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Abstract
Background: Infections can aggravate the course of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS).
Mutations in the anti-oxidant enzyme Cu,Zn superoxide dismutase (EC [.15.1.1, SODI) are associated with familial ALS.

Streptococcus pneumoniae, the most frequent respiratory pathogen, causes damage by the action of the cholesterol-binding
virulence factor pneumolysin and by stimulation of the innate immune system, particularly via Toll-like-receptor 2.

Methods: SH-SY5Y neuroblastoma cells transfected with the G93A mutant of SOD| typical for familial ALS (G93A-SODI) and
SH-SY5Y neuroblastoma cells transfected with wildtype SOD| were both exposed to pneumolysin and in co-cultures with
cultured human macrophages treated with the Toll like receptor 2 agonist N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-
[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine x 3 HCI (Pam;CSK,). Cell viability and apoptotic cell death
were compared morphologically and by in-situ tailing. With the help of the WST-1 test, cell viability was quantified, and by
measurement of neuron-specific enolase in the culture supernatant neuronal damage in co-cultures was investigated.
Intracellular calcium levels were measured by fluorescence analysis using fura-2 AM.

Results: SH-SY5Y neuroblastoma cells transfected with the G93A mutant of SOD | typical for familial ALS (G93A-SOD ) were
more vulnerable to the neurotoxic action of pneumolysin and to the attack of monocytes stimulated by Pam;CSK, than SH-
SY5Y cells transfected with wild-type human SODI. The enhanced pneumolysin toxicity in G93A-SOD| neuronal cells
depended on the inability of these cells to cope with an increased calcium influx caused by pores formed by pneumolysin. This
inability was caused by an impaired capacity of the mitochondria to remove cytoplasmic calcium. Treatment of G93A-SOD| SH-
SY5Y neuroblastoma cells with the antioxidant N-acetylcysteine reduced the toxicity of pneumolysin.

Conclusion: The particular vulnerability of G93A-SODI neuronal cells to hemolysins and inflammation may be partly
responsible for the clinical deterioration of ALS patients during infections. These findings link infection and motor neuron disease
and suggest early treatment of respiratory infections in ALS patients.
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Background

Infections may increase the risk or accelerate the progres-
sion of various neurodegenerative disorders including
Alzheimer's disease, Parkinson's disease, stroke and
amyotrophic lateral sclerosis (ALS) [1,2]. Moreover,
patients with neurodegenerative diseases are more suscep-
tible to systemic, in particular lung infections than healthy
persons subsequent to swallowing disturbances and a
decreased strength of their respiratory muscles. In support
of the link between infections and ALS, an epidemiologi-
cal study found evidence for infection with Mycoplasma
spp. in the blood of more than 80% of patients suffering
from ALS and in less than 10% of age-matched control
subjects [3].

ALS is an ultimately lethal disease with a high inter-sub-
ject variation of progression. It is characterized by the
degeneration of cortical and spinal motor neurons. ALS
appears to be a multifactorial disease, where motor neu-
ron degradation is initiated by mitochondrial dysfunction
or/and by enhanced motor neuron excitability. Mitochon-
drial function can be disturbed by mutations in the gene
encoding Cu,Zn superoxide dismutase (EC 1.15.1.1,
SOD1). Clinically, ALS occurs both sporadically and as a
familial form. In 5-10% ALS is a familial disease, and
approximately 20% of the familial ALS cases are caused by
a mutation in the gene encoding SOD1 [4,5]. The point
mutation G93A is one of those occurring in familial
amyotrophic lateral sclerosis (FALS). Here, in position 93
the amino acid glycine is replaced by alanine in the SOD1
enzyme. Families with the G93A-SOD1 mutation are
indistinguishable from sporadic ALS by clinical and path-
ologic criteria [5]. An in-vitro model to study the cellular
alterations associated with mutations of SOD1 was con-
structed by transfection of the human neuroblastoma cell
line SH-SY5Y with G93A-SOD1 [6]. This particular muta-
tion was chosen, because it does not affect the activity of
SOD1.

A significant inflammatory component contributes to the
pathology of ALS [7,8]. This comprises elevated tissue lev-
els of cyclooxigenase-2 and various cytokines and chem-
okines in the CNS tissue of ALS patients and mouse
models [7,9,10] and the presence of activated microglial
cells as demonstrated in post mortem spinal cord tissue of
ALS patients [10,11] and by positron emission tomogra-
phy using [11C](R)-PK11195 in living ALS patients [12].
The presence of activated microglial cells in the vicinity of
neuronal death in ALS suggests that stimulants of micro-
glial activation are produced by stressed neurons. Con-
versely, activated microglia can injure neurons both in
vitro and in vivo [13-16]. The simultaneous action of
host-derived and exogenous stimulants can lead to an
additive or supra-additive microglial activation [17]. We
hypothesize that in neurodegenerative diseases preacti-
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vated microglia are more susceptible to stimulation by
infectious agents (e.g., via TLR agonists) and can therefore
cause stronger neuronal damage during the course of an
infection by the release of nitric oxide, reactive oxygen
species and cytokines.

Neuronal injury in infection can originate from systemic
inflammation, stimulation of local immunocompetent
cells and direct action of bacterial toxins on neurons
[1,18]. During CNS infections, Streptococcus pneumo-
niae primarily causes damage by the direct action of the
cholesterol-binding pore-forming hemolysin pneumo-
lysin and through microglia/monocyte activation by ago-
nists of receptors of the innate immune system,
particularly Toll-like receptor 2 (TLR2) [18,19]. Both
mechanisms may be also of importance in patients with
neurodegenerative diseases during extracerebral infec-
tions. Here we demonstrate the particular vulnerability of
G93A-SOD1 transgenic neuroblastoma cells to both
modes of infectious injury.

Methods

SH-SY5Y G93A-SODI and Wt-SOD | neuroblastoma cell
cultures and measurement of cell viability

Transfected human neuroblastoma cell lines constitu-
tively expressing either wild-type (Wt) human SOD1 or
the G93A mutant of this enzyme associated with familial
amyotrophic lateral sclerosis (FALS) were previously
described [6]. They were routinely maintained in Dul-
becco's MEM-F12 (Gibco, Invitrogen, Karlsruhe, Ger-
many) containing 15% fetal calf serum (FCS), 100 U/ml
penicillin and 100 pg/ml streptomycin (Invitrogen, Karl-
sruhe, Germany) at 37°C at a humidified atmosphere
with 5% CO,. Cell lines were kept in selection by addition
of 200 pg/ml geneticin (G418 sulfate, Gibco, Invitrogen,
Karlsruhe, Germany); geneticin was removed two days
before performing the experiments.

For investigation of the differences in vulnerability to
pneumolysin both cell lines were seeded into 96-well
plates at a density of 105 cells/cm2. Cultures were treated
with medium that contained pneumolysin at a concentra-
tion of 0.5 pg/ml. After three hours of exposure cell viabil-
ity was determined by use of the WST-1 cell proliferation
reagent (Roche Applied Science, Mannheim, Germany).
The assay is based on the cleavage of the tetrazolium salt
WST-1 by active mitochondria, which produces a soluble
formazan. Cells were incubated with WST-1 for 2 hours.
Then, the formazan dye formed was quantified by meas-
uring the optical density at 490 nm by use of a Genios
multiplate reader (Tecan, Crailsheim, Germany). The
absorbance directly correlates with the number of meta-
bolically active cells.
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Pneumolysin

Pneumolysin was purified after overexpression of the
recombinant toxin in Escherichia coli strain JM109 by
hydrophobic and ion exchange chromatography as
described before [20]. Toxin purity was assessed by SDS-
polyacrylamide gel electrophoresis followed by Coomas-
sie-blue staining which showed a single 52 kD band
accounting for 95% of the protein. Endotoxin content of
purified pneumolysin was determined using the Limulus
amebocyte lysate kinetic-QCL kit (Cambrex, Nottingham,
United Kingdom). The purified protein had less than 0.6
endotoxin units per pg of protein, i.e. a very low level
which is unlikely to have a biological effect.

Antioxidant N-acetylcysteine (NAC)

To examine the effect of the antioxidant N-acetylcysteine
(NAC) (Sigma, Deisenhofen, Germany) on cell viability,
SH-SY5Y G93A-SOD1 and SH-SY5Y Wt-SOD1 human
neuroblastoma cells were kept in culture medium con-
taining 1 mM NAC for periods of 24 and 72 hours prior
to the experimental procedure. After exposure to pneumo-
lysin for a period of 3 hours cell viability was determined
by the WST-1 test.

Preparation of human macrophages

Human macrophages were derived from peripheral blood
mononuclear cells [21]. Shortly, after centrifugation over
a Ficoll-Hypaque density gradient, mononuclear cells
were plated in RPMI-1640 + 10% FCS and maintained at
37°C in an atmosphere containing 5% CO,. Monocytes
were allowed to adhere and were then cultivated until dif-
ferentiation into macrophages for 10 to 14 days as
assessed by morphologic criteria such as adherence of the
cells and the sprouting of ramifications and functional
properties. CD-68 staining showed 98-99% purity of the
macrophage cultures.

SH-SY5Y G93A-SOD|I and Wt-SOD | neuroblastoma and
human macrophage co-culture

For co-culture experiments 5 x 104 neuroblastoma (G93A-
SOD1 or Wt-SOD1) cells/well were seeded on glass cover-
slips in 24 well plates and allowed to adhere for 24 hours.
Trypsin was used initially to separate the neuroblastoma
cells, but was washed out twice by centrifugation and PBS
washing. The following day after PBS washing and change
of culture medium human macrophages were mechani-
cally displaced with a cell scraper and added in concentra-
tions of 105 cells/well. Co-cultures were maintained for 24
hours in RPMI 1640 medium (Biochrom, Berlin, Ger-
many) containing 10% FCS at 37 °C with 5% CO, prior to
stimulation experiments. The macrophages did not come
into contact with trypsin during this procedure to avoid
an activation prior to the experiments.
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For activation of macrophages co-cultures were exposed to
N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-
cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-
lysine x 3 HCI (Pam,;Cys-SKKKK x 3 HCI, EMC Microcol-
lections, Tuebingen, Germany; Pam;CSK,) [22] in con-
centrations of 10 pg/ml. After 72 hours neuron-specific
enolase was determined in 250 ul of the culture superna-
tant with a luminescence enzyme immunoassay (LIA)
using the Liaison® Analyser from Byk Sangtec and reagents
from Diasorin (Dietzenbach, Germany). Cells were fix-
ated with 4% formaldehyde for staining procedures.

Measurement of intracellular calcium levels

Changes in the cytosolic calcium ([Ca2*];) were measured
in SH-SY5Y cells expressing either the Wt-SOD1 or the
G93A-SOD1 gene attached to glass coverslips after 2-5
days in culture. Cell layers were incubated with RPMI-
1640 + 10% FCS (Gibco, Invitrogen, Karlsruhe, Germany)
containing 10 uM fura-2 AM at 37°C for 30 min. The
RPMI-1640 medium used contains 0.846 mM Ca 2+ (sup-
plier's data). Cells were rinsed with RPMI and further
incubated for 20 min at 37°C to allow complete deesteri-
fication. Changes in [Ca2+]; were measured using a CCD
camera system (TILL Photonics, Martinsried, Germany)
[23,24]. A computer-controlled monochromator (Poly-
chrome II, TILL Photonics) was connected to an Axio-
scope microscope (Zeiss, Goettingen, Germany) via
quartz fiberoptics and a minimum number of optical
components for maximum fluorescence excitation (objec-
tive Achroplan W 63x, 0.9 W). The CCD camera displayed
12-bit dynamics and an A/D converter with 12.5 MHz
sampling rate.

Calcium changes in defined regions of interest (ROIs)
were monitored online using the TILL Vision Software
V3.3 (TILL Photonics, Martinsried, Germany). Back-
ground fluorescence was subtracted from the recorded
values. The measured fluorescence ratio [R] at wave-
lengths 360 and 390 nm was used to calculate the intrac-
ellular calcium concentration [Ca2+]; using the equation
of Grynkiewicz et al [25]. The K, of fura-2 was experimen-
tally determined as 224 nM [23,26]. Excitation of fura-2
was alternatively done at 360 nm and 380 nm, emitted
light was directed to a dichroic mirror with mid-reflection
at 425 nm filtered by a band pass filter (505-530 nm).
Fluorescence ratio F(360)/F(380) was taken as an esti-
mate of the cytosolic calcium concentration and, accord-
ingly, changes of [Ca?*]; in fura-2 AM loaded cells are
shown. Further analysis was performed off-line with the
IGOR software (Wavemetrics, Lake Oswego, OR, USA).
Bathing solutions were either RPMI-1640 or (in mM)
NaCl 140, KCI 2, CaCl, 2.5, MgCl, 1, HEPES 10, glucose
40, and bovine serum albumin 0.05% at pH 7.3. For nom-
inally Ca2*-free solutions MgCl, was substituted for CaCl,
without adding EGTA.
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The area under the concentration-versus-time curve
(AUC) was calculated with the baseline 0 by the equation:
In [Ca2+]it = ,J2 [Ca2+];edt with the help of Origin soft-
ware, version 7.5 (In = fluorescence intensity under the
concentration-versus-time curve, [Ca2+]; = cytosolic cal-
cium, t = time).

Hemalum staining, CD68 and activated caspase-3
immunocytochemistry and light green staining
Pneumolysin-stimulated SH-SY5Y cell mono-cultures
(Wt-SOD1 and G93A-SOD1) were plated on glass cover-
slips and were fixated with 4% formaldehyde, dehydrated
through graded steps of water/ethanol and histolene and
then stained with Meyer's hemalum solution (1: 1 dilu-
tion in water).

CD68 and light green staining was used to distinguish
between human macrophages and the SH-SY5Y cells in
co-culture and to visualize the morphology of the cells;
immunostaining for activated caspase-3 was used to
detect apoptosis in pneumolysin-treated G93A SOD1
cells: fixated cells were permeabilised with Triton X (0.1%
in PBS) for 30 minutes and then incubated with CD68
antibody (clone KP1, dilution 1:50, DAKO, Glostrup,
Denmark) or activated caspase-3 antibody [rabbit anti-
caspase-3 (cleaved), dilution 1:100, kindly donated by
Zytomed Systems, Berlin, Germany] for 90 minutes. Sec-
ondary anti-mouse biotinylated antibody or secondary
anti-rabbit biotinylated antibody (dilution 1:200, both
from Amersham Biosciences, Munich, Germany) were
added for 45 minutes. Thereafter, cells were treated with
avidin-biotin complex (ABC, Vector, Burlingame, CA) for
30 min, and diaminobenzidine was used for visualisation
(5 minutes) resulting in a brown staining of the somata of
macrophages (CD68)/apoptotic G93A SOD1 cells (Cas-
pase 3). SH-SY5Y cells were counterstained by light green
SF yellowish solution (Chroma-Gesellschaft Schmidt &
Co, Stuttgart, Germany) after CD68 immunocytochemis-
try and with hemalum after caspase-3 immunocytochem-
istry for 1-2 minutes, rinsed in water, dehydrated and
mounted with DePeX (Serva, Heidelberg, Germany).

In-situ tailing (IST)

In order to assess the quantity of cells which had died by
apoptosis, formaldehyde-fixated cells on cover slips were
treated with 50 pg/mL proteinase K (Sigma) for 15 min at
37°C in a reaction mixture that contained 10 pL of 5x tail-
ing buffer, 1 puL of digoxigenin DNA labeling mix, 2 pL of
cobalt chloride, 12.5 U of terminal transferase, and the
amount of distilled water necessary to give a volume of 50
pL. After washing, the cells were incubated with 10% FCS
for 15 min at room temperature and then washed again.
A solution of alkaline phosphatase labeled anti-digoxi-
genin antibody in 10% FCS (1:250) was placed on the sec-
tions for 60 min at 37°C. The color reaction (black) was
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developed with 4-nitroblue-tetrazolium (NBT) chloride/
5-bromine-4-chloride-3-indolyl-phosphate. The cover
slips were counterstained with nuclear fast red aluminum
hydroxide (reagents from Roche).

Statistics

Graph Pad Prism Software (GraphPad Software, San
Diego, California, USA) was used to perform statistical
analyses and graphical presentation. Experiments were
reproduced at least three times. Data were expressed as
means + SDs. Groups were compared by two-tailed para-
metric one-way ANOVA, and p values were adjusted for
repeated testing by Bonferroni's multiple comparison test.
P < 0.05 was considered to be statistically significant.

Results

Increased toxicity of pneumolysin for neuroblastoma cells
transfected with G93A-SOD |

After incubation of Wt-SOD1 and G93A-SOD1 neurob-
lastoma cells with the pneumococcal virulence factor
pneumolysin for 3 hours, the G93A-SOD1 mutant cells
showed a significantly decreased cell viability as evi-
denced by the WST-1 test (24.3 + 9.6% of the living
untreated cells) compared to the Wt-SOD1 cells (48.8 +
19.5%; p < 0.0001, Fig. 1).

This phenomenon was morphologically confirmed by
staining of the cell somata with hemalum. A significantly
higher density of living cells after pneumolysin treatment
was observed in cultures of Wt-SOD1 cells compared to
G93A-SOD1 neuroblastoma cultures (Fig. 2). By in-situ
tailing, morphology (arrows) (Fig. 3), and by immunocy-
tochemistry for activated caspase-3 (Fig. 4) of G93A-
SOD1 neuroblastoma cells it became apparent that a large
proportion of these cells died by apoptosis. The rate of
apoptotic neuroblastoma cells in the different treatment
groups is presented in Fig. 5.

Impaired ability of neuroblastoma cells transfected with
G93A-SODI| to cope with the pneumolysin-induced
calcium influx

For a period of 20 minutes both cell lines were treated
with pneumolysin in concentrations of 0.5 ng/ml. During
this time cytoplasmic calcium levels were measured in
both cell lines. Fig. 6 shows intracellular calcium levels
[CaZ+]; as cytoplasmic calcium-versus-time curves in two
representative cells during pneumolysin treatment. The
ability of G93A-transfected SH-SY5Y cells to maintain low
cytoplasmic calcium levels was strongly reduced. Analysis
of the cytoplasmic calcium-versus-time curves of 25
GI93A-SOD1 transfected and 25 Wt-SOD1 transfected
cells after exposure to pneumolysin for 20 minutes
revealed an approximately 4-fold increase of the area
under the curve (AUC) in G93A-SOD1 SH-SY5Y cells
(634.0 + 309.0 in Wt-SOD SH-SY5Y versus 2658.0 +
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Toxicity of pneumolysin for Wt-SODI and G93A-
SOD | neuroblastoma cells. Cell viability measured by the
WST-1 test after 3 h of incubation with pneumolysin (PLY) at
a concentration of 0.5 pg/ml. Values are given in % of mito-
chondrial metabolic activity of unstimulated control cells +
standard deviation (SD). G93A-SOD| mutant SH-SY5Y cells
were more vulnerable to the action of PLY than Wt-SOD|
SH-SY5Y cells (p < 0.0001).

502.3 in G93A-SOD1 SH-SY5Y cells, p < 0.0001) (Fig. 7).
The pneumolysin-induced [Ca2+]; peak values in G93A-
SOD1 cells amounted to approximately 1.6-fold of the
corresponding [Ca2*|; peak values in Wt-SOD1 cells (3.1 +
0.4 versus 1.9 + 0.5, p < 0.0001) (Fig. 8).

The pneumolysin-induced neuronal injury was attenuated
by the anti-oxidant N-acetyl-cysteine (NAC)

Incubation with the antioxidant N-acetyl-cysteine (NAC)
in a concentration of 1 mM starting 72 and 24 hours in
the absence of pneumolysin suggested a slightly higher
mitochondrial metabolic activity of G93A-SOD1 cells
compared to G93A-SOD1 cells kept in medium without
NAC (difference not significant). After 72 hours of NAC
pre-treatment, pneumolysin exposure to G93A-SOD1
cells resulted in a metabolic activity of 27.2 + 3.5% of
G93A-SOD1 control cells not exposed to pneumolysin
compared to a metabolic activity of 20.8 + 3.1% of respec-
tive pneumolysin-challenged G93A-SOD1 cells in the
absence of NAC (p < 0.001) (Fig. 9). After pre-incubation
of G93A-SOD1 cells in NAC-containing medium for a
period of 24 hours similar results were observed: NAC
exerted a neuroprotective effect on G93A-SOD1 cells
treated with pneumolysin as determined by the WST-1
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Figure 2

Toxicity of pneumolysin for Wt-SODI and G93A-
SOD|I neuroblastoma cells. Hemalum staining showed a
substantially higher density of living Wt-SOD1 SH-SY5Y cells
than G93A-SOD | SH-SYS5Y cells after PLY treatment. Please
note the shrinkage and clustering of severely damaged/dead
G93A-SODI neuroblastoma cells.

test after 3 hours of pneumolysin exposure (22.5 + 4.1%
mitochondrial metabolic activity of control cells in G93A
cells with NAC treatment versus 15.1 + 5.4% without NAC
treatment, p < 0.0001) (Fig. 10).

Contrarily, there was no significant difference in the met-
abolic activity of NAC-treated and untreated Wt-SOD1
cells after pneumolysin incubation, i.e., NAC did not pro-
tect Wt-SOD1 neuroblastoma cells from the toxic action
of pneumolysin (Fig. 9 &10) (56.9 + 4.3% mitochondrial
metabolic activity in pneumolysin-treated Wt-SOD1 cells
versus 54.5 + 6.6% in pneumolysin-exposed Wt-SOD1
cells with 72 hours pre-incubation with NAC, p > 0.05).
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Figure 3

Toxicity of pneumolysin for G93A-SODI neuroblast-
oma cells. Apoptotic G93A-SOD| SH-SY5Y cells after incu-
bation with 0.5 pg/ml PLY for three hours (in-situ tailing,
apoptotic cells marked by arrows).

Increased vulnerability of neuroblastoma cells transfected
with G93A-SOD| to the attack of monocytes stimulated
with the Toll-like receptor-2 agonist Pam;CSK,

After stimulation of human neuroblastoma and macro-
phage co-cultures with the TLR2 agonist Pam;CSK, for a
period of 72 hours the release of neuron-specific enolase
(NSE) was measured in the culture supernatants and
expressed as per cent of the NSE release induced by cell
lysis. Co-cultures of macrophages with G93A-SOD1 SH-
SY5Y cells showed a significantly higher release of NSE
compared to co-cultures with Wt-SOD1 SH-SY5Y cells
after stimulation with Pam;CSK, (27.8 + 2.4% vs. 19.0 +
3.3%; p < 0.001) (Fig. 11). After cell staining with light
green and macrophage staining with CD 68 significantly
less neuronal cell somata of G93A-SOD1 SH-SY5Ycells
per mm?2 than of equally treated Wt-SOD1 cells were
counted by microscopy (Fig. 12). In-situ tailing detected
macrophages attacking the apoptotic neuroblastoma cells
(arrow) (Fig. 13).

Discussion

Patients with neurodegenerative diseases can experience
irreversible deterioration during infections. In an in-vitro
model of amyotrophic lateral sclerosis we showed that

http://www.biomedcentral.com/1471-2334/7/131
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Toxicity of pneumolysin for G93A-SODI neuroblast-
oma cells. Apoptotic G93A-SOD| SH-SY5Y cells after incu-
bation with 0.5 pug/ml PLY for three hours detected by
immunocytochemistry for activated caspase-3.

SH-SY5Y neuroblastoma cells transfected with the G93A
mutant of SOD1 typical for familial ALS (G93A-SOD1)
are more vulnerable to infectious stimuli than neuroblas-
toma cells overexpressing normal SOD1. The increased
vulnerability was observed after exposure to the bacterial
hemolysin pneumolysin and after co-incubation with
activated monocytes.

Hemolysins are important virulence factors of a variety of
bacteria. The cholesterol-binding hemolysin pneumo-
lysin binds to eukariotic lipid membranes. There it oli-
gomerizes into ring-shaped structures and forms non-
selective pores within the lipid bilayer with a diameter of
25-50 nm [27-32]. At sublytic concentrations, pneumo-
lysin rapidly activates Rho and Rac GTPases and leads to
the formation of actin stress fibers, filopodia, and lamel-
lipodia. At these low concentrations, pneumolysin does
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Toxicity of pneumolysin for Wt-SODI and G93A-
SODI neuroblastoma cells. Rate of apoptotic cells in
Wt-SOD| SH-SY5Y and G93A-SOD| SH-SY5Y neuroblast-
oma cells after incubation with 0.5 pig/ml PLY for three hours
(all cells = 100%). Please note the strong difference of the
rate of apoptosis in wild-type and G93A-SODI| transgenic
cells exposed to pneumolysin (p < 0.001).

not appear to form macropores, but micropores with ion
channel properties [29]. Formation of pores leads to a
Ca?* flux from the extracellular to the intracellular space
causing an increase of intracellular Ca2+in the micromolar
range and affecting cell survival. The increase of the intra-
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cellular Ca2+ concentration originates from the influx of
extracellular Ca2+and not from mobilization of intracellu-
lar stores and is mediated by the pneumolysin pore itself
and not via voltage-gated Ca2+ channels [30]. The massive
Ca?+influx causes activation of p38 MAPK, opening of the
mitochondrial permeability transition (MPT) pore and
consecutive caspase activation. At low concentrations,
pneumolysin primarily leads to apoptosis [30]. The
amount of pneumolysin released by S. pneumoniae can
be influenced by the onset and choice of antibiotic ther-

apy [33].

SH-SY5Y cells transfected with G93A-SOD1 suffer from a
decreased mitochondrial membrane potential and an ele-
vated intracellular CaZ* concentration already at rest as
determined by fluo-3 AM staining [6]. We also found a
slight elevation of the intracellular Ca2+already in unchal-
lenged G93A-SOD1-transfected cells. After exposure to
pneumolysin, the capacity of G93A-SOD1 cells to control
cytosolic Ca2+ by transport to the extracellular space or to
intracellular storage sites was much lower than the capac-
ity of neuroblastoma cells not transfected with mutant
SOD1. This accounted for the increased vulnerability of
SH-SY5Y cells possessing a mutant G93A-SOD1 gene to
low concentrations of pneumolysin.

The anti-oxidant N-acetylcysteine has been shown to
restore mitochondrial function and to lower the produc-
tion of reactive oxygen species in neuroblastoma cells
expressing mutant SOD1 [34]. In this study, it inhibited
pneumolysin-induced neurotoxicity. Accordingly, in
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Figure 6

Strongly elevated calcium influx into G 93A-SOD| neuroblastoma cells in comparison to wild-type SODI cells.
Representative recordings of intracellular calcium concentrations in single cells as measured by the fura-2 AM method.
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Figure 7

Strongly elevated calcium influx into G 93A-SOD|
neuroblastoma cells in comparison to wild-type
SODI cells. Comparison of the intracellular calcium con-
centration-versus-time curves (n = 25 cells each; means
SD; p <0.0001).

G93A-SOD1 transgenic mice, a 1% solution of N-acetyl-
cysteine administered as drinking water from 4-5 weeks
of age delayed the onset of motor dysfunction and pro-
longed survival [35]. The in-vitro and in-vivo data availa-
ble suggest that N-acetylcysteine, a drug with low toxicity
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Figure 8

Strongly elevated calcium influx into G 93A-SOD |
neuroblastoma cells in comparison to wild-type
SODI cells. Comparison of the pneumolysin-induced peak
calcium intracellular concentrations (n = 25 cells each, means
% SD, p < 0.0001).
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Figure 9

Radical scavenging by N-acetyl-cysteine. The pneumo-
lysin-induced neuronal injury in G93A-SOD| neuroblastoma
cells, but not in Wt-SODI cells, was attenuated by pre-incu-
bation for 72 hours with the anti-oxidant N-acetylcysteine
(NAQ) in a concentration of | mM (p < 0.001).

used to liquefy the pulmonary secretion in pneumonia
and to protect the liver after paracetamol poisoning,
should be explored in a randomized trial concerning its
ability to lower the speed of progression of amyotrophic
lateral sclerosis in humans.

Within the CNS, microglial cells and meningeal and
perivascular macrophages participate in the resistance to
infection, removal of cell debris from sites of injury and
promotion of tissue repair [36-38]. Microglia and mono-
cytes/macrophages are derived from the same progenitor
cells, express TLRs and other receptors mediating innate
immunity [39-42]. Because primary human microglia are
not readily available and tumor-derived microglial cell
lines behave differently from primary microglia upon
stimulation [43], in this study we used primary cultures of
monocytes/macrophages from the systemic circulation of
blood donors.

Monocytes and microglia activated by single TLR agonists
can kill neurons [[13-16,44,45], present data]. Mitochon-
drial damage contributes to neuronal death both in
inflammation and ALS [46,47]. Neurotoxicity of micro-
glia has been observed in vitro following stimulation with
the TLR4 agonist lipopolysaccharide (LPS) [44,45]. and
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Radical scavenging by N-acetyl-cysteine. 24 hours of
pre-incubation with the anti-oxidant N-acetylcysteine (NAC)
in a concentration of | mM also resulted in an attenuation of
the pneumolysin-induced neuronal injury in G93A-SODI (p
< 0.0001), but not in Wt-SOD| neuroblastoma cells.

analogues of bacterial DNA (TLR9 agonist) [13]. The neu-
rotoxic mechanisms of microglia and macrophages
involve generation of nitric oxide (NO) and other reactive
oxygen species [13,44]. Here we demonstrate that activa-
tion of macrophages by the TLR2 agonist Pam;CSK, can
also cause neuronal death, and that neuroblastoma cells
expressing G93A-SOD1 are more susceptible to the attack
of activated immune cells than those expressing wild-type
SODL1.

In the brain of healthy individuals, microglia are in a rest-
ing state. Conversely, in several neurodegenerative dis-
eases, endogenous compounds present in the extracellular
space lead to a chronic activation of microglia [1]. Acti-
vated microglia are observed in various diseases including
autoimmune- and infection-mediated inflammation,
trauma, ischemia and neurodegeneration [37,38]. In
inherited ALS, after an initial phase of the disease predom-
inated by motor neuron damage caused by mutant SOD,
in a later phase of disease progression is linked to the
inflammatory response of microglia [8].

Low concentrations of different TLR agonists can cause
additive or supra-additive stimulation rendering micro-
glial cells very susceptible to bacterial products at low con-
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Figure 11

Vulnerability of G93A-SODI and wild-type SODI
neuroblastoma cells to the attack of monocytes stim-
ulated with Pam;CSK,. Release of neuron-specific eno-
lase (values expressed in per cent + SD of the NSE release
induced by cell lysis). After stimulation of monocytes with
the Toll-like receptor 2 agonist Pam;CSK, G93A-SOD| SH-
SY5Y cells were more severely injured by activated macro-
phages than Wt-SOD | cells.

centrations [48,49]. Co-stimulation of microglia with
host-derived compounds (B-amyloid, fibronectin,
advanced glycation end products) and bacterial products
can lead to an additive or supra-additive microglial activa-
tion [17,50-52]. In addition to their greater vulnerability
to bacterial hemolysins, increased susceptibility of neu-
rons expressing the G93A mutant in their SOD1 to the
attack of activated immune cells may be the pathophysio-
logical basis of the vulnerability of the nervous system of
patients with motor neuron disease to systemic infections.
Endogenous compounds deposited in the extracellular
space (e.g., B-amyloid) [17], entering the brain through
the leaky blood-brain barrier (e.g., fibronectin) [51] or
released by dying neurons and oligodendrocytes
(advanced glycation end products) [50,52] can transform
microglia from a dormant into an activated state, which
renders them more susceptible to the stimulation by bac-
terial products.

Conclusion

Human immune cells of the monocyte/macrophage/
microglia type activated by a TLR2 agonist can kill neu-
rons. Neuronal cells expressinga SOD1 mutant frequently
encountered in familial cases of amyotrophic lateral scle-
rosis are more vulnerable to the direct action of the bacte-
rial hemolysin pneumolysin and to the attack of activated
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Vulnerability of G93A-SOD| and wild-type SODI
neuroblastoma cells to the attack of monocytes stim-
ulated with Pam;CSK,. After staining of Pam3;CSK -stimu-
lated co-cultures with light green and macrophage staining
with CD 68 less neuronal cell somata of G93A-SOD| SH-
SY5Y (lower panel) cells than of Wt-SODI cells in equally
treated co-cultures (upper panel) were visible. Please note
the clustering of severely damaged/dead G93A-SOD| cells
and the area devoid of neuronal cells in the vicinity of groups
of macrophages.

immune cells than neuronal cells expressing wild-type
SOD1. In many neurodegenerative diseases, microglia are
chronically stimulated by host-derived compounds and
change their phenotype from a dormant to the activated
state. Activated microglia are more susceptible to stimula-
tion with bacterial products than resting microglia.
Increased vulnerability of neurons and increased suscepti-
bility of immune cells to bacterial products probably are
two causes why patients with neurodegenerative diseases
frequently deteriorate during infections. Our in vitro find-
ings must be confirmed in animal experiments and
human studies, before conclusions concerning changes in

http://www.biomedcentral.com/1471-2334/7/131

Figure 13
Vulnerability of G93A-SOD | neuroblastoma cells to
the attack of monocytes stimulated with Pam;CSK,.
In-situ tailing shows a macrophage internalising an apoptotic
nucleus of a G93A-SOD| neuroblastoma cell (arrow).

treatment can be drawn. A therapeutic strategy directed at
minimizing the release of proinflammatory/toxic bacte-
rial compounds like TLR-agonists and pneumolysin can
be achieved either by the early treatment of infections
with antibiotics and/or by the use of bactericidal drugs
which minimize the release of bacterial products through
inhibition of bacterial protein synthesis [53-55]. Both
strategies may be beneficial in patients suffering from
neurodegenerative diseases.
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