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Experimental Realization of 
Zenneck Type Wave-based Non-
Radiative, Non-Coupled Wireless 
Power Transmission
Sai Kiran Oruganti1,2*, Feifei Liu2, Dipra Paul1, Jun Liu3, Jagannath Malik1, Ke Feng2, 
Haksun Kim1, Yuming Liang2, Thomas Thundat3* & Franklin Bien1*

A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to 
deliver electrical power to devices where a physical wiring proved impracticable. However, conventional 
“coupling-based” approaches face performance issues when multiple devices are involved, as they 
are restricted by factors like coupling and external environments. Zenneck waves are excited at 
interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed 
on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power 
by exciting non-radiative waves over metal surfaces to multiple loads. Our modeling and simulation 
using Maxwell’s equation with proper boundary conditions shows Zenneck type behavior for the excited 
waves and are in excellent agreement with experimental results. In conclusion, we physically realize a 
radically different class of power transfer system, based on a wave, whose existence has been fiercely 
debated for over a century.

In 2007, coupled WPT re-emerged as an alternative to deliver electrical power to systems where physical wiring is 
difficult or dangerous1,2. Since then, a number of notable articles appeared3–5. However, these were improvements 
or at the best variations of the coupled WPT systems originally proposed in2.

All the existing WPT systems (Inductive, magnetic resonance and capacitive; far field systems not included) 
rely on critical coupling between coils of the transmitter and receiver for efficient delivery of power2–7. The res-
onance conditions are easily affected by the external factors6–8. It has also been well understood that the need 
for a critical coupling leads to peak splitting phenomena for multiple resonant devices7. This causes efficiency 
degradation and hence, are unsuitable for emerging fields such as, internet of things (IoT) and dynamic charging 
of electrical vehicles. Therefore, parity time circuits method was proposed to resolve the issue of dynamic wire-
less charging6. Unfortunately, we will continue to face these limitations due to our reliance on critical coupling 
between the transmitter and receiver8.

A non-radiating wave-based wireless power transfer system would be a desirable candidate to solve some of 
these issues. Quite a few wave based systems in the μ-wave regime have appeared over the years. A detailed lit-
erature survey of these systems has been carried out in the Supplementary Material. Also, WPT systems saw the 
usage of magneto-inductive planar waveguide9. This kind of WPT system utilizes the concept of meta-materials 
and generation of standing waves. Presumably, this is the meta-material equivalent of the quarter-wave Tesla 
transformer.

We wish to draw the attention to Zenneck wave (Sommerfeld-Zenneck wave), which resides at the metal-air 
interface, akin to surface plasmons (SP) and surface waves (SW)10,11. All these three classes of interface waves 
are near-field phenomenon12. While SP and surface wave (SW) have been widely researched areas in optical 
physics and metasurfaces, they are relatively less studied in the microwave regime12–15. Likewise, much research 
around ZW is focused on the communications and geophysics applications13,16,17. Unfortunately, ZW has been 
surrounded by the controversies pertaining to their physical existence14,15,18. The bulk of the controversy arose 
from the alleged “sign error” committed by Sommerfeld in 190914,15. Some authors have shown feasibility of such 
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waves by recreating the critical Seneca lake experiment to debunk the Sommerfeld sign error myth19. However, 
articles like these lack scientific rigor19, this further brings disorderliness to the existing controversy.

Quite literally, one does not find any study on the utilization of ZW for non-radiative power transfer. Recently 
in 2014 and 2017 Sarkar et al, have taken great pains to clarify the confusions arising due to the definitions of 
SW, SP and ZW through their mathematically rigorous articles14,15. The properties exhibited by ZW’s are like 
SW and SP, with certain differences. All these three physical phenomena are transverse magnetic (TM) modes 
and exhibit evanescent field decay away from the metal-air or metal-dielectric or conductive-dielectric interface. 
Unlike SW, the ZW come into existence as a result of zero of the TM reflection coefficient. SP come into existence 
at the quasi-particle levels. Whereas, ZW propagate in the form of localized charge oscillations. Just like SW and 
SP, when ZW are excited on metal surfaces, the net flow of current is zero. The Brewster angle of incidence in case 
of ZW is frequency independent. Therefore, the attenuation of ZW waves is also frequency independent and the 
attenuation rate is slow in the transverse direction14,15. They sink into a lossy dielectric media, as mathematically 
demonstrated by Barlow and Cullens in their classic article20. This sinking phenomenon was later experimentally 
demonstrated in the articles16,21.

Here we demonstrate the physical realization of a ZW non-radiative power transmission using the arrange-
ment of a planar ground backed impedance (GBI) surface and a half wave helical transformer at radio fre-
quency (RF). The GBI structure establishes a TM wave across the metal surface. Whereas, the half wave helical 
transformer drives the voltage across the GBI terminals. The helical transformer is like the telsa transformer 
(Supplementary Information). However, unlike the tesla transformer it does not generate standing waves. It was 
earlier theorized that an infinite vertical aperture is needed to excite a Zenneck wave and hence it was not phys-
ically realizable22. In our results we demonstrate that, although it is not possible to excite a pure ZW, however, 
waves with strong ZW like properties can certainly be excited. Thus bypassing the problem of infinite vertical 
aperture. We also demonstrate that unlike the coupled non-radiative wireless power transmission systems, the 
presence of leaky metal shields does not affect the power transmission efficiency2,23. Moreover, we demonstrate 
uniform power delivery to multiple receiving units with meaningful efficiency by theory and experiment, as 
we eliminate the frequency peak splitting issue altogether7. We also demonstrate by arriving at the Eq. 1, that 
equi-phases of ZW waves tilt backwards in the air, at the metal-air interface10,11. Thus, reminiscent with the title 
of the article by Jeon et.al.17. This article implies that there is a link between SP and ZW’s at metal-air interface.

While efficient transmission of non-radiative, wireless power over long distances using earth as a conductor is 
far from practical realization, it may be possible to utilize already existing metal structures to send guided mode 
waves for powering electrical devices1,24,25. There exist many practical scenarios consisting of metallic infrastruc-
tures, such as nuclear plants, railway tracks, space ships, steel building structures, pipelines, etc. Practical applica-
tions include powering Internet of things (IoT) devices, charging for -marine vessels, smart manufacturing floors, 
and secured shipping containers24–26.

Results
Please note, the experimental setup is described in the section 1 of the Supplementary Material. The key concept 
of this study is presented in Fig. 1, the detailed analytical model and solution is presented in the Supplementary 
Material (under section: analytical formalism). The Fig. 1A–C shows the mechanism of Tesla transformer based 
wireless power transfer system1. The primary coil consists of low number of turns, while the secondary has large 
number of turns (quarter-wave). One end of the secondary is left freely suspended in the air. Sometimes, a toroid 
is attached to the free end of the secondary to restrict the electric field buildup to prevent discharges. The pri-
mary and secondary coils on both the transmission and receiving end share the common ground, as shown in 
Fig. 1A–C. The generator, which operates as a high frequency AC source, is also grounded to the grid, which is 
in-turn grounded to the earth1.

Approach followed in this study.  The Fig. 1D–F shows the schematic diagram of the system to excite 
zenneck waves at metal-air interface. Apart from exciting TM- waves using the GBI resonators at the metal-air 
interface, we use two critical concepts of Tesla transformer, namely- half wave helical coil (Tesla transformer uses 
a quarter wave coil), in the secondary to build high potential differences across the terminals of the resonator and 
grounding the coils to the grid ground, capacitively via the metal. This pulls the reference potential of the metal to 
the same level as the grid ground. Thus, metal is transformed into a neutral entity26.

Half wave helical coil.  It is well known that a quarter-wave open ended helical coil, when mounted over a 
planar metal acts as a radiating antenna27. Notable application-vehicle mounted antennas, where the metal body 
provides a natural ground for the helical coil loaded antenna. Self resonance frequency of helical coils is well stud-
ied, the resonance frequency is active at λ/2 conductor length27. In order to prevent radiation a half wave helical 
coil was used and the pitch between the coils was carefully chosen in order to avoid the generation of standing 
waves and radiation. In this frequency zone, the lumped elements can not provide the necessary electrical length. 
In the Supplementary Material, the section “Electrical Length” describes the approach followed to address the 
above parameters in this study, in details.

Zenneck wave type power transfer mechanism.  The Fig. 2A shows the exploded view of the construc-
tion of the ZW resonator system undertaken in this study and the Fig. 2B,C shows the field mechanism. A high 
frequency AC source feeds power into the resonator system when placed in proximity of the metal surface. The 
primary coil being low turn carries maximum current, whereas a very high voltage is built up in the open ended 
secondary coil. The energy built-up in the secondary coil is forced to dissipate through metal as the half wave hel-
ical coils are poor radiators27. The E-field from the top of the coil terminates at the metal and a counter field line 
originates from the image formed in the metal, both meeting at the metal-air interface. This is similar to charge or 
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field mechanisms in a lightening strike, the forward stroke due to charges in the cumulonimbus28. Whereas, the 
backward stroke is formed in the ground, both meeting at the air-ground interface28. Likewise, the GBI structure 
forces a TM-wave to be setup on the metal surface, thus facilitating a propagation of the modes formed by the 
non-radiating coil over metal, every half cycle of the sinusoidal high frequency source.

In the Supplementary Material (section 3) Sommerfeld analytical model is listed, the controversy surrounding 
the evaluation of the integral is mentioned. Finally, a commentary on the placement of pole as per the permissible 
Riemann sheet on the complex plane, in the case of metals is provided.

In the case of the proposed method, likelihood of the waves falling in the category of SP, SW and surface plas-
mon polariton (SPP) is eliminated when one considers the following conditions:

•	 SW: Corrugated metal structures are needed to increase the refractive index in order to excite SW’s. Or an 
air-dielectric-metal (three layer) interface is needed. Alternatively, inductive surface impedance is needed to 
excite SW12,13,20,29.

•	 SPP and SP: Can not be excited at flat metal-air interfaces, without total internal reflection. Other methods of 
SPP excitation is based on grooves and near-field highly focused optical beams12,13,20,29.

Relation between SP and ZW.  Interestingly, articles have appeared on relationship between SP and ZW. 
Most notably the article by Jeon et al., where they mention in the title THz Zenneck surface wave and in brackets 
THz surface plasmon on metal sheets17. This arises from the fact that the pole and zero of the reflection coefficient 
( ΛR( )) in the Sommerfeld integral (equation S25 to S27 in the Supplementary Material) coinciding on the permis-
sible Riemann sheet14. Sarkar et al., further note that the ZW attenuation rate along the interface is frequency 
independent, while attenuation rate in SP is frequency dependent14.

Equi-phases.  The Fig. 2B, shows the iso-phases or equi-phases generated due to the localized field oscilla-
tions on the metal-air interface. The phase velocity of the wave in the metal is faster than the free space, hence 
a backward tilt with an angle φ is observed, in accordance with10. The angle of tilt has been arrived in this work 
from the 1907’s article of Zenneck, which satisfy the Maxwell’s boundary conditions:

Figure 1.  Concept of the proposed Zenneck wave system. (A) In Tesla transformer, grounding is an extremely 
critical factor. Both the transmitter and receiver are grounded to the earth ground. (B) Tesla transformer. (C) 
E-field buildup and standing waves. (D) Approach followed in this study based on half wave helical transformer. 
The GBI resonator sets up a TM-Mode wave. Grounding is done through the metal, which in turn pulls the 
reference potential of the metal to the grid ground. (E) Primary and Secondary coils of the proposed system. (F) 
E-Field buildup. (G) Power transfer across metal obstacle. (H) Transmitter is shielded in a leaky metal shield.
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where, v = 2π/λ; σ is conductivity; complex permitivitty ε ε′ − ″j ; and free-space permitivitty ε0. The correspond-
ing φ0 = 90 − φ, this was also mentioned in20. The derivation of the above equation is listed in the Supplementary 
Material (S28–S31). In case of metal-air interfaces the quantity φ0 becomes negative and hence a backward tilt. 
On the otherhand, for air-lossy dielectric this angle is a positive quantity and hence a forward tilt. For more 
details, see Fig. S14 in the Supplementary Material.

Sinking of Equi-phases.  Likewise, the iso-phases in the Fig. 2B, undergo a forward tilt and subsequent 
sinking when they encounter a lossy dielectric16,20,21.

Hallmark of Zenneck waves.  The ZW properties of the proposed system have been experimentally 
observed and are presented in Fig. 3. The resonator system is shown in the Fig. 3A, dimensions and parameters 
are presented in the Supplementary Material (Fig. S9 and Table ST 2).

Frequency independent slow attenuation rate.  The Fig. 3B, shows the comparison of the attenuation rate of the 
E-field[dBμV/m] for the two resonator systems designed for operating frequencies of 27 MHz and 36 MHz. The 
transmitter and receiver was fixed at a height of Z = 0.001 m above the metal surface. However, the receiver was 
moved along the interface (Y-direction) and the corresponding values were recorded14. It is observed that the 
E-field values along the metal show a slow attenuation rate, independent of the frequency. This property is consist-
ent with the ZW’s as reported by Schelkunoff, Sarkar et al. and Barlow14,15,18,20. The Fig. 3C, shows the measured 
and simulated results of the attenuation rate at 27 MHz. The simulation was done using Ansys high-frequency 
structure simulator (HFSS). It is observed that the experiments and simulation model are in excellent agreement.

Figure 2.  Concept of the proposed Zenneck wave system. (A) Details of the system in this study. (B) Field 
mechanism of the proposed system. (C) The mechanism of energy buildup, the E-field forms a forward and 
backward vector meeting at the interface (modes). The TM-wave forces the propagation of the modes.
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Multi receiver efficiency.  The Fig. 3D, shows the multi receiver efficiency from 1 m to 8 m distance. Two receivers 
with identical loads were used of 20 watts each. The simulation result of the transmittance parameters are listed 
in the Supplementary Material (section 5). It is observed that the system efficiency varies between 66% to 62% for 
a range of 1 to 8 m. The power transfer metrics at 8 m and 15 m are listed in the Supplementary Material (Tables 
ST 4 and ST 5).

Leaky or partial metal shields.  The Fig. 3E, shows the comparison of measured and simulated results of the 
transmittance parameters under leaky shielded and non-shielded conditions. The transmittance parameters 
were observed using the state-of-the-art vector network analyzer. The FEM model is in good agreement with 
the measured results. It is observed that the proposed system, unlike the coupled WPT systems, has the ability to 
perform without any significant efficiency degradation2,23. Detailed measurement results are further discussed in 
the Power Transfer Metrics section.

Evanescent field/exponential decay.  An exponential E-field decay is also observed in the normal direction away 
from the metal-air interface (listed in Fig. 3F), consistent with the evanescent property of the ZW’s10–12,14–16,18–21.

Figure 3.  Experiment and Simulation results: Zenneck Wave at metal-air interface. (A) Ground Backed 
Impedance resonator system, with a half wavelength helical coil. (B) Experimental results of the Z component of 
the Electric field in the Y-direction 1 to 50 m, shows a slow attenuation rate. Two resonators with frequencies 27 
and 36 MHz were designed and compared. The resonators were placed at a vertical distance of Z = 0.001 m above 
the metal surface. (C) Measured and simulated results comparison of E field attenuation along Y-direction at 
27 MHz; Z = 0.001 m. (D) Multi receiver power transfer efficiency. (E) Experimental and simulated results of the 
transmittance parameters, when transmitting and receiving unit are under shield and no-shield conditions. (F) 
Evanescent field decay experiment.

https://doi.org/10.1038/s41598-020-57554-1


6Scientific Reports |          (2020) 10:925  | https://doi.org/10.1038/s41598-020-57554-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

FEM Simulation model and Sinking of Iso/Equi-phases.  The simulation of Iso-phases mentioned in the Fig. 2B, is 
shown in the Fig. 4A to D. The simulation set up; in the Fig. 4A two kind of materials are used comprising of equal 
lengths of metal and lossy dielectric. It is observed that the equi or Iso-phases are tilted backwards in the air, as 
long as metal-air interface exists as shown in Fig. 4A,B. Where as, for a case of Lossy dielectric-Air interface, the 
same Iso-Phases are tilted forwards in the air. When we look at the simulation of lossy dielectric-air interface as 
shown in Fig. 4D to F; the Iso-phases are titled forwards in the air, in the direction of propagation. The Fig. 4 and 
the Fig. 5A–H, confirms the implications of Eq. 1, i.e. the governance of the angle of tilt as per the media. This is 
one of the important facts brought out by the current study.

Eddy current effect.  The current carried in the primary of the resonator coil, is effected by the eddy currents 
generated on the metal. This effect was reduced by increasing the spacing between the coil and the GBI resonator 
from 105 mm to 260 mm (Supplementary Material Fig. S3a).

Attenuation rate along different interfaces.  If the proposed method is exciting Zenneck waves at the metal-air 
interface, then, they must also show similar properties across various other conductive media. The Fig. S3b, shows 
the attenuation characteristics across aluminium (conductivity, σ = . × S m3 8 10 /7 ), iron (σ = . × S m1 03 10 /7 ) 
and sea-water (σ = S m4 /  and ε = 81). It is observed that the attenuation rate in seawater is faster than metal.

Additional commentary: Non-Capacitive system.  Recently, the Sommerfeld-Zenneck wave behaviour 
has been demonstrated in the centimeter range30. Interestingly, (the Fig. 2C top-view of30) of the article shows the 

Figure 4.  Simulation of Iso-Phases. (A) Half metal (Aluminum) and Half Lossy dielectric (ε = 4.4, δ = 0.3, 
σ = 4 S/m). (B) Inset View of Iso-Phases on metal. (C) Inset view of Iso-phases in lossy dielectric. (D) Iso-
Phases for a complete lossy dielectric (ε = 4.4, σ = 0.3, σ = 4 S/m). (E) Inset view of Iso-Phases at the beginning 
of the lossy dielectric media. (F) Sinking of the Iso-phases into the lossy dielectric.
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simulation of the E-field modes identical to the Fig. S.15. At a first glance, the presented ZW system looks like a 
capacitive power transfer system. But, this is misleading, we need to look at the details of the phase of the reflec-
tance parameters, when the transmitter is placed in the proximity of the metal. Figure 6A,B shows the measured 
and simulated phase angle at resonance to be +29.8° and +27.4°, respectively. Moreover, the Fig. 6C shows the 
smith chart results, which shows a positive value for the complex quantity of the impedance at resonance. Finally, 
Fig. 6D shows the reflectance parameters magnitude in dB having a resonance at 27 MHz. Ofcourse, all these 
observations are made by placing the transmitter on the metal, with an insulator. Based on the results of Fig. 6A 
to C, it can be concluded that the ZW system is not a capacitive power transfer system31,32. As per the available lit-
erature, the phase angle of the S-parameter and imaginary part of the impedance in smith chart must be negative 

Figure 5.  SIMULATION: Capture of the Iso-amplitudes and phases for different conductivities of the dielectric 
material in S/m (a) σ = 3 × 10−4. (b) σ = 3 × 10−3. (c) σ = 3 × 10−2. (d) σ = 3 × 10−1. (e) σ = 3 (f) σ = 30. (g) 
σ = 300. (h) σ = 3000.
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Figure 6.  (A) Measured S11 Phase angle at resonance, having a value of 29.8°. (B) The HFSS simulation - S11 
Phase angle at reosnance is positive, hence the ZW system is not a capacitive system. (C) Measured Smith Chart 
of the S11 shows a positive imaginary impedance quantity. Hence, inductive property is dominant. (D) HFSS 
simulation- Reflectance at 27 MHz resonance.

Figure 7.  Measurement Spectrum analyzer under (A) open conditions (B) shielded conditions; distance 
between transmitter and receiver was at 15 m.
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for a capacitive power transfer system. Also, it is evidently clear that the Capacitive or coupled WPT systems do 
not exhibit propagating mode behavior.

Power transfer metrics.  The Fig. 7A shows the received absolute power under open conditions, the corre-
sponding shielded conditions is shown in the Fig. 7B. Both these measurements are performed using spectrum 
analyzer (Agilent N9320B 9 KHz–3 GHz) on the receiver side. The transmitter is fed with 0 dBm from a signal gen-
erator (Agilent N5183A), the sweep conditions are start frequency 22 MHz, center frequency 27 MHz and the stop 
frequency is 32 MHz. The distance between transmitter and receiver is 15 m. The Fig. 8 shows the measured AC RMS 
current, voltage and phase values across transmitter and receiver (open conditions), transmission range is 8 meters. 
On the other hand receiver under shielded conditions is shown in the Fig. 9. A Keysight differential voltage probe 
N2790A 100 MHz and Keysight 1147B current probe was used for these measurements. An agilent mixed signal 
oscilloscope model MSO9254A was used for recording the measurements. Interestingly, the transmitter to receiver 
efficiency is high; η φ φ= × × × × × = . × . ×V I cos V I cos cos[ / ] 100 [45 19 1 1445Rx Rx Rx Tx Tx TxRMS RMS RMS RMS
− . . × . × . × = .cos( 6 71)/82 85 0 7 (5 68)] 100 89 1%. However, when one calculates the power amplifier to receiver 

efficiency, the figure drops to 64%. The input from signal generator is −4 dBm, the power amplifier [the model Prana 
DP 300] used has a gain of 53 dBm. Therefore, the total power fed into transmitter is 49 dBm, which is 79.4 Watts. 
This discrepancy can be explained by the existence of reflection losses at the transmitter end. Use of an appropriate 
impedance matching network on the load end can improve the overall efficiency, i.e. power amplifier to the receiver 

Figure 8.  Measurement: AC RMS Current, Voltage and Phase across Transmitter terminals open-conditions; 
distance between transmitter and receiver was at 8 m.
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load. Under shielded conditions, the transmitter to receiver power transfer efficiency is 82.29%; the power amplifier 
to receiver efficiency is 57.19%. It is clear from these results, that the proposed ZW system has a clear advantage when 
it comes to environments where leaky metal shields are present, such as - industrial pipelines, aerospace, wireless 
solutions for space payloads, wireless sensors for electric vehicles, marine vessels, smart shipping containers, modular 
metal buildings etc.

Figure 9.  Measurement: AC RMS Current, Voltage and Phase across Transmitter terminals shielded-
conditions; distance between transmitter and receiver was at 8 m.

https://doi.org/10.1038/s41598-020-57554-1


1 1Scientific Reports |          (2020) 10:925  | https://doi.org/10.1038/s41598-020-57554-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussions
We have demonstrated the excitation of waves on metal surfaces that can be used for delivering electrical power 
to multiple devices. The waves show slow attenuation property similar to ZW’s along the metal-air interface 
and can be used to deliver efficient power to devices upto 8 meters using the current design. We also show that 
ZW’s can be used for transmitting power across partial metal enclosures. Therefore, the resonator system has 
the ability to overcome electromagnetic shielding and can be used for delivering power to devices under leaky 
metal enclosures. Thus, agreeing with the hypothesis that excited waves are non-radiative in nature (ZW, SP, SW 
are non-radiative). Power transmission to multiple receiving resonators with uniform efficiency has also been 
established experimentally and shows excellent agreement with simulation. The simulation result is compared 
with coupled mode power transfer system in the Supplementary (Fig. S8). Existing coupled mode WPT systems 
undergo peak splitting when multiple receiving units are involved. Our study shows that using a wave-based 
mode of transmission, we can solve this issue. The efficiency of power transmission increases when multiple 
receiving units are present, as the power is uniformly spread across the metal surface. This kind of increase, due 
to multiple receiving units was also observed in a widely followed article, where weakly coupled WPT system is 
used33. The maximum value of E and H-field emitted by the system is 34% and 89% lower than the permitted val-
ues, regulated by the ICNIRP guidelines at this frequency (Supplementary material Fig. S10, S11 and Table ST 3). 
Thus, this system should not pose “occupational hazard” to human operators. The proposed system has no effect 
on other devices operating in vicinity (Supplementary Material demo video links)34.

Advantages and limitations.  Since ZW, SW, SP and SPP have an evanescent field, the transceivers need 
to be in proximity to the interface, on the other hand free space wave bases systems do not have this limitation. 
However, most free-space wave systems have limitations in power handling, efficiency and can not perform in 
the presence of leaky shielded environments. We have shown that the proposed ZW in this report has handled 65 
watts. In its present form the presented system can handle upto 700 Watts of power. Beyond 1 kWh, the dielectric 
material and insulator material has to be replaced by air or ceramic in order to avoid dielectric breaking.
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