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Real-Time Fall Risk Assessment Using Functional Reach Test
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Falls are common and dangerous for survivors of stroke at all stages of recovery. The widespread need to assess fall risk in real
time for individuals after stroke has generated emerging requests for a reliable, inexpensive, quantifiable, and remote clinical
measure/tool. In order to meet these requests, we explore the Functional Reach Test (FRT) for real-time fall risk assessment and
implement the FRT function inmStroke, a real-time and automatic mobile health system for poststroke recovery and rehabilitation.
mStroke is designed, developed, and delivered as an Application (App) running on a hardware platform consisting of an iPad and
one or two wireless body motion sensors based on different mobile health functions. The FRT function in mStroke is extensively
tested on healthy human subjects to verify its concept and feasibility. Preliminary performance will be presented to justify the
further exploration of the FRT function inmStroke through clinical trials on individuals after stroke, whichmay guide its ubiquitous
exploitation in the near future.

1. Introduction

Falls are common for survivors of stroke at all stages
of recovery [1–4]. Community-dwelling individuals with
chronic stroke have the highest fall incidence at 46% [4].
Consequently, hip fractures are four-times more likely to
occur in poststroke survivors compared to the general elderly
population [5]. Falls also result in progressive activity and
participation limitations, increased dependence, increased
fear of falling, and depression [6]. Additionally, falls lead
to significantly more stress for the caregivers of poststroke
individuals [6, 7].

Fall prevention strategies are most effective if the person
at risk can be assessed/identified before injury occurs [8–
10]. There are several clinical tools that accurately assess
functional parameters associated with standing balance and
predict fall risk in individuals after stroke. Relevant clinical
tools include Berg Balance Scale (BBS), Timed Up and Go
(TUG) test, Computerized Dynamic Posturography (CDP)
and force plates, and the FRT [11–15].TheBBS applies an ordi-
nal rating scale to 14 functionalmovements [13].TheTUG is a
functional walking test whichmeasures task completion time

[14, 16]. The CDP and force plates measure an individual’s
Center Of Pressure (COP) and COP correlates with poor
balance and increased fall risk [15, 17, 18]. The previously
listed clinical tools may require clinician administration
and/or expensive or immobile equipment. Hence, they are
suitable for clinical use but cannot longitudinally monitor
community-dwelling individuals without the presence of a
clinician and/or expensive equipment.

The application of accelerometer and gyroscope has been
studied to quantitatively assess standing balance [18, 19].
These studies demonstrate the usefulness of motion sensors
in functional balance measurement. However, both studies
focus on improving the clinician’s measurement sensitivity
rather than producing a remote measurement system for
mobile health. Methods in these studies cannot be applied
at home without the presence of a clinician, due to test
complexity (4-step and 6-step, respectively) and requirement
(e.g., the user’s eyes to be closed).

In this paper, we explore wearable technologies (i.e.,
real-time motion sensing) to assess fall risk using the FRT.
The FRT is a quick single-task dynamic test defined as the
maximal distance one can reach forward beyond arm’s length,
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while maintaining a fixed base of support in the standing
position [11]. Importantly, it has a modified version for sitting
balance, that is, the Modified FRT, which we anticipate that
it will prove useful for the sitting measurement development
[20]. The FRT was developed by Duncan et al. in 1990 as
a ratio measurement scale to determine anterior limits of
standing balance in the elderly population [11]. Since its
inception, this measure has been proven a valid and reliable
test for identifying deficits in balance for stroke survivors
and a powerful predictor of fall risk compared to other
more time-consuming clinical functional measures [11, 21].
Specifically speaking, the FRT estimates how far the user
can reach forward without taking steps [11]. The norms of
reach distance for men and women of different ages are
summarized in Table 1 [11]. Based on the reach distance in
the FRT, a person at a high risk of falling (i.e., positive test)
can be identified [9]:

(i) A negative test is considered for a forward reach of
greater than 25.40 cm.

(ii) A reach of less than 15.24 cm is found to be associated
with a four times greater risk for falls during the
following 6 months.

(iii) A reach within 15.24–25.40 cm is found to be associ-
ated with a two times greater risk for falls during the
following 6 months.

The real-time FRT is one of the functions in our proposed
mStroke, a real-time and automatic mobile health system,
which can also evaluatemotor control and estimate gait speed
of patients after stroke. Here, we focus on the FRT function
in mStroke and address three complimentary problems: (i)
designing signal processing algorithms that can accurately
and faithfully estimate reach distance in FRT, (ii) implement-
ing an interactive user-friendlyApp running on our hardware
platform, and (iii) evaluating the usability and reliability of
the FRT function inmStroke on healthy adult subjects.

Once the FRT function in mStroke demonstrates its
usability and reliability in a healthy adult population, further
development and evaluation will be executed in poststroke
individuals. Our ultimate goal is that individuals after stroke
will easily perform a real-time fall risk assessment by taking
advantage of this FRT function in the clinic (e.g., any acute
care/postacute care/rehabilitation facility) and home, at any
time as needed, without help from healthcare professionals.
In other words, the FRT can be transitioned from the skilled
clinical administration to the independent patient manage-
ment. mStroke, including the FRT function, can promote
pervasive, quantifiable, and continuedmonitoring of patients’
behaviors and recoveries, which can support efficient and
long-term stroke management well beyond the current acute
clinic-based system.

2. Materials and Methods

2.1. Hardware and Its User Friendliness. Energy and latency
are two major constraints on any wireless or mobile health
device. We chose NODE, shown in Figure 1, as the wireless

Figure 1: NODE.

body sensor for mStroke [22]. This low-power and low-
latency hand-held device is a new modular sensor platform
that uses the Bluetooth Low Energy (BLE) protocol to
communicate with a base station (e.g., smartphone, iPad,
or computer). Multiple NODEs can connect with a single
base station. The basic module of NODE is the MPU-9150, a
9-axis MotionTracking device manufactured by InvenSense,
which essentially is an Inertial Motion Unit (IMU) con-
taining accelerometer, gyroscope, and magnetometer [23].
The accelerometer can be programmed to have the full-
scale range of ±2 g, ±4 g, ±8 g, or ±16 g and its sensitivity
is ±1200 LSB/g [23]. The MPU-9150 is designed for the
low-power, low-cost, and high-performance requirements of
consumer electronics includingwearable sensors [23]. NODE
can send motion data to an iPad at up to 120 samples per
second with a range of up to 50m. NODE is a 25.4mm
diameter cylinder with a length of 83.8mm and can be
clipped to clothing. Each end of NODE can accept an
additional interchangeable sensor unit. These sensor units
can serve a variety of functions such as temperature, moisture
level, oximeter, or ultrasound monitoring/measurement. For
the purposes of this paper, we only employ the NODE with
an IMU.

In recent years, the idea of employing sensors (e.g.,
accelerometer, gyroscope, magnetometer, and electromyo-
graphy) to acquire human motion data for rehabilitation
studies and practices has received considerable attention [18,
19]. Accelerometers measure acceleration vector; gyroscopes
provide angular rotation rate; and magnetometers measure
the strength and, in some cases, the direction of magnetic
fields. A 9-axis sensor fusion of these three sensors allows
mStroke to overcome the inherent flaws found in each
individual motion sensor.

In order to execute the FRT function, one NODE is worn
via chest harness, which is shown in Figure 2. Donning and
doffing the harness were tested by physical therapy students
via skilled emulation. Results suggest translation of such a
harness system to patient use. Additionally, if NODE is not
worn correctly (e.g., NODE rotated or turned upside down),
the App will send out a warning notification.

2.2. Software and Its User Friendliness. In terms of software
functionality, the FRT function in mStroke includes fall
risk assessment and error detection. Errors include faulty
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Figure 2: NODE on the chest for FRT.

standing posture and falling. At the beginning of the FRT, the
App asks the user to assume a comfortable, erect stance. The
App notifies the user if the chest NODE detects an incorrect
body posture. To account for individuals after stroke who
may have impaired standing posture, trunk flexion up to
30∘ is acceptable [9]. The App then instructs the user to
flex the shoulder of the dominant upper extremity (i.e., the
lesser affected upper extremity in survivors after stroke) to
approximately 90∘. When the arm is properly positioned, the
userwill reach forward as far as possiblewithout taking a step.
Finally, the FRT distance is estimated based on our proposed
algorithm.

The FRT function in mStroke is personalized for each
individual user by inputting the user’s trunk length, shoulder
width, and thigh length into the App before the FRT is
initiated. After the algorithm estimates the FRT distance,
the result is announced to the user in real time based on
established FRT norms (Table 1). To ensure safety, mStroke
is equipped with a fall detection algorithm and can be pro-
grammed to provide automatic emergency medical service
notification in case of a fall. For this purpose, we have
implemented the 3-step fall detection algorithm proposed by
Li et al. [24].

2.3. The FRT Distance Estimation

2.3.1. Angle Estimation. There are accelerometer, gyroscope,
andmagnetometer in theNODE IMU.We exploit quaternion
calculated from readings of these three sensors for accurate
angle estimation. A quaternion is a four-dimensional com-
plex number that can be used to represent the orientation of
a rigid body in a three-dimensional space [25]. In quaternion
representation, 𝐴𝐵q̂ describes the orientation of frame 𝐵
relative to frame𝐴 [25]. Any orientation of frame𝐵 relative to
frame𝐴 can be achieved through a rotation of angle 𝜃 around
axis 𝐴r̂ defined in frame𝐴 [25].The quaternion 𝐴𝐵q̂ describing
this orientation is defined as follows:

𝐴

𝐵q̂ = [𝑞0 𝑞1 𝑞2 𝑞3]
= [cos 𝜃2 −𝑟𝑋 sin 𝜃2 −𝑟𝑌 sin 𝜃2 −𝑟𝑍 sin 𝜃2] ,

(1)

where 𝑟𝑋, 𝑟𝑌, and 𝑟𝑍 define the components of the unit vector
𝐴r̂ in 𝑥-, 𝑦-, and 𝑧-axes of frame 𝐴, respectively [25].

Assume the reference quaternion is 𝐴𝐵q̂; the current
quaternion is 𝐴𝐶q̂; and the orientation between 𝐴𝐵q̂ and 𝐴𝐶q̂

Table 1: Functional reach norms.

Age Men Women
20–40 42.49 cm 37.19 cm
41–69 38.05 cm 35.08 cm
70–87 33.43 cm 26.59 cm

is 𝐵𝐶q̂. Then the relationship among 𝐴𝐶q̂,
𝐵

𝐶q̂, and
𝐴

𝐵q̂ can be
represented as follows [25]:

𝐴

𝐶q̂ = 𝐵𝐶q̂ ⊗ 𝐴𝐵q̂, (2)

where ⊗ denotes the quaternion product which can be
determined using the Hamilton rule [25]:

a ⊗ b = [𝑎0 𝑎1 𝑎2 𝑎3] ⊗ [𝑏0 𝑏1 𝑏2 𝑏3]

= [[[[[[

𝑎0𝑏0 − 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎2𝑏3 − 𝑎3𝑏2𝑎0𝑏2 − 𝑎1𝑏3 + 𝑎2𝑏0 + 𝑎3𝑏1𝑎0𝑏3 + 𝑎1𝑏2 − 𝑎2𝑏1 + 𝑎3𝑏0
]]]]]]

𝑇

. (3)

The quaternion conjugate, denoted by ∗, can be used to
swap the relative frames described by an orientation [25]:

𝐴

𝐵q̂
∗ = 𝐵𝐴q̂ = [𝑞0 −𝑞1 −𝑞2 −𝑞3] . (4)

Based on (2) and (4), we can easily get the following:

𝐵

𝐶q̂ = 𝐴𝐶q̂ ⊗ 𝐵𝐴q̂ = 𝐴𝐶q̂ ⊗ 𝐴𝐵q̂∗. (5)

A three-dimensional vector can be rotated by a quater-
nion [25]. If 𝐵k̂ and 𝐶û are the same vector described in
frame 𝐵 and frame 𝐶, respectively, then we get the following:

𝐶û = 𝐵𝐶q̂ ⊗ 𝐵k̂ ⊗ 𝐵𝐶q̂∗, (6)

where 𝐵k̂ and 𝐶û contain 0 as the first element to make them
four-dimensional vectors [25].

Angle 𝜃 corresponding to such a rotation can be obtained
from the angle of two vectors, that is, 𝐶û and 𝐶k̂, where 𝐵k̂
and 𝐶k̂ have the samemathematical expressions but represent
different vectors:

𝜃 = arccos( 𝐶û ⋅ 𝐶k̂𝐶û2 𝐶k̂2) . (7)

However, 𝜃 calculated based on (6) and (7) has two
problems for our practical implementation. One problem
is that 𝜃 is always positive and the other problem is that𝜃 can be in any rotation direction. We will explain these
two problems using illustrative examples shown in Figure 3.
Figures 3(a) and 3(b) represent forward rotation and back
rotation from frame 𝐵 to frame 𝐶 along 𝑋-axis, respectively.
Figure 3(c) represents a rotation along 𝑍-axis. Assume the
absolute values of angles for all rotations are 𝜃, (0∘ < 𝜃 <
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(b) Backward rotation along 𝑥-axis, pro-
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(c) Rotation along 𝑧-axis

Figure 3: Rotation from frame 𝐵 to frame 𝐶.
180∘). Based on (6), 𝐶û corresponds to 𝐵𝑌 and 𝐶k̂ corresponds
to 𝐶𝑌. Furthermore, if (7) is applied, we will get the following:

𝜃𝐵𝑌𝑎
→

𝐶𝑌
= 𝜃𝐵𝑌𝑏

→

𝐶𝑌
= 𝜃, (8)

where 𝑎
→

and 𝑏
→

denote the rotations shown in Figures 3(a)
and 3(b), respectively. Thus, we cannot differentiate forward
rotation and backward rotation from 𝜃𝐵𝑌𝑎

→

𝐶𝑌
and 𝜃𝐵𝑌𝑏

→

𝐶𝑌
.

Taking Figure 3(c) into account, if we are only interested in
a rotation in the𝑍𝑌 plane of frame 𝐵, we should get 0∘ for the
angle of such a rotation. However, we still get 𝜃 instead of 0∘
by using (6) and (7).

In order to address these two problems, we propose the
following solution to obtain 𝜃 as expected. In addition to (6),
we apply the second vector rotation as follows:

𝐶t̂ = 𝐵𝐶q̂ ⊗ 𝐵ŝ ⊗ 𝐵𝐶q̂∗. (9)

Assume 𝐶t̂ and 𝐵ŝ correspond to 𝐵𝑍 in frame 𝐶 and frame 𝐵,
respectively. Then, we find the angle between 𝐵𝑍 and 𝐶𝑌 by
slightly updating (7) as follows:

𝜃 = arccos( 𝐶t̂ ⋅ 𝐶k̂𝐶t̂2 𝐶k̂2) . (10)

In this way,

𝜃𝐵𝑌𝑎,𝑏,𝑐
→

𝐶𝑌
= 𝜃𝐵
𝑍𝑎,𝑏,𝑐
→

𝐶𝑌
− 90∘. (11)

In summary, the proposed solution can address the
aforementioned problems illustrated in Figure 3:

(i) In Figure 3(a) for forward rotation, 𝜃𝐵
𝑍𝑎
→

𝐶𝑌
= 90∘ + 𝜃

and 𝜃𝐵𝑌𝑎
→

𝐶𝑌
= 𝜃.

(ii) In Figure 3(b) for backward rotation, 𝜃𝐵
𝑍𝑏
→

𝐶𝑌
= 90∘−𝜃

and 𝜃𝐵𝑌𝑏
→

𝐶𝑌
= −𝜃.

(iii) In Figure 3(c) for rotation along𝑍-axis, 𝜃𝐵
𝑍𝑐
→

𝐶𝑌
= 90∘

and 𝜃𝐵𝑌𝑐
→

𝐶𝑌
= 0∘, which means the angle of such a

rotation projected in the 𝑍𝑌 plane of frame 𝐵 will be
0∘.

2.3.2. Functional Reach due to Trunk Flexion. Based on
the clinical observation, the reach in the FRT is mainly
executed through trunk flexion. If we can estimate trunk
flexion angle based on the proposed algorithm presented
in Section 2.3.1, we can calculate the corresponding reach
distance 𝑑1 according to trigonometric function as follows:

𝑑1 = 𝐿 trunk sin (𝜃trunk flexion) , (12)

where 𝐿 trunk denotes trunk length measured manually and𝜃trunk flexion denotes trunk flexion angle estimated automati-
cally by mStroke. The IMU in the chest NODE provides the
necessary quaternion information to estimate trunk flexion
angle.

2.3.3. Effect of Torso Twist. 𝑑1 only considers the functional
reach due to trunk flexion. However, the human body is not
strictly a rigid body. When the FRT is performed, there is an
inevitable torso twist. The torso twist will also contribute to
the functional reach.With the 3-axis IMU in the chestNODE,
we can estimate torso twist angle simultaneously with trunk
flexion angle. Thus, 𝑑1 can be updated as 𝑑2:

𝑑2 = 𝑑1 +𝑊shoulder sin (𝜃torso twist) , (13)

where 𝑊shoulder denotes shoulder width measured manually
and 𝜃torso twist denotes torso twist angle estimated automati-
cally bymStroke.

2.3.4. Effect of Thigh Movement. When an individual per-
forms the FRT, the lower body does not remain perpendicular
to the ground. The lower body may sometimes displace
backward to keep the person’s center of mass within his/her
base of support. Any lower body deviation from the original
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(a) Start FRT (b) Perform FRT

Figure 4: A subject performing the FRT wearing a single chest NODE, Group 1.

vertical position may affect the FRT result. Hence, we need
to explicitly consider such an effect. It is impossible for the
IMU in the chest NODE to capture the lower bodymovement
in the FRT. Thus, we exploit a second NODE on the thigh
to estimate thigh movement angle. Based on this angle, we
can quantify the lower body movement which contributes to
the functional reach as 𝐿 thigh sin(𝜃thigh movement) where 𝐿 thigh
denotes thigh length measured manually and 𝜃thigh movement
denotes thigh movement angle estimated automatically by
mStroke. Eventually, we propose the third reach distance
measure 𝑑3 as follows:

𝑑3 = 𝑑2 + 𝐿 thigh sin (𝜃thigh movement) . (14)

3. Results and Discussion

3.1. The FRT Reliability Method. The FRT reliability study
was conducted on healthy adult subjects in a research setting
with appropriate IRB approval. Subjects provided informed
consent prior to participation. Age and gender were recorded
as subject demographics. Due to a sample of convenience,
healthy college students, most of our subjects have a normal
body mass index. Any outliers would be considered over-
weight, not obese.

For each subject, trunk length, shoulder width, and thigh
length were measured manually and entered into the App
before the FRT was initiated. A measuring tape was secured
to the wall at the shoulder height of each subject.

With clinician cueing, the subject was positioned stand-
ing next to the wall-mounted measuring tape so that his/her
reach would not exceed the length of the measuring tape.The
subject was then instructed to raise his/her upper extremity to
90∘. The starting position was assessed by the clinician at the
subject’s distal third phalange. The subject was subsequently
asked to reach forward as far as comfortably possible, without
taking a step. At the peak of the subject’s reach, the clinician
marked the reach end. The absolute distance between these

Table 2: Subject demographics, Group 1.

Gender Number Age (mean)
Female 10 23.6
Male 7 23.9
Total 17 23.7

Table 3: FRT results, Group 1.

𝑑PT versus 𝑑1 𝑑PT versus 𝑑2
MAE 3.53 cm 2.93 cm
Correlation coefficient 0.83 0.85

two marked positions on the measuring tape was used as
the comparison benchmark for the mStroke estimated reach
distance. We tested the FRT function in mStroke on two
groups of subjects to verify its performance. Each subject
performed the FRT five times.

3.2. The FRT Performance. Group 1 includes 17 healthy adult
subjects. Table 2 presents Group 1 demographic data. One
NODE (positioned on the chest) is used in Group 1 to
estimate trunk flexion and torso twist angles, as shown in
Figure 4. The histogram of torso twist angles is presented
in Figure 5. It can be easily observed from Figure 5 that
most of torso twist angles are not equal to 0∘, which will
bring nontrivial effect on the functional reach result. The
performances of reach distance estimation in terms of Mean
Absolute Error (MAE) and correlation coefficient are given
in Table 3 where 𝑑PT denotes the reach distance manually
measured by a clinician and serves as the performance
benchmark for the FRT function in mStroke. 𝑑1 and 𝑑2 are
described in (12) of Section 2.3.2 and (13) of Section 2.3.3,
respectively. With consideration of MAE, 𝑑2 outperforms 𝑑1
by 17.0%. Bland Altman plots between 𝑑PT and 𝑑1 as well as
between𝑑PT and𝑑2 are shown in Figures 6 and 7, respectively.
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Table 4: Subject demographics, Group 2.

Gender Number Age (mean)
Female 15 26.3
Male 8 26.9
Total 23 26.5
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Figure 5: Histogram plot of torso twist angle (∘), Group 1.
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Figure 6: Bland Altman plot between 𝑑PT and 𝑑1, Group 1.

Mean of differences shows the bias/discrepancy between the
measurement and the benchmark. +1.96 Standard Deviation
(SD) of differences and −1.96 SD of differences give the range
of 95% limits of agreement. The most of the differences fall
within such a range.

Group 2 includes 23 healthy adult subjects with demo-
graphics shown inTable 4. In contrast toGroup 1, twoNODEs

Table 5: FRT results, Group 2.

𝑑PT versus 𝑑1 𝑑PT versus 𝑑2 𝑑PT versus 𝑑3
MAE 4.32 cm 4.25 cm 3.50 cm
Correlation
coefficient 0.61 0.61 0.70

Mean: 0.58446
−1.96SD: −6.833

+1.96SD: 8.0019
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Figure 7: Bland Altman plots between 𝑑PT and 𝑑2, Group 1.

are used in Group 2 to estimate trunk flexion, torso twist,
and thigh movement angles (see Figure 8).The histograms of
torso twist and thigh movement angles are shown in Figures
9 and 10, respectively. Both figures clearly show that nonzero
angles for torso twist and thighmovement dominate the tests.
The corresponding performances are shown in Table 5. 𝑑3
is described in (14) of Section 2.3.4. With consideration of
MAE, 𝑑2 outperforms 𝑑1 by 1.62% and 𝑑3 further improves
the performance by 17.6%.

While the experimental results are promising, there
is still room for performance improvement. Our studies
clearly suggest that more motion sensors (e.g., sensor on the
shoulder or arm) should be considered to further improve
the performance of the FRT function inmStroke by capturing
more detailed body movements in the FRT exercise.

4. Conclusions

We have designed and developed amobile health system (i.e.,
mStroke) which can perform the FRT, an accurate single-task
clinical tool, for real-time fall risk assessment.Three different
reach distance measures (i.e., 𝑑1, 𝑑2, and 𝑑3) have been given.
The reliability of mStroke’s FRT function has been tested on
two groups of healthy adult subjects.The experimental results
verify its concept and feasibility. A clinical trial on individuals
after stroke is the next step for the further development of the
FRT function inmStroke.
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(a) Start FRT (b) Perform FRT

Figure 8: A subject performing the FRT using two NODEs on the chest and the left thigh, respectively, Group 2.
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Figure 9: Histogram plot of torso twist angle (∘), Group 2.
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Figure 10: Histogram plot of thigh movement angle (∘), Group 2.
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