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ABSTRACT

We previously presented DriverDB, a database
that incorporates ~6000 cases of exome-seq data,
in addition to annotation databases and pub-
lished bioinformatics algorithms dedicated to driver
gene/mutation identification. The database pro-
vides two points of view, ‘Cancer’ and ‘Gene’, to
help researchers visualize the relationships between
cancers and driver genes/mutations. In the up-
dated DriverDBv2 database (http://ngs.ym.edu.tw/
driverdb) presented herein, we incorporated >9500
cancer-related RNA-seq datasets and >7000 more
exome-seq datasets from The Cancer Genome At-
las (TCGA), International Cancer Genome Consor-
tium (ICGC), and published papers. Seven additional
computational algorithms (meaning that the updated
database contains 15 in total), which were devel-
oped for driver gene identification, are incorporated
into our analysis pipeline, and the results are pro-
vided in the ‘Cancer’ section. Furthermore, there are
two main new features, ‘Expression’ and ‘Hotspot’,
in the ‘Gene’ section. ‘Expression’ displays two ex-
pression profiles of a gene in terms of sample types
and mutation types, respectively. ‘Hotspot’ indicates
the hotspot mutation regions of a gene according to
the results provided by four bioinformatics tools. A
new function, ‘Gene Set’, allows users to investigate
the relationships among mutations, expression lev-

els and clinical data for a set of genes, a specific
dataset and clinical features.

INTRODUCTION

In the past few years, next generation sequencing (NGS)
has revolutionized cancer genomic studies. Large-scale can-
cer genomic projects, such as The Cancer Genome Atlas
(TCGA), have utilized different types of sequencing tech-
nology (such as RNA-seq and Exome-seq) in analysing can-
cer samples in order to provide distinct profiles of cancer bi-
ology. However, translating the different types of cancer ge-
nomic data into information that can be easily interpreted
and accessed remains a challenge.

The integration of multi-dimensional genomic data has
been crucial to our understanding of biologically and clin-
ically relevant subtypes of cancer. One example of integra-
tive analysis was the breast cancer study of TCGA, to show
expression subtype-associated enrichment for cancer driver
genes. For instance, the ERBB2-expression subtype is as-
sociated with the enrichment of TP53 and PIK3CA muta-
tions (1). The recent unbiased genomic characterization of
distinct cancers has also provided insights into the driving
events in genetic subtypes of cancers that are not well un-
derstood. The integrative analysis of cancer genomics data
can provide both mechanistic and biological insights into
the role of driver genes in a specific cancer type (2). There
are several tools, such as MAGTI (3) and cBioportal (4,5),
that allow for the exploration, annotation and integration
of different kinds of cancer genomic data.
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Mutations are random, but the occurrence of
hotspot/clustered mutations is driven by positive se-
lection, especially when the mutations are located in
functional domains or in the residues that are important
for 3D protein structures (2). The same mutations in
hotspot mutation regions (HMRs) may be found as drivers
in other cancers. Many driver mutations recurrently occur
in the functional regions of proteins (for example, kinase
domains or binding domains) (6) or interrupt active sites
(for example, phosphorylation sites) (7). Hotspot regions
can be grouped into two types (8), mutation clusters and
hotspot domains. Hotspot domains are well-annotated
domains with higher mutation rates than are found in the
remaining regions of the protein. The documentation of a
hotspot domain requires a prior annotation of previously
known protein domain information for every transcript.
Mutation clusters are small fractions of proteins that
have accumulated a high number of mutations regardless
of whether or not the clusters are located in functional
domain regions of the protein. A mutation cluster may
even have an extremely high mutation rate; for example, the
V600E cluster of the BRAF gene has a very high mutation
rate and is located in a tyrosine kinase domain. Some
cancer driver genes (such as KRAS and BRAF) have only
one HMR, but some (such as PIK3CA) may have two or
more HMRs in distinct cancer types. HMRs are strong
indicators for cancer in that mutations in these HMRs
may promote cancer progression. Hence, it is important to
identify HMRs in cancer biology. Several computational
methods have been developed for identifying driver genes
by defining HMRs (8-13).

Previously, we developed DriverDB (14), a database that
incorporates ~6000 cases of exome-seq data, in addition
to annotation databases and published bioinformatics al-
gorithms dedicated to driver gene/mutation identification.
Here, we present DriverDBv2, an updated version of the
database. In addition to including more exome-seq results
(>7000 more datasets of exome-seq from TCGA, ICGC
and published papers), we have incorporated seven more
algorithms developed for driver gene identification in this
updated version. Four of those seven methods identify
driver genes according to the identification of HMRs. We
also provide information on these HMRs in this updated
database. Specifically, we have integrated >9500 RNA-seq
into DriverDBv2 to provide expression profiles across can-
cer types. DriverDBv2 also contains a new function called
‘GeneSet’, which allows researchers to visualize the muta-
tions, expression levels and clinical profiles of customer-
defined genes, datasets and clinical data.

DATA COLLECTION AND PREPROCESSING

DriverDBv2 incorporates >7000 additional exome-seq
datasets from TCGA, ICGC and published papers, as well
as RNA-seq data from >9500 cancer-related samples (such
as primary tumor, normal tissue and metastatic tissue) in
TCGA. Detailed information on these datasets is described
in Supplementary Table S1. All sequencing results, such as
mutation and expression data, have been curated in uni-
form formats by an in-house script and then stored in our
local MySQL server. All mutations are also functionally

annotated as described in our previous study (14). For all
clinical data downloaded from distinct studies using varied
terminologies, we have standardized them using the Com-
mon Data Element (CDE) format, the standard elements of
which are used in the validation of clinical data in TCGA,
through manual curation according to the definition of
terms (https://tcga-data.nci.nih.gov/docs/dictionary/).

DRIVER GENE AND HMR IDENTIFICATION

DriverDBv2 contains seven additional algorithms for driver
gene identification. DriverNet (15) and DawnRank (16) uti-
lize transcriptional networks to identify driver genes. The
rationale of the two algorithms is that the impact of a poten-
tial driver gene can be determined by its effect on the genes
that are regulated by it. COMDP (17) is based on mutual ex-
clusivity to identify sets of driver genes mutated in known
pathways. The other four algorithms, MSEA (8), e-Drivers
(9), oncodriveCLUST (12) and iPAC (11), identify can-
cer driver genes by defining the HMRs. OncodriveCLUST
and iPAC only identify mutation clusters and e-Driver only
identifies hotspot domains, but MSEA can identify both
types of HMRs. All HMRs identified by the four algorithms
are integrated and illustrated in the ‘Hotspot’ panel of the
‘Gene’ section. The detailed criteria of the seven new algo-
rithms are described in the Supplementary Methods.

WEB INTERFACE
Gene

As shown in Figure 1, we provide three new panels, ‘Sum-
mary’, ‘Expression” and ‘Hotspot’, in the ‘Gene’ section of
the updated database. In Figure 1, we used the gene TP53
as an example. For ‘Summary’, a heat map shows which
bioinformatics tool identifies the gene as a driver gene in
which cancer type (Figure 1A). The bar chart at the top of
the heat map indicates the cumulative counts of tools. In the
‘Hotspot’ panel, a heat map shows the regions of the protein
that are identified as HMRs across different cancer types
(Figure 1B). The color used for a given region indicates the
number of tools that identify that region as an HMR. The
cumulative counts for the regions identified as HRMs are
shown at the top of the heat map. Exon and domain infor-
mation with protein coordinates are provided at the bottom
of the heat map. For the ‘Expression’ panel, the expression
profiles of the gene across cancer types by sample type and
by mutation class are illustrated by boxplot in Figure 1C
and D, respectively. The colors used in Figure 1C and D
indicate the sample types (such as normal tissue and pri-
mary tumor) and mutation classes (such as truncating and
in-frame mutations), respectively.

GeneSet

The new function, ‘GeneSet’, was designed to help re-
searchers visualize the relationship among mutation, ex-
pression, and clinical information. Figure 2 is an example
of KRAS, NRAS and RAF in colon adenocarcinoma sam-
ples from TCGA. As shown in Supplementary Figure S1,
researchers could upload a set of genes, select a specific
dataset and choose up to three clinical characteristics of the
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Figure 1. The three new features in the ‘Gene’ section. (A) The ‘Summary’ panel. A heat map shows which bioinformatics tool identifies the gene as a driver
gene in which cancer type. The upper panel shows the cumulative counts of bioinformatics tools. (B) The ‘Hotspot’ panel. A heat map shows the regions
of the protein identified as HMRs across different cancer types. The color used for a given region indicates the number of tools that identify that region as
an HMR. The upper panel shows the cumulative counts of the regions identified as HRMs. Exon and domain information with protein coordinates are
provided at the bottom of the heat map. (C and D) The ‘Expression’ panel. The expression boxplots of the gene across cancer types by sample type (C)
and by mutation class (D). The colors in (C) and (D) indicate the sample types and mutation classes, respectively.

selected dataset. After the query is submitted, an integrative
figure (Figure 2A) displays the relationship among the three
kinds of information. For clinical plot, clinical data may
be various and complex. To simplify this issue, we used the
grayscale to indicate the level of data for each clinical char-
acteristic and remove the figure legend. The red color indi-
cates the value is not available. In addition, two expression
boxplots show the expression of uploaded genes by sample
type (Figure 2B) and by mutation class (Figure 2C). The
raw data are available for download via a download link.

DISCUSSION

The integrated analysis of multi-dimensional genomic
data is crucial to our understanding of cancer biology.
DriverDBv2 seeks to integrate mutation and expression

data to address several issues. For driver gene identifica-
tion, Drivernet, MeMO and DawnRank, the tools used for
identifying driver genes in DriverDBv2, utilize two types of
data to predict cancer driver genes and may provide addi-
tional insights regarding those cancer driver genes. For a
specific gene, the expression of the gene may differ in mu-
tated cases as compared to normal cases. For example, a
reduced expression of STAG2 in mutant cases has previ-
ously been reported (18,19). The ‘Expression’ panel in the
‘Gene’ section of DriverDBv2 shows the expression box-
plots for a given gene in different cancer types by muta-
tion class and by sample type. This function will be help-
ful when researchers would like to quickly evaluate an in-
teresting gene in distinct cancer types or validate their wet
lab results in silicon. Moreover, the new function ‘GeneSet’
further integrates mutations, expression levels and clinical
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Figure 2. The new function, ‘GeneSet’. (A) An integrative figure displays the relationship between mutation, expression levels, and clinical information.
For the clinical plot, the grayscale indicates the level of data for each clinical characteristic and the red color indicates the value is not available. (B and C)
Two expression boxplots show the expression of uploaded genes in terms of sample type (B) and mutation class (C).

information for visualization. It has previously been noted
that the co-occurrence of a mutated gene with the abnormal
expression of another gene may be related to a specific phe-
notype. The example of abnormal MITF expression with
mutated BRAF has been used to illustrate this concept (20).
When MITF overexpression occurs in isolation, it does not
affect the proliferation of immortalized melanocytes; how-
ever, it does affect their proliferation when it also occurs
with the expression of the BRAF V600E mutant, which
co-occurs with abnormal MITF expression. The ‘GeneSet’
panel could help explore this relationship. Furthermore, we
have also provided the raw data for the integrative figure in
‘GeneSet’ for further analysis. To answer whether a gene is a
driver in cancer, DriverDBv2 provides the new panel, ‘Sum-
mary’, in ‘Gene’ section. This panel shows which bioinfor-
matics tool identifies the gene as a driver gene in which type
of cancer (Figure 1A)

The occurrence of hotspot mutations is driven by pos-
itive selection and is a strong indicator for cancer in that
mutations in hotspot regions may promote cancer progres-
sion. Hence, it is important to identify HMRs in cancer bi-
ology. It has been noted that some driver genes have one
or more HMRs. For example, mutations in PIK3CA form
two clusters in the helical and catalytic domains (2,21). In
extreme cases, driver genes have highly recurrent substitu-
tions that change the same amino acid, such as in the case of
the arginine at codon 132 in IDHI (22) and the V600 mu-

tation in BRAF (23). Jia et al. investigated known cancer
genes from the Cancer Gene Census (CGC) (24) collection
and investigated mutations from COSMIC database (25).
They found that the known driver genes from CGC genes
were detected through mutation analysis in previous stud-
ies; approximately 51% of the CGC genes can be detected
through mutation hotspot analysis (8). This high propor-
tion of genes with HMRs supports the feasibility of predict-
ing additional cancer genes based on mutation clustering
patterns. DriverDBv2 integrates the information of HMRs
in distinct cancer types through the utilization of four bioin-
formatics tools and illustrates the results in the ‘Hotspot’
panel of the ‘Gene’ section. The information thus provided
tells researchers whether the driver gene that they are inter-
ested in has the same or distinct HMRs in different cancer
types.

In this updated version, we have integrated exome-
seq and RNA-seq data to identify cancer driver genes
and HMRs from larger-scale cancer sequencing data.
DriverDBv2 provides researchers with easy access to dif-
ferent aspects of information regarding cancer driver genes.
In the future, we will incorporate more different kinds of
genomics data in further updates to DriverDB, so that the
database will continue to be an informative and valuable
source of data on cancer driver genes.
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