD20 antibody (rituximab) has been used to deplete the total B

cell population for the treatment of solid tumors in small cohorts of

patients with melanoma (107) and advanced colon cancer (108).

Although it was difficult to estimate the therapeutic value from such

small cohorts of patients, it seemed that B cell-depletion therapy

was not associated with significant toxicity (107, 108). In another

study, rituximab therapy combined with low-dose IL-2 in patients

with melanoma and renal cell carcinoma did not show any clear

benefit of the B cell depletion (109). Of note, a recent study

demonstrated that B-cell depleting or inhibiting treatment in

mammary tumor-bearing mice significantly weakened the

antitumor immunity of combined ICB immunotherapy (10). In

addition, most of the cohort studies revealed the positive association

of TIL-Bs with better outcomes in various solid tumors (14).

Therefore, more precise immunotherapies targeting specific B cell

subsets (e.g., Bregs) instead of the total B cell population would be

more rational for further investigations.

Indeed, strategies targeting Bregs have been reported to be

effective in murine tumor models. For example, Li et al.

demonstrated that IL-10 deletion or blockade notably improved the

therapeutic effect of TDLN B cells in an ACT model (58).

Additionally, a recombinant plasmid pcCD19scFv-IL10R

containing the gene of the extracellular domain of IL-10R1 and

anti-CD19 single-chain variable fragment significantly decreased B10

cells and Tregs, which may offer a new immunotherapeutic strategy

targeting Bregs (110). Interestingly, both conventional chemotherapy

(66) and novel molecular targeted therapy (111) were reported to

serve as Breg inhibitors via the downregulation of IL-10 secretion. IL-

35, another critical immunosuppressing factor derived from Bregs,

has been proved to be a potential immunotherapy target. Mirlekar

reported that specific deletion of IL-35 in B cells overcame

immunotherapy resistance to anti-PD-1 through activation of CD8

+ T cells in murine pancreatic cancer model (80).

In short, B cell-based immunotherapy should consider both

antitumor and protumor functions of B cells. Therefore, the

basic strategy is to precisely target specific B cell subsets by

activating/transferring antitumor effector B cells or suppressing/

eliminating protumor inhibitory B cells.

B cells as biomarkers for therapeutic
response

Although B cells have been described as biomarkers of

unfavorable outcomes in limited studies, most reports revealed that
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B cells, especially their co-existence with TLSs or T cells, were

associated with improved prognosis of cancer patients (6–8). As a

biomarker for the therapy-related response, one study demonstrated

that the number of B cells in melanoma tumors was not associated

with response to anti-PD-1 therapy or cancer patient survival (112).

However, more studies have implied that the presence of enriched

TIL-Bs has a strong predictive value in the response to ICB therapy

(6–8, 113), suggesting that B cells are not simply bystander cells in the

TME, but active participants involving immunotherapies.

Conflicting results of B cell depletion as an adjunct to

immunotherapy and chemotherapy also exist. A preclinical

study reported that B cell-depletion (anti-CD20) or B cell lack

(muMT mice) neither affected tumor growth or animal survival

nor improved or hampered the antitumor response to anti-PD-1

therapy (112). In contrast, another report showed that the

therapeutic benefit of combined ICB therapies was completely

ablated in B cell-inhibited (anti-CD19) and/or B cell-depleted

(anti-CD20) tumor-bearing mice (10), establishing the point

that B cells may fundamentally orchestrate ICB-driven

antitumor responses. In human melanoma, Griss et al. found

that TIL-Bs were vital to melanoma inflammation which in turn

resulted in CD8+ T cell infiltration through the secretion of

chemokines (114). In their study, they found that TIL-B was a

predictor for survival and response to ICB therapy (114).

Similarly, there exist controversial roles of tumoral B cells in

conventional chemotherapy. An early study illustrated that the loss of

B cells (anti-CD20) significantly enhanced responses to cisplatin,

carboplatin, and paclitaxel through the increase of tumor CD4+ and

CD8+ T cell infiltration (115). In melanoma patients, resistance to

BRAF and/or MEK inhibitors was associated with increased levels of

intratumoral CD20 transcripts (116). In that study, the use of B cell

depletion (rituximab) in chemotherapy-resistant melanoma patients

demonstrated antitumor activity, indicating that chemotherapy

resistance was mediated by intratumoral B cells (116). Conversely,

a recent work elucidated that a novel ICOSL+ B cell subset in breast

cancer tissues emerging after chemotherapy boosted the

chemosensitivity by increasing tumor-specific CD8+ T cells and the

Th1/Treg ratio, supporting that the effector B cell subtype exerted

antitumor immunity to reverse the chemoresistance (9).

Considering the fact that tumor-promoting and -suppressing

B cells simultaneously exist in the TME, the one-dimensional

intervention of total B-cell depletion may remove effector B cells

and/or enrich Bregs, thereby producing a harmful therapeutic

effect on cancer patients. Thus, total B cell depletion should be

chosen carefully and only applied to those patients whose TIL-Bs

are verified to be definitely and completely immunosuppressive.
Concluding remarks

In this review, we have summarized some key issues involved

with B cells in tumor immunity. Over the years, studies have

painted an ambiguous role of B cells in tumor immunology, which
frontiersin.org

https://doi.org/10.3389/fimmu.2022.881427
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2022.881427
might be explained by their phenotypic and functional

heterogeneity. All the above contradictory findings concerning B

cells in the TME, including the field of cancer prognosis and

treatment, may originate from the spatial and longitudinal

heterogeneity of B cells. Therefore, there is an urgent need to

dissect the mechanisms responsible for B cell heterogeneity in

tumors. It would largely help design new clinical strategies for B

cell-based immunotherapy with further characterization and

description of B cell subsets in tumor immunity.
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