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Bacillus niacini is a member of a small yet diverse group of bacteria able to catabolize nicotinic acid. We report here the avail-
ability of a draft genome for B. niacini, which we will use to understand the evolution of its namesake phenotype, which appears
to be unique among the species in its phylogenetic neighborhood.
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N-Heterocyclic aromatic compounds, common constituents of
pharmaceuticals and herbicides, constitute environmental

contaminants of emerging concern due to their water solubility
and carcinogenicity. A number of species are known to subsist on
N-heterocycles as their sole source of carbon (1, 2). Bacillus niacini
is among these, having been shown to survive on nicotinate (3, 4).
While two enzymes and their cofactors (5, 6) have been putatively
identified, the genes that encode them and the remainder of the
relevant cluster are unknown.

The B. niacini genome was sequenced at ACGT, Inc. (Wheel-
ing, IL) using the Illumina MiSeq platform, resulting in �9 mil-
lion high-quality (�Q30) reads derived from paired-end and
mate-paired libraries after adapter trimming and filtering. We
chose to assemble and finish the B. niacini genome using the Mix
software package (7), as only distantly related reference genomes
(8, 9) were available. Mix uses multiple draft assemblies to remove
redundant or low-coverage contigs, as well as to merge overlap-
ping ones. Both sequence libraries were assembled using Velvet
(10), ABySS (11), and SOAPdenovo2 (12) and then combined us-
ing Mix to produce a finished genome sequence consisting of 447
contigs with a total length of �6 Mb and a G�C content of 38%.
This assembly was annotated using the Rapid Annotations with
Subsystems Technology (RAST) server (13), which annotated
5,904 protein-coding sequences, as well as 204 RNAs.

While the G�C content of the B. niacini genome is consistent
with low-GC Gram-positive bacteria, the genome size is much
larger than that of other closely related species (14, 15). Using a
subtractive genomics approach, we were able to identify a novel
cluster of genes not found in other Bacillus species (16). This clus-
ter segregated into a single contig 12,852 bp in length, which con-
tains 13 genes, including two putative regulatory genes. While
many of these genes appear novel to B. niacini, two of them possess
notable sequence similarities to Pseudomonas putida nicF and
nicE, both of which are involved in nicotinate catabolism (1). Fol-
lowing an analysis of the predicted protein architecture, we were
able to identify a number of open reading frames (ORFs) with
features consistent with previous observations (5, 6). Among

these, a pair of putative molybdenum-dependent oxidoreductases
is present, along with at least one iron-sulfur cluster-binding pro-
tein. The putative regulatory genes belong to the TetR and IclR
families, possibly acting as activators (17) and repressors (18),
respectively. While it is unclear if these regulatory proteins act on
the identified gene cluster, we expect that such an operator struc-
ture would be present based on the observation that nicotinic acid
and its metabolites induce pathway expression (4, 6, 19). While
two genes appear biochemically similar to genes in phenotypically
equivalent clusters, the majority are radically different in both
their predicted biochemistry and codon usage (1). These observa-
tions present a conflicting picture of how the cluster arose in Ba-
cillus and may suggest that its evolution is an interplay of both
horizontal gene transfer and convergent evolutionary events.

Nucleotide sequence accession number. This draft genome
sequence has been deposited in GenBank under the accession no.
JRYQ00000000.
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