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Abstract

One of the primary factors contributing to boar taint is the level of androstenone in porcine adipose tissues. A majority of
the studies performed to identify candidate biomarkers for the synthesis of androstenone in testis tissues follow a
reductionist approach, identifying and studying the effect of biomarkers individually. Although these studies provide
detailed information on individual biomarkers, a global picture of changes in metabolic pathways that lead to the difference
in androstenone synthesis is still missing. The aim of this work was to identify major pathways and interactions influencing
steroid hormone synthesis and androstenone biosynthesis using an integrative approach to provide a bird’s eye view of the
factors causing difference in steroidogenesis and androstenone biosynthesis. For this purpose, we followed an analysis
procedure merging together gene expression data from boars with divergent levels of androstenone and pathway mapping
and interaction network retrieved from KEGG database. The interaction networks were weighted with Pearson correlation
coefficients calculated from gene expression data and significant interactions and enriched pathways were identified based
on these networks. The results show that 1,023 interactions were significant for high and low androstenone animals and
that a total of 92 pathways were enriched for significant interactions. Although published articles show that a number of
these enriched pathways were activated as a result of downstream signaling of steroid hormones, we speculate that the
significant interactions in pathways such as glutathione metabolism, sphingolipid metabolism, fatty acid metabolism and
significant interactions in cAMP-PKA/PKC signaling might be the key factors determining the difference in steroidogenesis
and androstenone biosynthesis between boars with divergent androstenone levels in our study. The results and
assumptions presented in this study are from an in-silico analysis done at the gene expression level and further laboratory
experiments at genomic, proteomic or metabolomic level are necessary to validate these findings.
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Introduction

Androgens, the primary hormones secreted by testis control and

regulate the development of male accessory reproductive organs

and secondary sexual characteristics. In porcine genomics, the

special importance given to studying the synthesis and degradation

of androgens is mainly due to an androgenic pheromone called

androstenone. The accumulation of androstenone in boar adipose

tissues is one of the major factors contributing to boar taint [1].

Boar taint is described as an off odor or off taste of meat derived

from non castrated male pigs. At present, in many countries,

surgical castration of boars is the primary method to reduce boar

taint in pork meat [2]. Since piglet castration without anesthesia is

going to be banned in the European Community by 2018 due to

animal welfare reasons [3], there is an immediate need to develop

non surgical methods to reduce boar taint mainly by regulating the

synthesis of androstenone. The two proposed non surgical

methods to reduce boar taint are: (i) the use of chemicals or

drugs to reduce boar taint [4] and (ii) breeding for favorable

characteristics to reduce boar taint [5]. In this regard, it should be

noted that the European Food Safety Authority (EFSA) has

already expressed concerns over consumer perception of meats

from animals treated with chemicals and drugs to reduce boar

taint [6]. Consumer perception issues over the use of chemicals

and drugs for boar taint reduction leaves breeding as a more

sustainable and accepted method to adopt for reducing boar taint.

In order to select favorable biomarkers for breeding pigs with

low androstenone levels and hence reduce boar taint, it is crucial

to understand the genetic machinery behind the synthesis of

androstenone. Androstenone is synthesized in testes and metab-

olized in liver. Although studying genes, interactions and pathways

in both testes and liver is essential to understand the entire

androstenone metabolic processes, in this study the major focus

points are the factors that could contribute to androstenone

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e91077

http://creativecommons.org/licenses/by/4.0/


synthesis in testis tissues. The synthesis of androstenone from

pregnenolone in testes is mainly catalyzed by the enzymes

cytochrome P450C17 (CYP17A1) and cytochrome B5 (CYB5)

along with other reductases. The enzyme 5a reductases (ST5AR)

catalyze the final step in the synthesis of androstenone [7]. At this

point, it should be taken into account that although a number of

enzymes catalyzing various steps in androstenone synthesis have

been identified, the entire metabolic processes involved in the

synthesis of androstenone has not been understood completely.

Nevertheless, several studies have been performed to identify

candidate biomarkers related to the synthesis of androstenone in

testes. A study focusing on genetic correlations of backfat with

direct and associative effects for androstenone has found that

direct effects had a genetic correlation of 0.1460.08 and

associative effects had a genetic correlation of 20.2560.18 [8].

High throughput microarray studies have been conducted to study

the difference in gene expression patterns between testis samples

from boars with divergent androstenone levels [9,10]. Addition-

ally, several QTL (Quantitative trait loci) studies and GWAS

(genome wide association studies) have also been done to identify

candidate QTL regions and polymorphisms responsible for

varying levels of androstenone [11–16]. An in-house study using

data from RNA-seq technology has also been performed recently

to identify candidate biomarkers for varying levels of androstenone

in porcine testes and liver samples [17]. All these studies have been

successful in identifying several candidate QTL regions, genes and

polymorphisms as potential candidate biomarkers to pursue

further detailed investigations.

A general trend among these aforementioned studies is that the

candidate biomarkers identified in these studies are mainly

analyzed and explained individually using a reductionist approach.

Although individual analysis of candidate biomarkers using a

reductionist approach helps to study their functions in detail, a

phenotype or a disease is seldom the consequence of a change in a

single effector gene or gene product, but rather the result of a

multitude of changes in a complex interaction network [18]. From

this point of view, integrative approaches merging different data

sources with gene expression profiles would be more suited to gain

a better understanding of a complex trait such as androstenone. In

human development and medicine, integrative analysis approach-

es merging gene expression profiles with pathway data or

interaction network has been shown to be a powerful approach

to understand the disease. The usual end result of such methods

are diagnostic pathways or disease subnetworks, which are

demonstrated to enhance the prediction accuracy of disease states

and to be more reproducible than single genes [19]. In this work,

we have followed an integrative analysis procedure by merging

together interaction network and pathway information from

KEGG pathway database along with gene expression data. A

current limitation of this approach in terms of studying

androstenone metabolism is that none of the major pathway

databases contain data on metabolic reaction steps or gene

interactions involved in androstenone biosynthesis. As a work

around to this limitation, we have treated androstenone biosyn-

thesis as an offshoot of steroid hormone (testosterone) synthesis

pathway in testis under the assumption that the pathways and

interaction events that affect steroid hormone biosynthesis could

also affect androstenone biosynthesis. The major aim of this work

was to identify and study the major metabolic pathways and

interactions involved in the maintenance and regulation of

steroidogenesis and androstenone biosynthesis using gene expres-

sion data from porcine testis samples with divergent levels of

androstenone measurement through an integrative analysis

approach.

Materials and Methods

Materials
Expression data. The expression dataset used in this study is

from a previous in-house RNA seq experiment conducted in order

to understand the genetic mechanism behind androstenone

metabolism [17]. For the purposes of this work, we used only

the ten testis samples from the original study. In the original study,

these ten testis samples were selected from a pool of 100 boars. In

this pool of animals, boars with a fat androsteone level of 0.5 mg/g

or less were defined as low androstenone (LA) animals and boars

with a fat androstenone concentration of 1.00 mg/g or more were

defined as high androstenone (HA) animals. From this population,

5 animals with extreme high and low levels of androstenone were

selected as sample LA and HA population. The average

androstenone measurement of LA sample animals was

0.2460.06 mg/g and the average androstenone measurement of

HA sample animals was 2.4860.56 mg/g. Among these 10

animals, two sets of 3 animals each: 1 LA and 2 HA animals in

the first set and 2 LA and 1 HA animals in the second set were half

siblings. Additional details of sample collection, library preparation

and sequencing are available in [17].

Pathway and network data. We retrieved pathway and

interaction network data from KEGG database (Release 60.0).

This interaction network was comprised of enzyme - enzyme

(reaction steps) and protein - protein interactions mapped to the

corresponding porcine gene identifiers and annotated with KEGG

pathway names and identifiers in which the interactions occur.

The interaction network consisted of 23,198 edges (interactions)

between 3,510 nodes (genes) mapped to 197 pathways.

Methods
Expression data quality control, mapping and

normalization. The first step in expression data analysis was

a quality control and filtering step. In this step, PCR primers and

bad quality sequences (Phred score ,20) identified in the raw

reads using FASTQC quality control application [20] were

trimmed off. The selection of threshold cut-off (Phred score .

20) was arbitrary and yet this cut-off threshold ensured that only

the reads with a base quality score of 99% or more were retained

for further analysis. The filtered raw reads were mapped to latest

Sus scrofa genome build, Sscrofa10.2 from NCBI using a ‘‘splice

aware’’ mapping algorithm TopHat [21] to generate individual

genome mapping files for each sample. The expression set

(expression matrix) was created by calculating read counts

(expression values) for each gene from these genome mapping

files using BEDTools [22]. It has been shown that the read count

expression data set generated from an RNA-seq experiment

follows a negative binomial distribution [23], but the classical

linear modeling analysis procedures developed for microarray data

sets assumes the data to be normally distributed. Although various

non parametric procedures (distribution free methods) can be used

in this context, we found that the results given by such analysis

procedures were statistically non significant, owing to the small

sample size of our data set and the limited power of non

parametric methods to draw significant conclusions from data sets

with small sample sizes. Recently, Law et al. [24] proposed

applying normal distribution based microarray like statistical

analysis methods to RNA-seq read count data. In order to

overcome the limitations of small sample sizes and non parametric

methods to an extend and also following the proposed idea in [24]

of using normal distribution based microarray like statistical

analysis methods to RNA-seq read count data, we normalized and

log2 transformed our expression data set using ‘‘voom’’ function

Androstenone Pathway Analysis
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implemented in limma R package [25]. Comparison of various

normalization and differential expression analysis methods for

RNA-seq data have shown that voom normalization combined

with limma package is relatively unaffected by outliers and

performed well under many conditions [26]. An additional study

[27] concluded that modeling RNA-seq gene count data as log

normal distribution with appropriate pseudo counts (limma voom

modeling) is a reasonable approximation of the data. Mean-

variance modeling at the observational level (voom) estimates

mean-variance relationship in the read count data and computes

weights for each observation based on this relationship [24]. Our

expression dataset was generated and normalized based on the

above mentioned procedure.

Identification of significant interactions. Since we in-

tended to identify significant interactions based on information

from expression data and pathway interaction network, the very

first step after quality control and normalization of expression data

set was to trim the expression data set for genes in pathway

interaction network. There were a total of 2,871 genes in common

between both the transformed expression dataset and the

interaction network from KEGG database. The trimmed interac-

tion network had 23,198 edges (interactions) between 2,871 nodes

Table 1. Interaction edge classification rules.

Correlation type
Correlation coefficient in HA
samples

Correlation coefficient in LA
samples

Edge color for
visualization

Edge line style for
visualization

HA positive positive and significant negative red solid line

HA positive significance positive and significant positive red dashed line

HA negative negative and significant positive light green solid line

HA negative significance negative and significant positive or negative light green dashed line

LA positive negative positive and significant green solid line

LA positive
significance

positive positive and significant green dashed line

LA negative positive negative and significant orange solid line

LA negative significance positive or negative negative and significant orange dashed line

Set of rules used for the classification of interactions (correlations) and assigning interaction types, edge color and line styles.
doi:10.1371/journal.pone.0091077.t001

Figure 1. Network visualization of significant interactions identified. Legend: nodes – genes, edges – interactions with significant z-scores.
Edge legend: Red solid edges: interactions positive and significant in HA samples, negative in LA samples. Red dashed edges: interactions positive
and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples.
Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid edges: interactions positive and
significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and significant in LA samples, positive in HA
samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions
negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g001
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(genes). In the next step, we calculated Pearson Correlation Co-

efficient (PCC) of gene expression values for both LA and HA

expression sets separately and by using these correlation coeffi-

cients as edge weight values, we generated two edge weighted

interaction networks, (i) LA network where LA correlation

coefficients were used as edge weight values and (ii) HA network

where HA correlation coefficients were used as edge weight values.

At this step, only those correlations with an edge in the interaction

network were considered and the remaining correlation coeffi-

cients, interactions and genes were excluded from further analysis.

Both LA and HA correlation coefficient weighted interaction

networks contained 2,871 nodes (genes) and 15,960 edges

(interactions) respectively. We termed the interaction network

weighted with correlation coefficients from LA samples as ‘‘LA

network’’ and the one weighted with correlation coefficients from

HA samples as ‘‘HA network’’. In order to identify the interactions

that are significantly different between both LA and HA networks,

the edge weights (correlation coefficients) of both the networks

were transformed to z-score using Fisher-r-to-z transformation

based on the equation:

z~
1

2
ln

1zr

1{r

� �
, ð1Þ

where r is the PCC.

Following the calculation of z-scores for interactions in both

networks, the differences between the z-scores were also calculat-

ed. For an edge z-score in LA interaction network, the

corresponding edge z-score from HA interaction network was

retrieved and the difference between the z-scores was calculated

as:

zscoreDIFF~zscoreLA{zscoreHA: ð2Þ

In order to identify significant z-scoreDIFF (and there by

significant interactions),we followed a two step evaluation criteria

based on random sampling and permutation approach [28].

Permutation and resampling based methods for estimating

significance thresholds have already been used in high throughput

studies [29,30]. The evaluation criteria used in this study were: (i)

zscoreDIFF should be significant at a threshold of empirical p-value

,0.05 against a set of z-scores randomly generated from the

original expression data and (ii) at least one of the correlation

coefficients used to calculate zscoreDIFF (in equation 2) should be

significant at a threshold of empirical p-value ,0.05 against a set

of correlation coefficients randomly generated from the original

expression data. For generating the set of z-scores in evaluation

criteria (i) the first step was to generate a random expression

matrix by randomly shuffling and reassigning the expression values

into two sample groups. By this random shuffling and reassigning,

we aimed to break up the original ordering and classification of the

expression values and generate two complete random expression

matrices and artificially replicate a set of z-scores calculated from a

random population. Pearson correlation coefficients, random z-

scores and z-score differences were calculated on these random

expression matrices following the steps described previously. This

entire process was repeated 10,000 times to generate a set of

random z-score differences (zscoreRAND) for each interaction.

Significance threshold empirical p-value for each zscoreDIFF was

calculated as:

PvalEmpirical~
#zscoreRANDwzscoreDIFF

N
, ð3Þ

where N = 10,000.

A similar procedure was followed for calculating significance

threshold empirical p-value for correlations in evaluation criteria

(ii), where empirical p-values were calculated between correlation

coefficients from randomly sampled expression data (random

population correlation coefficients) and the original correlation

coefficients from LA or HA datasets.

Selecting only significant zscoreDIFFs for further analysis would

imply that we were selecting only those gene – gene interactions

with a significant difference between LA and HA z-scores when

compared to the set of random population z-scores. By adding the

additional criterion that at least one of the correlation coefficients

used to calculate the zscoreDIFF should be significantly different

from the set of random population correlation coefficients, we

ensured that the selected gene – gene interactions had not only

significant zscoreDIFFs but also at least one significant correlation

coefficient when compared to the random population data. We

termed these selected interactions as ‘‘significant interactions’’,

since zscoreDIFF defined for these interactions (edges) and at least

one of the correlation coefficients used to calculate zscoreDIFF were

Table 2. Network statistics table.

Significant interactions
Significant interactions
in enriched pathways

Edges (Interactions) 1,023 848

Nodes (genes) 826 563

LA positive interactions 209 173

LA positive significance interactions 35 31

LA negative interactions 201 166

LA negative significance interactions 30 24

HA positive interactions 257 217

HA positive significance interactions 42 39

HA negative interactions 220 189

LA negative significance interactions 29 26

This table contains basic information on networks generated from significant interactions and significant interactions in enriched pathways.
doi:10.1371/journal.pone.0091077.t002
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Table 3. Pathways enriched for significant interactions.

Id Name
P-adj.
value

# total significant
interactions

# significant
interactions
in LA samples

# significant
interactions
in HA samples

ssc00230 Purine metabolism 0 187 94 93

ssc00240 Pyrimidine metabolism 0 74 37 37

ssc00564 Glycerophospholipid metabolism 0 55 29 26

ssc04070 Phosphatidylinositol signaling system 0.000006 44 24 20

ssc04630 Jak-STAT signaling pathway 0.000357 33 22 11

ssc05200 Pathways in cancer 0.000024 32 23 9

ssc00280 Valine, leucine and isoleucine degradation 0 23 5 18

ssc00071 Fatty acid metabolism 0 23 3 20

ssc04141 Protein processing in endoplasmic
reticulum

0 23 10 13

ssc00600 Sphingolipid metabolism 0.000456 21 11 10

ssc04510 Focal adhesion 0.033436 21 12 9

ssc00561 Glycerolipid metabolism 0.000055 21 12 9

ssc04010 MAPK signaling pathway 0.022251 20 7 13

ssc04612 Antigen processing and presentation 0 19 19 0

ssc04370 VEGF signaling pathway 0 19 8 11

ssc00480 Glutathione metabolism 0.000055 19 6 13

ssc05166 HTLV-I infection 0.005501 18 7 11

ssc05416 Viral myocarditis 0 17 16 1

ssc00620 Pyruvate metabolism 0.000001 17 5 12

ssc04514 Cell adhesion molecules (CAMs) 0.000003 17 16 1

ssc04530 Tight junction 0.023193 17 8 9

ssc05320 Autoimmune thyroid disease 0 16 16 0

ssc05330 Allograft rejection 0 16 16 0

ssc04910 Insulin signaling pathway 0.002451 16 6 10

ssc04114 Oocyte meiosis 0.000002 16 5 11

ssc00565 Ether lipid metabolism 0.001179 16 11 5

ssc04662 B cell receptor signaling pathway 0.000022 14 6 8

ssc05152 Tuberculosis 0.00428 14 5 9

ssc04660 T cell receptor signaling pathway 0.002445 13 5 8

ssc00640 Propanoate metabolism 0 13 3 10

ssc00010 Glycolysis/Gluconeogenesis 0.000011 13 2 11

ssc04520 Adherens junction 0.000045 12 2 10

ssc05215 Prostate cancer 0.002451 12 5 7

ssc04650 Natural killer cell mediated cytotoxicity 0.023263 11 3 8

ssc00350 Tyrosine metabolism 0.000006 11 7 4

ssc04914 Progesterone-mediated oocyte maturation 0.000006 11 6 5

ssc04145 Phagosome 0.000104 11 5 6

ssc04360 Axon guidance 0.012443 10 5 5

ssc04720 Long-term potentiation 0.033436 9 1 8

ssc00330 Arginine and proline metabolism 0.002441 9 7 2

ssc03013 RNA transport 0.027555 9 0 9

ssc05221 Acute myeloid leukemia 0.001945 9 4 5

ssc00520 Amino sugar and nucleotide sugar
metabolism

0.004446 9 2 7

ssc00760 Nicotinate and nicotinamide metabolism 0.006482 8 4 4

ssc00140 Steroid hormone biosynthesis 0.022251 8 3 5

ssc00650 Butanoate metabolism 0.000053 8 0 8

ssc00020 Citrate cycle (TCA cycle) 0.002123 8 1 7

Androstenone Pathway Analysis
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Table 3. Cont.

Id Name
P-adj.
value

# total significant
interactions

# significant
interactions
in LA samples

# significant
interactions
in HA samples

ssc05214 Glioma 0.039816 8 4 4

ssc05218 Melanoma 0.018072 8 4 4

ssc04672 Intestinal immune network for IgA production 0.000006 7 7 0

ssc05310 Asthma 0.000002 7 7 0

ssc05323 Rheumatoid arthritis 0.00002 7 7 0

ssc05322 Systemic lupus erythematosus 0.000002 7 7 0

ssc04210 Apoptosis 0.025555 7 2 5

ssc00260 Glycine, serine and threonine metabolism 0.012235 7 2 5

ssc03015 mRNA surveillance pathway 0.006833 7 3 4

ssc05145 Toxoplasmosis 0.014424 7 4 3

ssc00190 Oxidative phosphorylation 0.003872 7 0 7

ssc00670 One carbon pool by folate 0.004358 7 4 3

ssc04012 ErbB signaling pathway 0.019074 7 1 6

ssc04976 Bile secretion 0.016901 7 6 1

ssc05210 Colorectal cancer 0.000576 7 4 3

ssc05212 Pancreatic cancer 0.000926 7 6 1

ssc00360 Phenylalanine metabolism 0.002441 6 3 3

ssc00270 Cysteine and methionine metabolism 0.018955 6 4 2

ssc03008 Ribosome biogenesis in eukaryotes 0.002101 6 1 5

ssc03018 RNA degradation 0.016476 6 2 4

ssc05160 Hepatitis C 0.008178 6 4 2

ssc05220 Chronic myeloid leukemia 0.016476 6 2 4

ssc04150 mTOR signaling pathway 0.004199 6 3 3

ssc00380 Tryptophan metabolism 0.011081 5 3 2

ssc00410 beta-Alanine metabolism 0.029887 5 1 4

ssc05010 Alzheimers disease 0.000887 5 2 3

ssc00250 Alanine, aspartate and glutamate metabolism 0.024271 5 2 3

ssc05223 Non-small cell lung cancer 0.023193 5 1 4

ssc05030 Cocaine addiction 0.033436 4 2 2

ssc00340 Histidine metabolism 0.004757 4 3 1

ssc00072 Synthesis and degradation of ketone bodies 0.000456 4 0 4

ssc00052 Galactose metabolism 0.002123 4 3 1

ssc05222 Small cell lung cancer 0.035287 4 1 3

ssc05211 Renal cell carcinoma 0.027555 4 1 3

ssc04621 NOD-like receptor signaling pathway 0.005501 3 2 1

ssc04622 RIG-I-like receptor signaling pathway 0.018072 3 2 1

ssc05134 Legionellosis 0.006482 3 2 1

ssc00983 Drug metabolism - other enzymes 0.015249 3 0 3

ssc05213 Endometrial cancer 0.047691 3 1 2

ssc05216 Thyroid cancer 0.008873 3 3 0

ssc00563 Glycosylphosphatidylinositol(GPI)-anchor
biosynthesis

0.016476 3 0 3

ssc05412 Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

0.002578 2 1 1

ssc00740 Riboflavin metabolism 0.016358 2 2 0

ssc04962 Vasopressin-regulated water reabsorption 0.027043 2 0 2

ssc00100 Steroid biosynthesis 0.047448 2 0 2

doi:10.1371/journal.pone.0091077.t003
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significant with respect to random population data. Once the

identification of significant interaction was complete, we further

classified these significant interactions into 8 interaction types such

as: HA positive, HA positive significance, HA negative, HA

negative significance, LA positive, LA positive significance, LA

negative and LA negative significance. The rules used for

classification of these interaction types and edge colors and line

styles used in visualization of these interaction types are given in

Table 1. These classification rules were mainly used in the

visualization step, and all the interaction networks in this work

were visualized using Cytoscape [31]. Figure S1 shows a schematic

diagram of the entire workflow used in this analysis.

Once the identification and classification of significant interac-

tions were completed, we performed a hypergeometric test to

identify the pathways over-represented for these significant

interactions. The purpose of performing a hypergeometric test

here was to test whether there the overlap between the gene

interactions to pathway mappings from KEGG database and the

interactions identified in the steps above was significant. The

hypergeometric test we used is an in-built function (phyper)

available in R statistical environment [32] and the probability

values generated by the phyper function were converted into p-

values (1-probability) and were corrected for multiple testing using

Benjamini-Hochberg procedure (BH-correction). All the pathways

with a p-adjusted value significance threshold of p-adj ,0.05 from

hypergeometric tests were considered as significantly enriched

pathways.

Results and Discussion

Results from our analysis show that 1,023 interactions between

826 genes were significant in LA and HA data sets. Network

analysis revealed that these 1,023 interactions formed into an

interaction network and the largest connected component of this

network contained 848 edges (interactions) and 563 nodes (genes)

(Figure 1). File S1 (Cytoscape .xgmml file) contains the significant

interactions visualized as a network along with additional

information such as LA and HA correlation coefficients, raw read

counts for each gene, empirical p-value and correlation type for

each interaction. Node degree (number of interactions of a gene)

calculations done on this network revealed that genes such as

LOC100623707 (POLR2G), ADCY9, PDE8B, NUDT2, PDE8B

and LOC100620235 (PIK3R1) were some of the highly connected

genes in this network. Among the significant interactions in this

network, 209 interactions were LA positive, 201 interactions were

LA negative, 257 interactions were HA positive and 220

interactions were HA negative (Table 2). Among the genes

involved in significant interactions, gene CYP17A1 is discussed as

a candidate gene for androstenone biosynthesis in a number of

publications [9,10,33,34] due to its role in the conversion of 17 a-

Hydroxy progesterone into androstenedione, a preliminary step in

the synthesis of androstenone and testosterone [35]. Additionally,

the gene LOC100620470 (HSD17B6) is previously reported to be

in an androstenone related QTL region [14] and was also involved

in significant interactions in this study. 17 b-hydroxysteroid

dehydrogenase type 6 enzyme encoded by this gene catalyzes

the conversion of testosterone back to androstenedione [36]. The

gene SMPD1, involved in significant interactions in this study, was

shown to be downregulated in high androstenone Duroc animals,

however this result was not confirmed in rcPCR (real competitive

PCR) validation [10]. It was shown that the enzyme encoded by

SMPD1 cleaves sphingomyelin to ceramide, which in turn inhibits

CYP19, a gene catalyzing a number of reactions in the synthesis of

cholesterol, steroids and other lipids [37].

The major aim behind pathway enrichment analysis was to

relate significant interactions to metabolic pathways and to identify

the key pathways and interactions that might be relevant for

Figure 2. Steroid hormone synthesis pathway. Legend: nodes – genes, edges – interactions with significant z-scores. Edge legend: Grey edges:
Non significant interactions, part of KEGG network data. Red solid edges: interactions positive and significant in HA samples, negative in LA samples.
Red dashed edges: interactions positive and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA
samples, negative and significant in LA samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples.
Dark green solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive
and significant in LA samples, positive in HA samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA
samples. Light green dashed edges: interactions negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g002
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porcine testicular steroidogenesis and androstenone synthesis.

Pathway enrichment analysis showed that out of 1,023 significant

interactions, 865 interactions between 718 genes were enriched in

92 pathways (Table 3). File S2 (Cytoscape .xgmml file) contains

network visualization of significant interactions in enriched

pathways and each edge in this network holds attributes

containing KEGG pathway identifiers and names of enriched

pathways. Among these enriched pathways, the top 5 enriched

pathways in terms of the number of interactions were: purine,

pyrimidine and glycerophospholipid metabolism pathways, phos-

phatidylinositol signaling system and Jak-STAT signaling pathway

(Table 3). The significant interactions in pathways such as

synthesis and degradation of ketone bodies, steroid biosynthesis,

oxidative phosphorylation, butanoate metabolism, drug metabo-

lism – other enzymes and RNA transport were found only in HA

samples and the interactions in antigen processing and presenta-

tion pathway, intestinal immune network for IgA production,

autoimmune thyroid disease and allograft rejection pathways were

found only in case of LA sample set (Table 3). Although the

pathways mentioned here were some of the top enriched pathways

in our analysis, literature references [38–43] suggest that a number

of these pathways were activated by steroid hormones through

various signaling pathways and did not influence steroidogenesis.

However, some of the enriched pathways of our interest were:

steroid hormone biosynthesis pathway, fatty acid metabolism,

oxidative phosphorylation, glutathione metabolism and sphingo-

lipid metabolism. These pathways were chosen as pathways of

interest since steroid hormone biosynthesis is the major pathway

synthesizing testosterone and androstenone and since literature

based evidences suggest that metabolites from glutathione

metabolism, sphingolipid metabolism and fatty acid metabolism

can influence steroid hormone biosynthesis [44–46]. Based on

these enriched pathways and significant interactions, we have

formalized five major assumptions on the synthesis and mainte-

nance of steroidogenesis and androstenone metabolism in our

porcine testis samples. These assumptions are discussed below.

Steroid Hormone Synthesis
As expected, steroid hormone biosynthesis pathway is one of the

pathways enriched for significant interactions (Table 3). In this

pathway, five significant interactions (correlations) were positive in

HA sample set and three significant interactions were positive in

LA sample set (Figure 2). One of the interactions positive in HA

sample set was the interaction between the genes CYP17A1 and

HSD17B3 (Figure 2). The enzyme encoded by CYP17A1 gene

converts 17 a-Hydroxy progesterone into androstenedione [35]

and the hydroxysteroid dehydrogenase enzyme encoded by

HSD17B3 gene catalyzes the conversion of androstenedione to

testosterone [47]. Another HA positive interaction in our results

was the interaction between the genes CYP17A1 and

LOC100620470 (HSD17B6) (Figure 2). In this second interaction

involving CY17A1 gene, the interactant was LOC100620470

(HSD17B6). As discussed above, this gene encodes 17 b-

hydroxysteroid dehydrogenase type 6 enzyme, which catalyzes

the conversion of testosterone back to androstenedione [36]. The

third HA positive interaction in steroid hormone biosynthesis

pathway was the interaction between the genes LOC100620470

(HSD17B6) and UGT1A3 (Figure 2). The enzyme encoded by

UGT1A3 gene, a LOC100620470 (HSD17B6) interaction partner

catalyzes the glucuronidation of testosterone to testosterone

glucuronide [48]. The fourth HA positive interaction in this

pathway was between genes HSD17B8 and LOC100624700

(UGT2C1) (Figure 2). Among these interaction partners, the

former codes for the enzyme hydroxysteroid (17-beta) dehydroge-

nase 8, primarily involved in testosterone inactivation [49] and the

latter encodes UDP-glucuronosyltransferase 2C1 enzyme. Al-

Figure 3. Glutathione metabolism. Legend: nodes – genes, edges – interactions with significant z-scores. Edge legend: Grey edges: Non
significant interactions, part of KEGG network data. Red solid edges: interactions positive and significant in HA samples, negative in LA samples. Red
dashed edges: interactions positive and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples,
negative and significant in LA samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and
significant in LA samples, positive in HA samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples.
Light green dashed edges: interactions negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g003
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though the enzyme UDP-glucuronosyltransferase 2C1 is known to

catalyze the conjugation of endogenous compounds, its exact

function in relation with hydroxysteroid dehydrogenase enzyme

remains unclear. The final positive interaction in HA samples was

the interaction between genes HSD17B3 and UGT1A3 (Figure 2).

As described above, the enzyme encoded by HSD17B3 converts

androstenedione to testosterone and UGT1A3 gene product

catalyzes the glucuronidation of testosterone to testosterone

glucuronide. The evidences described here could indicate that

both testosterone synthesis and degradation steps were active in

HA sample set. In case of LA sample set, positive interactions were

CYP17A1– HSD17B8 interaction, HSD17B8– UGT1A3 interac-

tion and HSD17B8 - LOC100152603 (UDP-glucuronosyltransfer-

ase) interaction (Figure 2). As mentioned above, CYP17A1 codes

for an enzyme catalyzing 17a-Hydroxy progesterone to andro-

stenedione conversion and the enzyme hydroxysteroid (17-beta)

dehydrogenase 8 encoded by HSD17B8 gene inactivates testos-

terone. The remaining interaction partners of HSD17B8 gene,

UGT1A3 and LOC100152603 (UDP-glucuronosyltransferase)

primarily catalyzes the conjugation and removal of various

endogenous compounds. It should be noted that in all the three

interactions positive in LA sample sets, the gene HSD17B8 was

one of the interaction partners and the major function of the

protein encoded by this gene is testosterone inactivation. These

results and evidences could be an indication that in low

androstenone animals, testicular testosterone concentrations were

primarily affected by a low amount of synthesis coupled with

active testosterone inactivation and degradation steps. A recent

study [50] has shown that estimated breeding value of androste-

none was positively related to plasma testosterone levels and it was

also shown that genetic correlation between androstenone (plasma

and fat) and sex steroids were high in pure bred Duroc and

Landrace populations [51]. Based on these evidences from

published studies and the observation that the enzymes involved

in the synthesis of testosterone also catalyzes androstenone

synthesis and since both the compounds are derived from

pregnenolone [7], we postulate that in HA animals, an active

testosterone synthesis could also imply active synthesis of

androstenone.

Figure 4. Oxidative phosphorylation. Legend: nodes – genes, edges – interactions with significant z-scores. Edge legend: Grey edges: Non
significant interactions, part of KEGG network data. Red solid edges: interactions positive and significant in HA samples, negative in LA samples. Red
dashed edges: interactions positive and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples,
negative and significant in LA samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and
significant in LA samples, positive in HA samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples.
Light green dashed edges: interactions negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g004
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Glutathione Metabolism
Glutathione metabolism was another major metabolic pathway

enriched for significant correlations (interactions) in our results

(Table 3). Literature evidence suggests that the depletion of

intracellular gluathione pool significantly decreases testosterone

production [44] and that a decrease in glutathione peroxidase

(Gpx) activity affects testosterone synthesis since Gpx activity

reduces lipid peroxidation [52]. Additionally, it has also been

indicated that alterations in glutathione redox cycle might play

significant roles in detoxifying mechanisms in testes [53]. Our

analysis identified seven GPX1 gene interactions to be positive in

HA sample set (Figure 3). GPX1 gene encodes glutathione

peroxidase enzyme, primarily involved in the detoxification of

hydrogen peroxide. GSTA2, a GPX1 interaction partner in

glutathione metabolism pathway exhibits high activity against lipid

peroxidation [54]. GSTA4, another GPX1 interactant metaboliz-

es lipid peroxidation product 4-hydroxynonenal (4-HNE) by

conjugating it with glutathione (GSH) [55]. GPX1– GSTA2

interaction (correlation) and GPX1– GSTA4 interaction (correla-

tion) were positive in HA phenotype, possibly indicating that the

combined action of enzymes encoded by these genes reduced lipid

peroxidase activity in HA samples and thus had a positive effect on

testicular steroidogenesis. In this scenario, it should also be taken

into account that the majority of reactive oxygen species (ROS),

the primary agent in lipid peroxidation is a by-product of

mitochondrial oxidative phosphorylation [56]. Our pathway

enrichment analysis and further investigations have shown that

oxidative phosphorylation pathway was enriched for significant

interactions (Table 3) and that a number of interactions

(correlations) in oxidative phosphorylation pathway were positive

in HA dataset (Table 3, Figure 4). From these results it could be

assumed that in HA samples, an active glutathione metabolism

pathway might be balancing the negative side effects of an active

mitochondrial oxidative phosphorylation, specifically, the perox-

idation of lipids triggered by ROS. Interaction evidences also

shows the gene GGT1 as an interaction partner for the gene

GSTA4 and that the interactions were positive in HA dataset

(Figure 3). Conversion of glutathione (GSH) into cysteinyl glycine

and c-glutamate catalyzed by GGT1 gene product is an essential

step that helps to maintain cellular levels of glutathione and

cysteine and GGT1 deficient male mice have been shown to be

infertile [57]. Although KEGG interaction network includes an

interaction between GSTA4 and GGT1, at this point we are

unable to identify any published evidence supporting this

interaction. Based on the evidences stated above, it could be

postulated that in HA testis tissues, an active glutathione metabolic

pathway resulted in reduced lipid peroxidase activity and thus an

increased steroidogenesis and androstenone biosynthesis. In this

regard, we propose the genes GPX1 and its interactions partners

such as GST family genes GSTA4 and GSTA2 and gene GGT1

in glutathione metabolism as candidate biomarkers to study for

their involvement in porcine testicular steroid biosynthesis and

androstenone biosynthesis. Among the genes involved in signifi-

cant interactions in this pathway, the gene GSTO1 is previously

reported to be differentially expressed in high androstenone

(Duroc) boars [10].

Figure 5. Sphingolipid metabolism. Legend: nodes – genes, edges – interactions with significant z-scores. Edge legend: Grey edges: Non
significant interactions, part of KEGG network data. Red solid edges: interactions positive and significant in HA samples, negative in LA samples. Red
dashed edges: interactions positive and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples,
negative and significant in LA samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and
significant in LA samples, positive in HA samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples.
Light green dashed edges: interactions negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g005
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Sphingolipid Metabolism
Sphingolipids are a class of lipids composed of an aliphatic

amino alcohols and a sphingosine (long chain base) backbone.

These lipids have been established to play a significant role in

steroidogenic pathway by acting as secondary messengers,

paracrine, autocrine regulators and nuclear receptors [45].

Literature evidences [58,59] show that ceramides (Cer, N-

acylsphingosine), a major class of sphingolipids can suppress

testicular StAR gene expression, testosterone biosynthesis and

regulate hCG stimulated steroidogenesis in rat Leydig cells.

Studies have also shown that sphingosine-1-phosphate (S1P), an

intracellular sphingolipid inhibits germ cell apoptosis in human

testis [60] and modulates lutenizing hormone signaling [61].

Sphingomyelin, another sphingolipid is shown to enhance steroid

hormone synthesis [62]. It is also suggested that sphingosine

(SPH), another sphingolipid class member acts as an antagonist for

steroid hormone biosynthesis nuclear receptor SF1 [63]. Sphin-

golipid metabolism was one of the pathways found to be enriched

for significant interactions in our results (Table 3). A total of 10

interactions in this pathway were positive for HA samples

(Figure 5). Among these HA positive interactions, gene GALC

was involved in 4 interactions (Figure 5). The protein encoded by

this gene hydrolyzes the galactose ester double bonds of various

sphingolipids including galactoceramide and converts into N-

acylsphingosine (ceramide) [64]. The first interaction partner of

GALC was the gene SMPD1, which encodes a sphingomyelinase

enzyme that converts sphingomyelin to ceramide [64]. GBA gene

was the second HA positive GALC interaction partner and the

product of this gene hydrolyzes D-glucosyl-N-acylsphingosine to

D-glucose and N-acylsphingosine. LOC100155321 (ACER2) was

the third GALC interactant in HA positive interactions and the

product of this gene catalyzes the hydrolysis of N-acylsphingosine

to sphingosine [65]. In case of gene LOC100525450 (CERS1), the

final GALC interaction partner in HA positive interactions, it is

speculated that the enzyme encoded by this gene is either a

Figure 6. Fatty acid metabolism. Legend: nodes – genes, edges – interactions with significant z-scores. Edge legend: Grey edges: Non significant
interactions, part of KEGG network data. Red solid edges: interactions positive and significant in HA samples, negative in LA samples. Red dashed
edges: interactions positive and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples, negative
and significant in LA samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid
edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and significant in
LA samples, positive in HA samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples. Light green
dashed edges: interactions negative in LA samples, negative and significant in HA samples.
doi:10.1371/journal.pone.0091077.g006

Figure 7. cAMP/PKA related interactions. Legend: nodes – genes,
edges – interactions with significant z-scores. Edge legend: Grey edges:
Non significant interactions, part of KEGG network data. Red solid
edges: interactions positive and significant in HA samples, negative in
LA samples. Red dashed edges: interactions positive and significant in
HA samples, positive in LA samples. Orange solid edges: interactions
positive in HA samples, negative and significant in LA samples. Orange
dashed edges: interactions negative in HA samples, negative and
significant in LA samples. Dark green solid edges: interactions positive
and significant in LA samples, negative in HA samples. Dark green
dashed edges: interactions positive and significant in LA samples,
positive in HA samples. Light green solid edges: interactions positive in
LA samples, negative and significant in HA samples. Light green dashed
edges: interactions negative in LA samples, negative and significant in
HA samples.
doi:10.1371/journal.pone.0091077.g007
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ceramide synthase or a modulator. Although ceramide synthases

have been shown to catalyze the de novo synthesis of ceramides

[66], we were unable to find the function of the gene

LOC100525450 (CERS1) or its product in relation to GALC.

The results also show that three interactions involving the gene

SGMS2 were also positive in HA samples (Figure 5). The enzyme

encoded by the gene SGMS2 is involved in the synthesis of

sphingomyelin from ceramides [67]. The interaction partners of

SGMS2 in HA positive interactions were the genes

LOC100525450 (CERS1), GBA and LOC100511825 (UGT8).

As mentioned above, the product of the gene LOC100525450

(CERS1) is speculated to be a ceramide synthase or a modulator

and the enzyme encoded by the GBA gene hydrolyzes D-glucosyl-

N-acylsphingosine to D-glucose and ceramide. The enzyme

encoded by LOC100511825 (UGT8) catalyzes the transfer of

galactose to ceramide during the synthesis of galactocerebrosides

[68]. An additional HA positive interaction in this pathway was

the interaction between the genes LOC100738292 (SPHK2) and

SGPL1. LOC100738292 (SPHK2) gene product phosphorylates

sphingosine to sphingosine-1-phosphate [69]. The enzyme encod-

ed by the gene SGPL1 cleaves sphingoid bases such as

sphingosine-1-phosphate into fatty aldehydes and phosphoetha-

nolamine [70]. From these evidences at the gene level, it could be

speculated that in HA samples, ceramides were mainly generated

by the conversion/hydrolysis of other sphingolipids such as

sphingomyelin or D-glucosyl-N-acylsphingosine and that the

ceramides generated were converted to galactocerebrosides or to

sphingosine and finally into fatty aldehydes and phosphoethano-

lamine. In our results, a total of 11 interactions in sphingolipid

metabolic pathway were positive for LA samples (Figure 5). The

gene LOC100152988 (KDSR) was involved in two out of 11 LA

positive interactions (Figure 5). One of the interaction partners of

LOC100152988 (KDSR) was the gene SPTLC3. The enzyme

encoded by SPTLC3 converts palmitoyl-CoA and L-serine into 3-

ketodihydrosphingosine, initiating de novo synthesis of sphingo-

lipids [71]. The reductase enzyme encoded by LOC100152988

(KDSR) reduces 3-ketodihydrosphingosine into dihydrosphingo-

sine [72]. The second interaction partner of LOC100152988

(KDSR) was the gene LASS6. LASS6 gene encodes a ceramide

synthase enzyme, Ceramide synthase 6 and it is shown that

ceramide synthases (CerS) are involved in the acylation of dihydro

sphingosine to dihydroceramide, a precursor of ceramide [66].

From these interactions it could be speculated that sphingolipid de

novo synthesis was active in case of LA samples. Similar to HA

samples, an interaction between a gene coding for an enzyme

involved in the synthesis of sphingomyelin and a gene coding for

ceramide synthase or modulator was found to be positive in LA

animals. This interaction was between the genes LASS3 and

SGMS1 (Figure 5). An interaction between the genes

LOC100512419 (PPAP2B) and LOC100622165 (ACER1) was

also found to be LA positive. LOC100512419 (PPAP2B)

hydrolyzes sphingosine-1-phosphate [67] and LOC100622165

(ACER1) hydrolyzes ceramide to sphingosine. Literature based

evidences [45,58–63,73,74] indicate that elevated amounts of

ceramide negatively affects steroid biosynthesis and our evidences

at the genomic level suggest active de novo sphingolipid synthesis

steps in LA animals. Based on these genomic level evidences, we

postulate that elevated concentrations of ceramide in LA animals

could be one of the contributing factors to reduced steroid

synthesis and possibly reduced androstenone biosynthesis in this

phenotype. Although there were several interactions positive in

HA animals suggesting the conversion of various sphingolipids to

ceramide in these animals, we speculate that ceramide levels in

these animals were maintained by its conversion either to

galactocerebrosides or to fatty aldehydes, mainly by the action of

LOC100155321 (ACER2), LOC100738292 (SPHK2) and SGPL1

gene products. Building around the aforesaid speculations and the

literature evidences from model organisms, we propose sphingo-

lipids such as ceramide, sphingosine and sphigosine-1-phosphate

and genes involved in sphingolipid metabolic pathway such as

GALC, LOC100152988 (KDSR), SGMS1, SGMS2, SMPD1 and

SMPD4 as candidate biomarkers to be investigated for their

involvement in porcine steroid hormone biosynthesis and

androstenone biosynthesis pathways. From Figure 5 it can be

seen that several other interactions positive in either one of the

phenotypes, but we were unable to find literature or database

evidences to explain and support these interactions.

Fatty Acid Metabolism
Fatty acid metabolism was also one of the enriched pathways in

our analysis results (Table 3). The beta oxidation (catabolic) part of

fatty acid metabolism breaks down fatty acids to acetyl-CoA which

then enters TCA cycle and electron transport chain metabolic

pathways for energy generation. We found that in our results, a

total of 23 interactions in fatty acid metabolism were significant

(Figure 6). Out of the 23 interactions, 20 interactions were positive

in HA samples and 3 interactions were positive in LA samples

(Figure 6), possibly indicating an active fatty acid metabolic

pathway in HA animals. Eight out of the twenty interactions in

HA samples had the gene HADHA as one of the interaction

partners (Figure 6). The gene HADHA codes for mitochondrial

trifunctional protein alpha subunit, an enzyme necessary for the

final steps mitochondrial beta oxidation of fatty acids [75]. This

suggests that the fatty acid oxidation might be highly active in HA

samples, oxidizing fatty acids to acetyl-CoA. Acetyl-CoA is also the

starting molecule for de novo synthesis of cholesterol. Our results

also show that the interactions between acetyl-CoA acetyltrans-

ferase genes and HADHA were also positive in HA animals. These

interactions were: ACAT1– HADHA interaction and

LOC100152303 (ACAT2) – HADHA interaction (Figure 6).

Enzymes encoded by the genes ACAT1 and LOC100152303

(ACAT2) belong to the thiolase family of enzymes and the major

function of these enzymes is catalyzing the synthesis of acetoacetyl-

CoA from two units of acetyl-CoA [76]. Acetoacetyl-CoA

generated as a result of this reaction enters mevalonate pathway

leading to cholesterol synthesis [77]. It has been shown that

cholesterol used in steroidogenesis could be derived from

cholesteryl ester mobilization, selective uptake of cholesteryl esters

or de novo synthesis of cholesterol in cytosol [46]. In this regard,

we hypothesize that acetoacetyl-CoA derived from an active fatty

acid metabolic pathway in HA animals could have enhanced the

de novo synthesis of cholesterol in testis tissues of HA animals.

Cholesterol synthesized in this manner might be also entering

steroidogenic and androstenone biosynthetic pathways finally

resulting in higher amounts of androgens in these animals.

Cyclic AMP – PKA/PKC Signaling
In addition to the interactions in significant pathways, we also

found additional interactions which could be relevant in main-

taining steroidogenesis in porcine testes tissues. A number of these

identified interactions were part of cAMP (cyclic AMP)/PKA

signaling, although this pathway was neither represented in the

KEGG pathway interaction data that we used in this analysis nor

enriched for significant interactions. Cyclic AMP/PKA signaling

pathway is one of the primary signaling cascades maintaining and

regulating steroidogenesis [78]. Cyclic-AMP/PKA signaling path-

way activation of steroidogenesis is initiated by trophic hormones,

which activate G-proteins. G-proteins stimulate adenylate cyclases,
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thus increasing the levels of intracellular cAMP which further

activates protein kinase A (PRKACA). An activated protein kinase

A phosphorylates transcription factors such as steroidogenic factor

1 (NR5A1), GATA binding protein 4 (GATA4), cAMP response-

element binding protein (CREB) and cAMP response element

modulator (CREM) which activate the genes involved in

steroidogenesis [78]. We found that the interaction between the

genes ADCY9 and PRKCA was significant and positive in HA

samples (Figure 7). The gene ADCY9 codes for the enzyme

adenylate cyclase type 9, which catalyzes the conversion of ATP to

cyclic AMP and diphosphate [79]. PRKACA, as mentioned

above, upon cAMP activation phosphorylates certain transcription

factors which activates the genes involved in steroidogenesis. The

interaction between the genes PRKCA and CREB3L2 was also

found to be significant and positive in HA animals. CERB3L2 is

described as cAMP responsive element binding protein (CREB) 3-

like 2, but whether the transcription factor encoded by this gene

activates the genes involved in steroidogenesis is unknown as of

now. Interestingly, we also found that two interactions involving

adenylate cylases class of genes and guanine nucleotide binding

protein class of genes were positive in LA animals. These

interactions were: ADCY9 - GNAI2 interaction and

LOC100739348 (ADCY8) - GNAI3 interaction (Figure 7). Con-

trary to the interactions observed in HA animals, the interactions

found in LA animals were inhibitory. One of the functions of

guanine nucleotide binding protein family is the inhibition of

adenylate cylases [80], indicating that GNAI gene products were

possibly inhibiting the action of ADCY gene products in LA

animals. Another LA positive interaction in our results was the

interaction between the genes ADCY2 and PRKCA. ADCY2,

similar to other adenylate cyclases, catalyzes the synthesis of

cAMP. Gene PRKCA codes for the alpha subunit of the protein

protein kinase C (PKC). In a similar manner to PKA, PKC has

also been shown to be activated by trophic hormones and

stimulates adenylate cyclase activity indicating that in addition to

PKA, PKC also influences gonadal steroidogenesis [78,81]. But

studies done over the years have demonstrated that PRKCA

(PKC) is a weak inducer of steroidogenesis and that progesterone

synthesis in rat Leydig cells is only moderately elevated by PKC

activation [82–84]. In contrast, Fleury et al. [85] showed that

mutation of PRKACA (PKA) phosphorylation sites in StAR

protein reduced steroidogenesis by 70–80%. These published

evidences points out PRKACA (PKA) as a major steroidogenesis

activator and PRKCA (PKC) as an auxiliary activator of

steroidogenesis. By piecing together our interaction results at the

genomic level and information from published articles, we

speculate that in HA animals an active cAMP/PKA signaling

results in higher steroidogenic activity. But in case of LA animals,

although cAMP/PKC based signaling of steroidogenesis was

active, the inhibition of adenylate cylases by guanine nucleotide

binding proteins might be slowing down the steroid hormone

synthesis machinery and thus could be affecting androstenone

synthesis.

Amalgamating the speculations discussed above, we hypothesize

that the combined action of cAMP-PKA/PKC signaling, gluta-

thione metabolism, sphingolipid metabolism and fatty acid

metabolism was affecting steroid hormone synthesis and therefore

androstenone biosynthesis in both HA and LA animals. In HA

samples, one of the factors contributing to high androstenone

could be that steroidogenesis and hence androstenone synthesis in

these animals were activated by trophic hormone signaling

through cAMP-PKA (PRKACA) signaling. Additionally, these

pathways could have been further boosted by anti lipid

peroxidation activity by members of glutathione metabolism

Figure 8. Hypothetical network visualizing the proposed difference maintaining and regulating steroidogenesis and androstenone
biosynthesis in high and low androstenone boars. Legend: Circular nodes: genes, hexagonal nodes: enriched pathways, diamond nodes:
pathways that might be involved in steroidogenesis, but not found in results, rectangular nodes: metabolites from pathways. In high androstenone
samples, steroidogenesis was activated by cAMP-PKA signaling, lipid peroxidation activity of ROS was inhibited by metabolites from glutathione
metabolism pathway and de novo synthesis of cholesterol as a result of an active fatty acid metabolism activity might have boosted steroidogenesis
and androstenone synthesis. In low androstenone samples, weak cAMP-PKC signaling of steroidogenesis and inhibition of steroidogenesis by
ceramides synthesized from sphnigolipid metabolim pathway might have lead to weak steroidogenesis and hence, low androstenone synthesis.
doi:10.1371/journal.pone.0091077.g008
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pathway and de novo synthesis of cholesterol as a result of an

active fatty acid metabolic pathway (Figure 8). In case of LA

samples, it could be assumed that a weak cAMP-PKC (PRKCA)

based signaling of steroidogenesis activation and synthesis of

ceramide by sphingolipid metabolic pathway, which inhibits

steroidogenesis could be the reason for a low steroidogenesis and

hence low androsteonone synthesis (Figure 8). Figure 8 shows a

hypothetical metabolic pathway illustrating the proposed hypoth-

esis of steroidogenesis and androstenone synthesis regulation in

low and high androstenone phenotypes. Network diagram in

Figure 8 was generated using Omix [86]. Figure 9 is an illustration

of the proposed hypothesis at an interaction level, showing

significant interactions in the mentioned pathways. Figure S2

shows steroid hormone biosynthesis, androstenone biosynthesis

pathway and associated signaling and metabolic pathways which

either affect sterodiogenesis and androstenone biosynthesis or were

affected by androgens. The purpose of this diagram is to visualize

the interactions which affect steroid hormone synthesis along with

the pathways that are affected by the androgens. At this point, it

should be taken into consideration that the speculations and

assumptions presented here are based on in-silico evidences from

experiments done at the genomic level and needs to be validated.

Conclusion

In this study, we aimed to identify and study the key pathways

and interactions in porcine steroidogenesis and androstenone

biosynthesis using an integrative approach based analysis method.

In the light of the results from our analysis, we hypothesize that

pathways such as glutathione metabolism, sphingolipid metabo-

lism, fatty acid metabolism and cAMP-PKA/PKC signaling were

fundamental in maintaining and regulating steroidogenesis and

hence androstenone biosynthesis in both high and low androste-

none animals. We theorize that in high androstenone animals,

steroidogenesis was activated by cAMP-PKA signaling and that

the anti lipid peroxidation activity of glutathione metabolism and

de novo synthesis of cholesterol as a result of an active fatty acid

metabolism activity might have boosted steroidogenesis and

androstenone metabolism. In low androstenone animals, we

postulate that a weak cAMP-PKC activation of steroidogenesis

and regulatory action of ceramides on steroidogenesis might have

contributed to a weak steroid hormone synthesis and hence, low

levels of androstenone synthesis. To conclude, the combined effect

of these key differences in the metabolic and signaling pathways of

high and low androstenone animals could be the determining

factor for the levels of steroidogenesis and androstenone biosyn-

thesis in these animals. The major objective of this study was

hypothesis generation on porcine androstenone biosynthesis based

on existing data resources and the results and hypotheses

presented in this work are based on evidences at the genomic

level from an in-silico study. To the best of our knowledge, this

work is the first attempt at modeling the biochemical machinery

behind divergent androstenone biosynthesis via a hypothesis

driven approach. In this work, the biochemical network modeling

Figure 9. Hypothetical network showing the metabolic pathways affecting steroidogenesis and androstenone biosynthesis. Legend:
Interactions inside each pathway shows the significant interactions from analysis with genes as nodes and significant KEGG pathway interactions as
edges. Blue diamond nodes: pathways that might be involved in steroidogenesis, but not found in results. Cyan colored nodes: chemical compound
or molecules synthesized in pathways. Purple node: external stimulus in the form of hormone signaling. Grey solid edges: hypothetical interactions
based on information from literature. Very light blue circular nodes: genes involved in significant interactions. Red dashed edges: interactions positive
and significant in HA samples, positive in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples.
Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid edges: interactions positive and
significant in LA samples, negative in HA samples. Dark green dashed edges: interactions positive and significant in LA samples, positive in HA
samples. Light green solid edges: interactions positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions
negative in LA samples, negative and significant in HA samples. In HA animals, steroid synthesis and androstenone synthesis might be activated by
cAMP-PKC signaling and further boosted by de novo cholesterol synthesis by virtue of an active fatty acid metabolism pathway and anti lipid
peroxidation activity of members of glutathione metabolism pathway. In LA animals steroid hormone synthesis and androstenone synthesis could
have been affected by weak cAMP-PKA signaling and inhibition of steroidogenesis by ceramides synthesized from sphingolipid metabolic pathway.
doi:10.1371/journal.pone.0091077.g009
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approach was chosen for aggregating a priori knowledge and to

support model driven data analysis and validation for porcine

androstenone research community. The collective intelligence of

the androstenone research community is crucial to challenge (test)

the proposed hypotheses using currently existing or newly

generated data and to validate the regulatory mechanisms

proposed in this analysis. In order to confirm and validate the

findings from this work, additional wet laboratory experiments at

the genome, proteome or metabolome level are necessary.

Supporting Information

Figure S1 Schematic diagram of entire workflow adapt-
ed in this analysis. Legend: White parallelograms with grey

outline: Input/output data and results. White cylinders with red

outline: data from external databases. Rectangles with light blue

shades: various tools and analysis processes used in this workflow.

(TIFF)

Figure S2 Hypothetical interaction network. Hypothetical

network at pathway level showing the metabolic pathways

affecting steroidogenesis and androstenone biosynthesis and

pathways that are affected by steroid hormones. Legend: Grey

hexagonal nodes: pathways that were enriched for significant

interactions. Blue diamond nodes: pathways that might be

involved in steroidogenesis, but not found in results. Purple

diamond node: external stimulus in the form of hormone

signaling. Cyan rectangular nodes: chemical compound or

molecules synthesized in pathways. Dark blue solid edges:

Interactions between enriched pathways (source: KEGG data-

base). Dark blue solid double line edges: Edge between a

compound and a pathway showing a compound synthesized in

pathway. Light blue dashed edges: hypothetical interactions based

on information from literature.

(TIFF)

File S1 Significant interaction network. Cytoscape

(.xgmml) file containing the significant interactions visualized as

a network along with additional information such as LA and HA

correlation coefficients, raw read counts for each gene, empirical

p-value and correlation type for each interaction, generated using

Cytoscape version 2.8.2. To visualize the network, please

download and install Cytoscape (http://www.cytoscape.org/last

accessed November 4, 2013) and import the .xgmml file by: File R
Import R Network (Multiple file types). Additional information on

importing files is given in (http://wiki.cytoscape.org/

GettingStarted last accessed November 4, 2013).

(XGMML)

File S2 Enriched network. Cytoscape (.xgmml) file contain-

ing network visualization of significant interactions in enriched

pathways and each edge in this network holds attributes

containing KEGG pathway identifiers and names of enriched

pathways, generated using Cytoscape version 2.8.2.

(XGMML)
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