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Abstract

P2X receptors are expressed on different functional groups of primary afferent fibers. P2X receptor-mediated sensory

inputs can be either innocuous or nociceptive, depending on which dorsal horn regions receive these inputs. We provide a

brief review of P2X receptor-mediated purinergic sensory pathways to different regions in the dorsal horn. These P2X

purinergic pathways are identified in normal animals, which provides insights into their physiological functions. Future

studies on P2X purinergic pathways in animal models of pathological conditions may provide insights on how P2X

receptors play a role in pathological pain states.

Abbreviations: ATP – adenosine 5S-triphosphate; DH – dorsal horn; DRG – dorsal root ganglion; EPSCs – excitatory

postsynaptic currents; mEPSCs – miniature excitatory postsynaptic currents; VR1 – vanilloid receptor subtype 1

P2X receptors and their expression on primary

afferent neurons

P2X receptors are cation channels on the plasma mem-

branes that open in response to the binding of extracellular

ATP. Seven P2X subunits have been identified and cloned

[1, 2]. These subunits can form a number of functional

subtypes of recombinant P2X receptors in a heterologous

expression system [1, 2]. Biophysical and pharmacological

characterization of these P2X receptor subtypes have been

extensively reviewed [1, 2]. It should be pointed out that

the two terms, P2X subunit and P2X subtype, have distinct

meanings. The former only refers to a component of a

functional P2X receptor; the later is used for a functional

P2X receptor. A functional P2X receptor can be formed

from same P2X subunits (i.e., homomeric P2X receptors)

or different subunits (i.e., heteromeric P2X receptors).

All of the seven P2X receptor subunits appear to be

expressed on primary afferent neurons in the spinal dorsal

root ganglia (DRG) and trigeminal ganglia [3, 4]. ATP

and other P2X receptor agonists can evoke membrane

currents in many primary afferent neurons. The evoked

currents show three distinct phenotypes: Fast current,

slow current, and mixed current with both fast and slow

components [5–10]. The fast current is manifested by

rapid desensitization in the range of milliseconds in the

presence of agonists. In contrast, the slow current displays

weak or little desensitization in the range of seconds in

the presence of agonists. By comparing the findings from

primary afferent neurons with those recombinant P2X

receptors, it has been suggested that homomeric P2X3

receptors (P2X3) account for fast currents, heteromeric

P2X receptors composed of P2X2 and P2X3 subunits

(P2X2 + 3 receptors) account for slow currents, and the co-

expression of P2X3 and P2X2 + 3 receptors account for the

mixed currents [11–16]. However, for many DRG neurons

slow currents appear to also be mediated by P2X receptor

subtypes other than P2X2 + 3 receptors [10].

Studies have shown that P2X receptors can be involved in

both peripheral and central sensory signaling and processing

[11, 12, 17–24]. In the periphery, ATP may be released as a

result of tissue stretch, injury and inflammation, visceral

distension, or sympathetic activation [25]. ATP release can

excite afferent fibers by the activation of P2X receptors

[25–27]. Behavioral studies indicate that ATP and P2X

receptors are involved in both nociceptive and innocuous

functions [28–32]. P2X receptors are suggested to play roles

in nociception under conditions of acute tissue injury and

inflammation. Furthermore, P2X receptors have been

implicated in neuropathic pain conditions [19, 33–35]. At

central sites in the spinal cord dorsal horn, sensory impulses

can release ATP [23], which may arise from afferent central

terminals, second-order neurons, or astrocytes [36]. ATP

can also be released centrally during spinal cord tissue
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damage and inflammation as a result of numerous disorders

in the spinal cord. Centrally released ATP [37] may act on

the central terminals of afferent fibers, which may then

modulate or directly evoke the release of neurotransmitters

from afferent central terminals [23, 24, 38]. This action may

represent a major function of ATP and P2X receptors at the

central sites in sensory pathways. P2X receptors on afferent

central terminals have novel and important implications in

the centrally initiated sensory signals including neuropathic

pain associated with disorders in the spinal cord. Further-

more, P2X receptor-mediated modulation of transmitter

release at afferent central terminals can also be a novel

mechanism for the sensitization of sensory inputs from the

periphery [39].

P2X receptor-mediated sensory pathways to different

regions of the spinal cord dorsal horn

Studies on the nociceptive functions of P2X receptors are

still at an early stage. To understand the nociceptive

functions of P2X receptors under both physiological and

pathological conditions, it is essential to identify P2X-

mediated nociceptive pathways and to know where and

how P2X-mediated nociceptive inputs are transmitted and

processed in the spinal cord dorsal horn (DH). The dorsal

horn, comprising laminae I and II (superficial laminae), III

and IV (intermediate part), and V and VI (deep laminae), is

the primary central site for processing somatic sensory

inputs [40, 41]. Both the superficial and the deep laminae

of the DH are responsible in the reception, processing and

transmission of nociceptive information [41–46]. In con-

trast, the intermediate part of the dorsal horn is mainly

involved in processing non-nociceptive information [41].

P2X sensory pathways to the dorsal horn can be studied

on spinal cord sections by immunochemistry with P2X

antibodies and by synaptic physiology using the patch-

clamp technique. These approaches are used to determine

whether the central terminals of primary afferent fibers

express P2X receptors and, if so, what types of P2X

receptors are expressed and where these P2X-expressing

terminals are located in the dorsal horn. These approaches

for the study of P2X purinergic pathways are based on the

assumption that if a type of P2X receptors is expressed at

Figure 1. An assumption of P2X purinergic pathway to the spinal cord dorsal horn and the synaptic physiological approach for the study of P2X

purinergic pathway. A) The diagram illustrates a dorsal root ganglion with both peripheral nerve endings and central terminals. The central terminals are

within the spinal cord dorsal horn. It is proposed that the expression of a P2X receptor at the central terminal also predicts its presence in other part of the

primary afferent fibers including peripheral nerve endings. Thus, P2X purinergic pathway to the dorsal horn can be mapped by studying P2X receptors at

the central terminals through synaptic physiology or immunochemistry. B) A schematic diagram illustrates the use of synaptic physiology to study P2X

purinergic pathway to the dorsal horn using spinal cord slice preparations. Synaptic transmission between afferent central terminals and dorsal horn (DH)

neurons is recorded using patch-clamp technique. Activation of P2X receptors on the central terminals of primary afferent fibers results in the release of

glutamate, which in turn activate glutamate receptors (GluR) on dorsal horn neurons and generate excitatory postsynaptic currents (EPSCs).
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the central terminal of a primary afferent fiber, the

peripheral site of the afferent fiber also expresses the same

type of P2X receptors (Figure 1A). Thus, by studying P2X

receptors at the central terminals of primary afferent fibers,

one can map the sensory pathways of P2X purinergic

inputs into the spinal cord dorsal horn. These approaches

can help us understand the potential functions of different

P2X subtypes in sensory transmission. However, although

this assumption is likely to be true for most receptors, it

should be noted that membrane receptors may not always

be delivered to both ends of a primary afferent fiber.

In immunochemistry studies with P2X3 antibodies, P2X3-

expressing afferent terminals [47–49] appear to be restricted to

the inner part of lamina II (lamina IIi). Lamina distribution of

afferent fibers that express other P2X subunits remains unclear,

although there was a report that showed immunoreactivity of

P2X1 and P2X2 subunits in superfacial lamina as well [50].

Except for P2X3 subunit antibodies, it appears that antibodies

for other P2X receptor subunits have limited usefulness in the

spinal cord sections. In addition, a further limitation of

immunochemistry is that it only reveals P2X subunits rather

than functional P2X receptors [36].

Figure 2. Effects of abmeATP on the frequency of miniature excitatory postsynaptic currents recorded from lamina V dorsal horn neurons. A–B)

Spinal cord slice preparation viewed under IR-DIC microscope. Lamina regions were identified under 10� objective (A). A part of a patch electrode is

also seen in panel A. The electrode tip is inside tissue about 70 mM from the surface, and its lamina location is indicated by a box. A neuron in the box

region can be seen under 40� objective (B, center of the field). The patch electrode is to the left side. C) A trace (top) shows mEPSCs recorded from a

lamina V neuron before and following application of 100 mM abmeATP. Bottom traces show, at an expanded time scale, the mEPSCs before (left three

traces) and following (right three traces) abmeATP application. D) Histogram shows the time course and degree of the increases in mEPSC frequency

after 100 mM abmeATP. It also shows, in the same recording, 2 mM capsaicin did not have effect on mEPSCs. Modified and reprinted (with permission)

from Nakatsuka et al. [38]. Copyright by the Society for Neuroscience.
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The use of synaptic physiology with patch-clamp

recording technique for the study of P2X purinergic

sensory pathways (Figure 1B) provides the opportunity to

assess both function and structure in the system in several

ways. First, this approach allows one to assess functional

P2X receptors that are expressed on primary afferent

central terminals. Second, it reveals the effects of P2X

purinergic sensory inputs on dorsal horn neurons (i.e., the

secondary-order sensory neurons within the dorsal horn).

Third, it allows one to characterize neuronal circuits that

are involved in processing P2X purinergic sensory inputs

within the dorsal horn. To this end, we have applied patch-

clamp recording technique to the spinal cord slice

preparations to assess the effects of P2X receptor activation

on monosynaptic and polysynaptic transmission from

primary afferent fibers to dorsal horn neurons located in a

number of lamina regions. We have found that P2X

agonists increased monosynaptic transmission from affer-

ent central terminals to the dorsal horn neurons located in

lamina V (Figure 2) and lamina II [23, 24, 38]. The original

aim of these studies was to explore the role of presynaptic

P2X receptors, i.e., P2X receptors at the central terminal of

primary afferent fibers in modulating glutamate release

from P2X-expressing afferent central terminals. However,

based on our assumption as illustrated in Figure 1,

presynaptic P2X receptor-mediated increases of monosyn-

aptic transmission have also revealed sensory pathways

from some P2X-expressing afferent fibers to dorsal horn

neurons in these regions (also see [36]). Recordings from

lamina V neurons demonstrated that P2X receptor agonists

produced a prolonged increase of monosynaptic trans-

mission to the majority of lamina V neurons (Figure 2;

[23, 24]). This finding suggests the wide expression of P2X

receptors at the central terminals of these afferent fibers

(Figure 3). These afferent fibers have been found to be Ad
afferent fibers and insensitive to capsaicin (Figures 2 and 3),

a noxious stimulant that has been commonly used to identify

nociceptive afferent fibers. Pharmacological studies have

suggested that the P2X receptors expressed on these

capsaicin-insensitive Ad afferent terminals were not P2X3

or P2X2 + 3 subtypes but were more likely to be P2X1 + 5 or

P2X4 + 6 subtypes [10, 38]. One potential function of this

P2X purinergic sensory pathway may be to transmit

sensory information of mechanical stimuli, as based on

sensory physiology of Ad-afferent fibers that innervates

lamina V of the spinal cord dorsal horn. Currently, it is

unclear whether this P2X purinergic sensory pathway is

directly involved in nociceptive transmission due to its lack

of capsaicin sensitivity. However, nociceptive afferent

fibers can also be capsaicin-insensitive. Interestingly, we

have found that this ATP-sensitive/capsaicin-insensitive

P2X purinergic pathway has convergence and temporal

summation with a capsaicin-sensitive input that is poly-

synaptically transmitted to lamina V neurons (Figure 3;

[24]). This convergence may suggest that this ATP-

sensitive/capsaicin-insensitive P2X purinergic pathway

has interaction with nociceptive input.

In contrast to lamina V, many lamina II neurons are

monosynaptically contacted by P2X3-expressing afferent

fibers ([38], Figure 3). This result is consistent with

immunochemistry of P2X3 subunit distribution in lamina

II. These P2X3-expressing afferent fibers also express VR1

receptors [47, 51] and are sensitive to capsaicin. Thus, this

P2X3 sensory pathway may be directly involved in

transmitting noxious signals. Consistent with this idea,

previous studies have shown the nociceptive function of

P2X3 [35, 52–54]. The ATP-sensitive/capsaicin-sensitive

pathway to lamina II was shown to converge to lamina V

neurons through polysynaptic transmission ([24], Figure 3).

This may mediate the spatial and temporal sensory

summation and subsequent hyperactivity in deep laminae,

a potential mechanism of hyperalgesia.

Another important region for pain transmission, process-

ing, and the development of pathological pain is lamina I

of the dorsal horn. Due to technical difficulties in

performing electrophysiological recordings in lamina I

region, there is no report on whether P2X-mediated

sensory signals are transmitted to and processed in this

important nociceptive region. Our recent experiments

performed in lamina I show that some afferent fibers

innervating lamina I neurons also express P2X receptors at

their central sites (Figure 3, unpublished result, presented

at the Purines 2004 meeting). These afferent fibers are

capsaicin-sensitive fibers, suggesting that this is a nocicep-

tive P2X purinergic pathway to the spinal cord dorsal horn.

These P2X receptors are less likely to be P2X3 containing

subtypes based on the restricted lamina IIi distribution of

P2X3-expression afferent central terminals [47, 51]. It

would be interesting to identify the P2X subtype or

subtypes and to see whether it can be a selective target

for the control of pain conditions.

Concluding remarks

The map of P2X purinergic sensory input to different

laminas of the spinal cord dorsal horn helps in understand-

ing the sensory functions of P2X receptors. Under

pathological conditions, the destination of P2X purinergic

Figure 3. P2X-purinergic sensory pathways to the dorsal horn of the

spinal cord. The schematic diagram illustrates three P2X-purinergic

sensory pathways to laminas I, II, and V of the dorsal horn. The pathway

to lamina II is the afferent fibers expressing both P2X3 and VR1 receptors.

The P2X receptor subtypes of two other pathways had pharmacological

properties distinct from P2X3 containing receptors.
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sensory input in different laminas may be altered due to an

aberrant expression of P2X receptors on primary afferent

fibers [34, 55]. This can be a potential mechanism by

which P2X receptors are involved in abnormal sensations

such as mechanical allodynia.
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